1
|
Pimenta GF, Dourado TMH, de Souza KDB, Elias-Oliveira J, Rodrigues VF, Carlos D, Tirapelli CR. Melatonin Prevents Thymic Atrophy but Does Not Protect Against Disruption of T Cell Maturation Related to Cyclophosphamide Exposure. Cell Biochem Funct 2025; 43:e70052. [PMID: 39887415 DOI: 10.1002/cbf.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Increased oxidative stress and apoptosis are key mechanisms of thymic atrophy induced by cyclophosphamide (CYP). Atrophy leads to changes in the thymic microenvironment and disrupts T cell maturation. The hormone melatonin displays antioxidant and antiapoptotic effects. Here, we tested the hypothesis that melatonin would act as a cytoprotective agent against the harmful effects of CYP in the thymus. A single dose of CYP (300 mg/kg; ip) was injected in male C57BL/6 mice pretreated or not with melatonin (10 mg/kg/day, ip) for 4 days. Atrophy, oxidative stress and apoptosis markers, and T cell subpopulations were evaluated in the thymus 24 h after CYP injection. Melatonin partially prevented atrophy and the increase in caspase 3 activity induced by CYP. Augmented lipoperoxidation and generation of NADPH-oxidase derived superoxide (O2 •-), as well as decreased superoxide dismutase (SOD) activity, were detected in the thymus of CYP-injected mice. Pretreatment with melatonin abrogated these responses. CYP reduced the number of double-positive (CD4+CD8+) cells, activated single-positive (CD8+ and CD4+) cells, and regulatory CD4+FoxP3+ (Treg) cells in the thymus. None of these effects were reversed by melatonin. In conclusion, melatonin partially prevented thymic atrophy, possibly by reducing apoptosis and oxidative stress. However, melatonin did not abrogate the immunomodulatory effect of CYP on T cell populations. The lack of effect of melatonin on CYP-induced reduction in Treg cells may be of interest since these cells reduce antitumor immunity.
Collapse
Affiliation(s)
- Gustavo F Pimenta
- Departamento de Farmacologia, Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Departamento de Enfermagem Psiquiátrica, Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Thales M H Dourado
- Departamento de Farmacologia, Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Departamento de Enfermagem Psiquiátrica, Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Kayse D B de Souza
- Departamento de Enfermagem Psiquiátrica, Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Jefferson Elias-Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa F Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Carlos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Carlos R Tirapelli
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Tóth T, Alizadeh H, Polgár B, Csalódi R, Reglődi D, Tamás A. Diagnostic and Prognostic Value of PACAP in Multiple Myeloma. Int J Mol Sci 2023; 24:10801. [PMID: 37445974 DOI: 10.3390/ijms241310801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide with well-known anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects. PACAP regulates the production of various proinflammatory factors and may influence the complex cytokine network of the bone marrow microenvironment altered by plasma cells, affecting the progression of multiple myeloma (MM) and the development of end-organ damage. The aim of our study was to investigate the changes in PACAP-38 levels in patients with MM to explore its value as a potential biomarker in this disease. We compared the plasma PACAP-38 levels of MM patients with healthy individuals by ELISA method and examined its relationship with various MM-related clinical and laboratory parameters. Lower PACAP-38 levels were measured in MM patients compared with the healthy controls, however, this difference vanished if the patient achieved any response better than partial response. In addition, lower peptide levels were found in elderly patients. Significantly higher PACAP-38 levels were seen in patients with lower stage, lower plasma cell infiltration in bone marrow, lower markers of tumor burden in serum, lower total urinary and Bence-Jones protein levels, and in patients after lenalidomide therapy. Higher PACAP-38 levels in newly diagnosed MM patients predicted longer survival and a higher probability of complete response to treatment. Our findings confirm the hypothesis that PACAP plays an important role in the pathomechanism of MM. Furthermore, our results suggest that PACAP might be used as a valuable, non-invasive, complementary biomarker in diagnosis, and may be utilized for prognosis prediction and response monitoring.
Collapse
Affiliation(s)
- Tünde Tóth
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Hussain Alizadeh
- 1st Department of Medicine, Division of Hematology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Renáta Csalódi
- Department of Hematology, Balassa János Hospital of Tolna County, 7100 Szekszárd, Hungary
| | - Dóra Reglődi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Andrea Tamás
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|
4
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|
5
|
WU LUSHENG, WANG JING, CHEN XIAOJIA, HONG AN. Expression, identification and biological effects of the novel recombination protein, PACAP38-NtA, with high bioactivity. Int J Mol Med 2014; 35:376-82. [DOI: 10.3892/ijmm.2014.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/07/2014] [Indexed: 11/06/2022] Open
|
6
|
Yu R, Cui Z, Li M, Yang Y, Zhong J. Dimer-dependent intrinsic/basal activity of the class B G protein-coupled receptor PAC1 promotes cellular anti-apoptotic activity through Wnt/β-catenin pathways that are associated with dimer endocytosis. PLoS One 2014; 9:e113913. [PMID: 25426938 PMCID: PMC4245242 DOI: 10.1371/journal.pone.0113913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 11/02/2014] [Indexed: 12/23/2022] Open
Abstract
The high expression of PACAP (pituitary adenylate cyclase-activating polypeptide)-preferring receptor PAC1 is associated with nerve injury and tumors. Our previous report (Yu R, et al. PLoS One 2012; 7: e51811) confirmed the dimerization of PAC1 and found that the M-PAC1 mutation in the N-terminal first Cys/Ala lost the ability to form dimers. In this study, Chinese hamster ovary (CHO-K1) cells overexpressing wild-type PAC1 (PAC1-CHO) had significantly higher anti-apoptotic activities against serum withdrawal-induced apoptosis associated with a lower caspase 3 activity and a higher Bcl-2 level in a ligand-independent manner than those of CHO cells overexpressing the mutant M-PAC1 (M-PAC1-CHO). PAC1-CHO had significantly higher β-catenin, cyclin D1 and c-myc levels corresponding to the Wnt/β-catenin signal than did M-PAC1-CHO. In addition, the Wnt/β-catenin pathway inhibitor XAV939 significantly inhibited the anti-apoptotic activities of PAC1-CHO. Top-flash assays demonstrated that PAC1-CHO had a significantly stronger Wnt/β-catenin signal than did M-PAC1-CHO. Acetylcysteine (NAC) as an inhibitor of the dimerization of PAC1 inhibited the anti-apoptotic activities that were endowed by PAC1 and decreased the Wnt/β-catenin signal in Top-flash assays. In the PAC1 Tet (tetracycline)-on inducible gene expression system by doxycycline (Dox), higher expression levels of PAC1 resulted in higher anti-apoptotic activities that were associated with a stronger Wnt/β-catenin signal. A similar correlation was also found with the down-regulation of PAC1 in the Neuro2a neuroblastoma cell. BiFC combined with fluorescence confocal imaging indicated that during serum-withdrawal-induced apoptosis, PAC1 dimers displayed significant endocytosis. These findings indicate that PAC1 has ligand-independent and dimer-dependent intrinsic/basal activity, conferring cells with anti-apoptotic activities against serum withdrawal, which is involved in the Wnt/β-catenin signal and is associated with the endocytosis of PAC1 dimers. The discovery and study of the dimer-dependent basal activity of PAC1 not only help us understand the physiological and pathological role of PAC1 but also promote the development of drugs targeting PAC1.
Collapse
Affiliation(s)
- Rongjie Yu
- Institute of Biomedicine, Department of Cell Biology, Jinan University, Guangzhou, China
- * E-mail:
| | - Zekai Cui
- Institute of Biomedicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Mei Li
- Institute of Biomedicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Yanxu Yang
- Institute of Biomedicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Jiaping Zhong
- Institute of Biomedicine, Department of Cell Biology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Li J, Lin W, Lin W, Xu P, Zhang J, Yang H, Ling X. Metabolic profiling study on potential toxicity and immunotoxicity-biomarker discovery in rats treated with cyclophosphamide using HPLC-ESI-IT-TOF-MS. Biomed Chromatogr 2014; 29:768-76. [DOI: 10.1002/bmc.3355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/06/2014] [Accepted: 09/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Li
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Wensi Lin
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Weiwei Lin
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Peng Xu
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Jianmei Zhang
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Haisong Yang
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Xiaomei Ling
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| |
Collapse
|
8
|
PACAP promotes neuron survival in early experimental diabetic retinopathy. Neurochem Int 2014; 64:84-91. [DOI: 10.1016/j.neuint.2013.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 01/05/2023]
|
9
|
PACAP induces the dimerization of PAC1 on the nucleus associated with the cAMP increase in the nucleus. Neurosci Lett 2013; 549:92-6. [PMID: 23792266 DOI: 10.1016/j.neulet.2013.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/26/2013] [Accepted: 06/11/2013] [Indexed: 11/23/2022]
Abstract
PAC1 is PACAP (pituitary adenylate cyclase-activating polypeptide) preferring receptor belonging to class B G protein couple receptor (GPCR) mediating the most effects of PACAP. The dimerization of PAC1 has been proven by our previous research. The bimolecular fluorescence complementation (BiFC) combined with fluorescence confocal microscope image was used in this research to explore the profiles of PAC1 dimers during the activation by PACAP. Fluorescence metry and cAMP assays were both used to detect the functions of the dimerization of PAC1 on the nucleus induced by PACAP. It was found that PACAP in concentration lower than 10nM induced the de-dimerization of PAC1 on the plasma membranes and the re-dimerization of PAC1 on the nucleus. While PACAP in concentration higher than 10nM, the nuclear localized PAC1 dimers were further translocated from outside/on the nucleus into the nucleus. In addition, it was also found that the more PAC1 dimers on the nucleus produced the higher cAMP level in the nucleus, and the levels of cAMP in the nucleus varied synchronously with functions of PACAP on the proliferation of PAC1-CHO cells. These results indicated the dimerization of PAC1 on the nucleus may be involved in the cell signals produced by PACAP. The finding and the research on the dimerization of PAC1 on the nucleus will help us to step forward to clarify the physiological and pharmacological role of PAC1.
Collapse
|
10
|
Banki E, Degrell P, Kiss P, Kovacs K, Kemeny A, Csanaky K, Duh A, Nagy D, Toth G, Tamas A, Reglodi D. Effect of PACAP treatment on kidney morphology and cytokine expression in rat diabetic nephropathy. Peptides 2013; 42:125-30. [PMID: 23416022 DOI: 10.1016/j.peptides.2013.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide, exerting diverse effects. One of its frequently examined functions is cell protection, which is achieved mainly via inhibiting apoptotic, inflammatory and oxidative processes. All its three receptors (PAC1, VPAC1, VPAC2) are expressed in the kidney and PACAP has been shown to have protective effects against different renal pathologies. Diabetic nephropathy is the leading cause of end stage renal disease. The aim of the present study was to investigate the possible ameliorative effect of PACAP in streptozotocin-induced diabetic nephropathy and to evaluate its anti-inflammatory effect in this model. Diabetes was induced by a single intravenous injection of streptozotocin (65 mg/kg) in male Wistar rats. PACAP-treated animals were administered ip. 20 μg PACAP every second day, while untreated animals were given vehicle. Kidneys were removed after 8-weeks survival. Besides the complex histological analysis (glomerular PAS positive area/glomerulus area, tubular damage, arteriolar hyalinosis), expression of several cytokines was evaluated by cytokine array and Luminex assay. Histological analysis revealed severe diabetic changes in kidneys of control diabetic animals (glomerular PAS-positive area expansion, tubular damage, Armanni-Ebstein phenomenon). PACAP treatment significantly diminished the damage. Diabetic kidneys showed significant cytokine activation compared to their healthy controls. PACAP was effective in downregulation of several cytokines including CINC-1, TIMP-1, LIX, MIG, s-ICAM. To conclude, PACAP is effective in ameliorating diabetic nephropathy at least partly through its well-known anti-inflammatory effect. These results raise the opportunity for the use of PACAP as a possible therapeutic or preventive method in treating the complications of diabetes.
Collapse
Affiliation(s)
- E Banki
- Department of Anatomy PTE-MTA Lendulet PACAP Research Team, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|