1
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Chung-Davidson YW, Bussy U, Fissette SD, Huerta B, Li W. Waterborne pheromones modulate gonadotropin-inhibitory hormone levels in sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2020; 288:113358. [PMID: 31837303 DOI: 10.1016/j.ygcen.2019.113358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
Abstract
The relationships between pheromone stimuli and neuropeptides are not well established in vertebrates due to the limited number of unequivocally identified pheromone molecules. The sea lamprey (Petromyzon marinus) is an advantageous vertebrate model to study the effects of pheromone exposure on neuropeptides since many pheromone molecules and neuropeptides have been identified in this species. Sexually mature male sea lamprey release pheromones 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate, 3kPZS) and 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3-keto allocholic acid, 3kACA) that differentially regulate gonadotropin-releasing hormone (lGnRH) and steroid levels in sexually immature sea lamprey. However, the effects of these pheromones on gonadotropin-inhibitory hormones (GnIHs), hypothalamic neuropeptides that regulate lGnRH release, are still elusive. In this report, we sought to examine the effects of waterborne pheromones on lamprey GnIH-related neuropeptide levels in sexually immature sea lamprey. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analyses revealed sex differences in GnIH-related neuropeptide levels in the brain and plasma of immature sea lamprey. Exposure to 3kPZS and 3kACA exerted differential effects on GnIH-related neuropeptide levels in both sexes, but the effects were more prominent in female brains. We conclude that sea lamprey pheromones regulate GnIH-related neuropeptide levels in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Skye Daniel Fissette
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Belinda Huerta
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
3
|
Jadhao AG, Pinelli C, D'Aniello B, Tsutsui K. Gonadotropin-inhibitory hormone (GnIH) in the amphibian brain and its relationship with the gonadotropin releasing hormone (GnRH) system: An overview. Gen Comp Endocrinol 2017; 240:69-76. [PMID: 27667155 DOI: 10.1016/j.ygcen.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/02/2016] [Accepted: 09/14/2016] [Indexed: 01/28/2023]
Abstract
It is well known that the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) plays an important role as a primary factor regulating gonadotropin secretion in reproductive processes in vertebrates. The discovery of the presence of a gonadotropin-inhibitory hormone (GnIH) in the brains of birds has further contributed to our understanding of the reproduction control by the brain. GnIH plays a key role in inhibition of reproduction and acts on the pituitary gland and GnRH neurons via a novel G protein-coupled receptor (GPR147). GnIH decreases gonadotropin synthesis and release, thus inhibiting gonadal development and maintenance. The GnRH and GnIH neuronal peptidergic systems are well reported in mammals and birds, but limited information is available regarding their presence and localization in the brains of other vertebrate species, such as reptiles, amphibians and fishes. The aim of this review is to compile and update information on the localization of GnRH and GnIH neuronal systems, with a particular focus on amphibians, summarizing the neuroanatomical distribution of GnIH and GnRH and emphasizing the discovery of GnIH based on RFamide peptides and GnIH orthologous peptides found in other vertebrates and their functional significance.
Collapse
Affiliation(s)
- Arun G Jadhao
- Department of Zoology, RTM Nagpur University Campus, Nagpur 440 033, MS, India.
| | - Claudia Pinelli
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Biagio D'Aniello
- Department of Biology, University of Naples "Federico II", 80126 Napoli, Italy
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Centre for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
4
|
Detecting signatures of positive selection associated with musical aptitude in the human genome. Sci Rep 2016; 6:21198. [PMID: 26879527 PMCID: PMC4754774 DOI: 10.1038/srep21198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/19/2016] [Indexed: 01/18/2023] Open
Abstract
Abilities related to musical aptitude appear to have a long history in human evolution. To elucidate the molecular and evolutionary background of musical aptitude, we compared genome-wide genotyping data (641 K SNPs) of 148 Finnish individuals characterized for musical aptitude. We assigned signatures of positive selection in a case-control setting using three selection methods: haploPS, XP-EHH and FST. Gene ontology classification revealed that the positive selection regions contained genes affecting inner-ear development. Additionally, literature survey has shown that several of the identified genes were known to be involved in auditory perception (e.g. GPR98, USH2A), cognition and memory (e.g. GRIN2B, IL1A, IL1B, RAPGEF5), reward mechanisms (RGS9), and song perception and production of songbirds (e.g. FOXP1, RGS9, GPR98, GRIN2B). Interestingly, genes related to inner-ear development and cognition were also detected in a previous genome-wide association study of musical aptitude. However, the candidate genes detected in this study were not reported earlier in studies of musical abilities. Identification of genes related to language development (FOXP1 and VLDLR) support the popular hypothesis that music and language share a common genetic and evolutionary background. The findings are consistent with the evolutionary conservation of genes related to auditory processes in other species and provide first empirical evidence for signatures of positive selection for abilities that contribute to musical aptitude.
Collapse
|
5
|
Ferris JK, Tse MT, Hamson DK, Taves MD, Ma C, McGuire N, Arckens L, Bentley GE, Galea LAM, Floresco SB, Soma KK. Neuronal Gonadotrophin-Releasing Hormone (GnRH) and Astrocytic Gonadotrophin Inhibitory Hormone (GnIH) Immunoreactivity in the Adult Rat Hippocampus. J Neuroendocrinol 2015; 27:772-86. [PMID: 26258544 DOI: 10.1111/jne.12307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH) and gonadotrophin inhibitory hormone (GnIH) are neuropeptides secreted by the hypothalamus that regulate reproduction. GnRH receptors are not only present in the anterior pituitary, but also are abundantly expressed in the hippocampus of rats, suggesting that GnRH regulates hippocampal function. GnIH inhibits pituitary gonadotrophin secretion and is also expressed in the hippocampus of a songbird; its role outside of the reproductive axis is not well established. In the present study, we employed immunohistochemistry to examine three forms of GnRH [mammalian GnRH-I (mGnRH-I), chicken GnRH-II (cGnRH-II) and lamprey GnRH-III (lGnRH-III)] and GnIH in the adult rat hippocampus. No mGnRH-I and cGnRH-II+ cell bodies were present in the hippocampus. Sparse mGnRH-I and cGnRH-II+ fibres were present within the CA1 and CA3 fields of the hippocampus, along the hippocampal fissure, and within the hilus of the dentate gyrus. No lGnRH-III was present in the rodent hippocampus. GnIH-immunoreactivity was present in the hippocampus in cell bodies that resembled astrocytes. Males had more GnIH+ cells in the hilus of the dentate gyrus than females. To confirm the GnIH+ cell body phenotype, we performed double-label immunofluorescence against GnIH, glial fibrillary acidic protein (GFAP) and NeuN. Immunofluorescence revealed that all GnIH+ cell bodies in the hippocampus also contained GFAP, a marker of astrocytes. Taken together, these data suggest that GnRH does not reach GnRH receptors in the rat hippocampus primarily via synaptic release. By contrast, GnIH might be synthesised locally in the rat hippocampus by astrocytes. These data shed light on the sites of action and possible functions of GnRH and GnIH outside of the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- J K Ferris
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - M T Tse
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - D K Hamson
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - M D Taves
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - C Ma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - N McGuire
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, USA
| | - L Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, University of Leuven, Leuven, Belgium
| | - G E Bentley
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, USA
| | - L A M Galea
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - S B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - K K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Fokidis HB, Adomat HH, Kharmate G, Hosseini-Beheshti E, Guns ES, Soma KK. Regulation of local steroidogenesis in the brain and in prostate cancer: lessons learned from interdisciplinary collaboration. Front Neuroendocrinol 2015; 36:108-29. [PMID: 25223867 DOI: 10.1016/j.yfrne.2014.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/16/2022]
Abstract
Sex steroids play critical roles in the regulation of the brain and many other organs. Traditionally, researchers have focused on sex steroid signaling that involves travel from the gonads via the circulation to intracellular receptors in target tissues. This classic concept has been challenged, however, by the growing number of cases in which steroids are synthesized locally and act locally within diverse tissues. For example, the brain and prostate carcinoma were previously considered targets of gonadal sex steroids, but under certain circumstances, these tissues can upregulate their steroidogenic potential, particularly when circulating sex steroid concentrations are low. We review some of the similarities and differences between local sex steroid synthesis in the brain and prostate cancer. We also share five lessons that we have learned during the course of our interdisciplinary collaboration, which brought together neuroendocrinologists and cancer biologists. These lessons have important implications for future research in both fields.
Collapse
Affiliation(s)
- H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL 37289, USA; Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
| | - Hans H Adomat
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | | | - Emma S Guns
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urological Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
7
|
Pinelli C, Jadhao AG, Biswas SP, Tsutsui K, D''Aniello B. Neuroanatomical Organization of the Brain Gonadotropin-Inhibitory Hormone and Gonadotropin-Releasing Hormone Systems in the Frog Pelophylax esculentus. BRAIN, BEHAVIOR AND EVOLUTION 2014; 85:15-28. [DOI: 10.1159/000368594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022]
Abstract
Growing evidence suggests that gonadotropin-inhibitory hormone (GnIH) may play a key role in mediating vertebrate reproduction. GnIH inhibits gonadotropin synthesis and release by decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons as well as by directly regulating gonadotropin secretion from the pituitary. Whereas the presence of GnIH has been widely investigated in various classes of vertebrates, there are very few immunohistochemical reports focusing on GnIH in amphibians. The aim of this study was to assess the presence and neuroanatomical distribution of GnIH-like immunoreactivity in the brain of the anuran amphibian Pelophylax (Rana) esculentus (esculenta) and to explore any potential anatomical relationship with mammalian GnRH-immunoreactive (mGnRH-ir) elements. The GnIH-like immunoreactive (GnIH-ir) system constitutes two distinct subpopulations in the telencephalon and diencephalon, with the highest number of immunoreactive cells located in the preoptic and suprachiasmatic areas. GnIH-ir neurons were also observed in the medial septum, the anterior commissure, the dorsal hypothalamus, the periventricular nucleus of the hypothalamus, and the posterior tuberculum. Scattered GnIH-ir fibers were present in all major subdivisions of the brain but only occasionally in the median eminence. mGnRH-ir neurons were distributed in the mediobasal telencephalon, the medial septal area, and the anterior preoptic area. Double-label immunohistochemistry revealed that the GnRH and GnIH systems coexist and have overlapping distributions at the level of the anterior preoptic area. Some GnIH-ir fibers were in close proximity to mGnRH-ir cell bodies. Our results suggest that both the neuroanatomy and the functional regulation of GnRH release are conserved properties of the hypothalamic GnIH-ir system among vertebrate species.
Collapse
|
8
|
Calisi RM. An integrative overview of the role of gonadotropin-inhibitory hormone in behavior: applying Tinbergen's four questions. Gen Comp Endocrinol 2014; 203:95-105. [PMID: 24704003 DOI: 10.1016/j.ygcen.2014.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/06/2023]
Abstract
The integration of various fields of investigation is of key importance to fully comprehending endocrine function. Here, I enact the theoretical framework of Nikolaas Tinbergen's four questions for understanding behavior to help bridge the wide gap that exists between our relatively reductionist molecular knowledge of a particular neurohormone, gonadotropin-inhibitory hormone (GnIH), and its place in animal behavior. Hypothalamic GnIH, upon its discovery in 2000, was so named because of its inhibitory effect on the release of the gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), from the pituitary. Because gonadotropins are necessary for reproduction, this finding stimulated questions about the functional significance of GnIH in reproduction and sexual behavior. After over a decade of research, invaluable knowledge has been gained regarding the mechanistic attributes of GnIH (mammalian homolog, RFamide-related peptide (RFRP)) in a variety of vertebrate species. However, many questions remain regarding the effect of the environment on GnIH and the subsequent effects of GnIH on behavior. I review the role of GnIH in shaping behavior using the framework of Tinbergen's four questions of mechanism, ontogeny, function and phylogeny. The studies I review were conducted in various species of mammals, birds, and in one species of fish. Because GnIH can play a role in mediating behaviors such as those important for reproduction, sociality, feeding, and the stress response in a variety of species, an integrative approach to the study of GnIH will help provide a multipronged schema for answering questions of GnIH function. By using the framework highlighted by Tinbergen's four questions, we will deepen and enhance our knowledge of the role of hormones in behavior from the point of view of the mechanisms involved.
Collapse
|