1
|
Nichols R, Pittala K, Leander M, Maynard B, Nikolaou P, Marciniak P. The myosuppressin structure-activity relationship for cardiac contractility and its receptor interactions support the presence of a ligand-directed signaling pathway in heart. Peptides 2021; 146:170641. [PMID: 34453985 DOI: 10.1016/j.peptides.2021.170641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
The structural conservation and activity of the myosuppressin cardioinhibitory peptide across species suggests it plays an important role in physiology, yet much remains unknown regarding its signaling. We previously reported Drosophila melanogaster myosuppressin (dromyosuppressin, DMS; TDVDHVFLRF-NH2) decreases cardiac contractility through a G protein-coupled receptor, DMS-R2. Our study showed the DMS N-terminus amino acids influence its structure-activity relationship (SAR), yet how they act is not established. We predicted myosuppressin N-terminal amino acids played a role in signaling. Here, we tested our hypothesis in the beetle, Zophobas atratus, using a semi-isolated heart bioassay to explore SAR in a different Order and focus on cardiac signaling. We generated a series of myosuppressin truncated analogs by removing the N-terminal residue and measuring the activity of each structure on cardiac contractility. While DVDHVFLRF-NH2 decreased cardiac contractility, we found VDHVFLRF-NH2, DHVFLRF-NH2, and HVFLRF-NH2 increased activity. In contrast, VFLRF- NH2 decreased activity and FLRF-NH2 was inactive. Next, we analyzed molecular docking data and found the active truncated analogs interacted with the 3-6 lock in DMS-R2, the myosuppressin cardiac receptor, disrupting the salt bridge between H114 and E369, and K289 and Q372. Further, the docking results showed the inhibitory effect on contractility may be associated with contact to Y78, while the analogs that increased contractility lacked this interaction. The data from our study demonstrated N-terminal amino acids played a role in myosuppressin activity and signaling suggesting the cardiac receptor can be targeted by biased agonists. Our myosuppressin cardiac contractility data and predicted receptor interactions describe the presence of functional selectivity in a ligand-directed signaling pathway in heart.
Collapse
Affiliation(s)
- R Nichols
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - K Pittala
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Undergraduate Honors Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - M Leander
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - B Maynard
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - P Nikolaou
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | - P Marciniak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
2
|
Szymczak-Cendlak M, Gołębiowski M, Chowański S, Pacholska-Bogalska J, Marciniak P, Rosiński G, Słocińska M. Sulfakinins influence lipid composition and insulin-like peptides level in oenocytes of Zophobas atratus beetles. J Comp Physiol B 2021; 192:15-25. [PMID: 34415387 PMCID: PMC8816747 DOI: 10.1007/s00360-021-01398-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/05/2022]
Abstract
Insect sulfakinins are pleiotropic neuropeptides with the homology to vertebrate gastrin/cholecystokinin peptide family. They have been identified in many insect species and affect different metabolic processes. They have a strong influence on feeding and digestion as well as on carbohydrate and lipid processing. Our study reveals that sulfakinins influence fatty acids composition in Zophobas atratus oenocytes and regulate insulin-like peptides (ILPs) level in these cells. Oenocytes are cells responsible for maintenance of the body homeostasis and have an important role in the regulation of intermediary metabolism, especially of lipids. To analyze the lipid composition in oenocytes after sulfakinins injections we used gas chromatography combined with mass spectrometry and for ILPs level determination an immunoenzymatic test was used. Because sulfakinin peptides and their receptors are the main components of sulfakinin signaling, we also analyzed the presence of sulfakinin receptor transcript (SKR2) in insect tissues. We have identified for the first time the sulfakinin receptor transcript (SKR2) in insect oenocytes and found its distribution more widespread in the peripheral tissues (gut, fat body and haemolymph) as well as in the nervous and neuro-endocrine systems (brain, ventral nerve cord, corpora cardiaca/corpora allata CC/CA) of Z. atratus larvae. The presence of sulfakinin receptor transcript (SKR2) in oenocytes suggests that observed effects on oenocytes lipid and ILPs content may result from direction action of these peptides on oenocytes.
Collapse
Affiliation(s)
- M Szymczak-Cendlak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - M Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - S Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - J Pacholska-Bogalska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - P Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - G Rosiński
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - M Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Urbański A, Konopińska N, Lubawy J, Walkowiak-Nowicka K, Marciniak P, Rolff J. A possible role of tachykinin-related peptide on an immune system activity of mealworm beetle, Tenebrio molitor L. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104065. [PMID: 33705792 DOI: 10.1016/j.dci.2021.104065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Tachykinin-related peptides (TRPs) are important neuropeptides. Here we show that they affect the insect immune system, especially the cellular response. We also identify and predict the sequence and structure of the tachykinin-related peptide receptor (TRPR) and confirm the presence of expression of gene encoding TRPR on Tenebrio molitor haemocytes. After application of the Tenmo-TRP-7 in T. molitor the number of circulating haemocytes increased and the number of haemocytes participating in phagocytosis of latex beads decreased in a dose- and time-dependent fashion. Also, Tenmo-TRP-7 affects the adhesion ability of haemocytes. Six hours after injection of Tenmo-TRP-7, a decrease of haemocyte surface area was observed under both tested Tenmo-TRP-7 concentrations (10-7 and 10-5 M). The opposite effect was reported 24 h after injection, which indicates that the influence of Tenmo-TRP-7 on modulation of haemocyte behaviour differs at different stages of stress response. Tenmo-TRP-7 application also resulted in increased phenoloxidase activity 6 and 24 h after injection. The assessment of DNA integrity of haemocytes showed that the injection of Tenmo-TRP-7 at 10-7 M led to a decrease in DNA damage compared to control individuals. This effect was only visible 6 h after Tenmo-TRP-7 application. After 24 h, Tenmo-TRP-7 injection increased DNA damage. We also confirmed the expression of immune-related genes in nervous tissue of T. molitor. Transcripts for genes encoding receptors participating in pathogen recognition processes and antimicrobial peptides were detected in T. molitor brain, retrocerebral complex and ventral nerve cord. These results may indicate a role of the insect nervous system in pathogen recognition and modulation of immune response similar to vertebrates. Taken together, our results support the notion that tachykinin-related peptides probably play an important role in the regulation of the insect immune system. Moreover, some resemblances with action of tachykinin-related peptides and substance P showed that insects can be potential model organisms for analysis of hormonal regulation of conserved innate immune mechanisms.
Collapse
Affiliation(s)
- A Urbański
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland; HiProMine S.A, Poznańska Str. 8, 62-023, Robakowo, Poland.
| | - N Konopińska
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - J Lubawy
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - K Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - P Marciniak
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - J Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| |
Collapse
|
4
|
Słocińska M, Chowański S, Marciniak P. Identification of sulfakinin receptors (SKR) in Tenebrio molitor beetle and the influence of sulfakinins on carbohydrates metabolism. J Comp Physiol B 2020; 190:669-679. [PMID: 32749519 PMCID: PMC7441086 DOI: 10.1007/s00360-020-01300-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/03/2020] [Accepted: 07/19/2020] [Indexed: 11/24/2022]
Abstract
Sulfakinins (SKs) are pleiotropic neuropeptides commonly found in insects, structurally and functionally homologous to the mammalian gastrin/cholecystokinin (CCK) neuropeptides. SKs together with sulfakinin receptors (SKRs) are involved in sulfakinin signaling responsible for variety of biological functions, including food intake or fatty acid metabolism. In the present study, we determined the distribution of SKRs in Tenebrio molitor larvae and characterized the impact of nonsulfated and sulfated SKs on carbohydrates and insulin-like peptides (ILPs) level in beetle hemolymph. Our results indicate the presence of both sulfakinin receptors, SKR1 and SKR2, in the nervous system of T. molitor. The distribution of SKR2 in peripheral tissues was more widespread than SKR1, and their transcripts have been found in fat body, gut and hemolymph. This is also the first evidence for SKRs presence in insect hemocytes indicating immunotropic activity of SKs. Moreover, in the present study, we have demonstrated that SKs regulate ILPs and carbohydrates level in insect hemolymph, and that sulfation is not crucial for peptides activity. Our study confirms the role of SKs in maintaining energy homeostasis in beetles.
Collapse
Affiliation(s)
- M Słocińska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - S Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - P Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
5
|
Short neuropeptide F signaling regulates functioning of male reproductive system in Tenebrio molitor beetle. J Comp Physiol B 2020; 190:521-534. [PMID: 32749520 PMCID: PMC7441091 DOI: 10.1007/s00360-020-01296-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Neuropeptides of short neuropeptides F family (sNPF) have been identified in various arthropods. They are pleiotropic neuromolecules which so far have been mainly associated with regulation of feeding and metabolism, as well as growth and development, locomotion, circadian rhythm or learning and memory. Here, we describe the effects of Tenebrionid sNPF peptide (SGRSPSLRLRFa) on various aspects of the male reproductive physiology in the Tenebrio molitor beetle. We identified in silico the putative sNPF receptor Tenmo-sNPFR. Based on RT-PCR technique, it was shown that the receptor might be present in the male reproductive tissues of this beetle. The analysis of receptor amino acid sequence showed that it is similar to other beetle sNPFRs, as well as other insect species, and belongs rhodopsin-like G-protein-coupled receptors (GPCRs). Injections of Trica-sNPF and its shorter form Trica-sNPF(4–11) caused differentiated effects in T. molitor male reproductive tissues. After 24 h post injections, the peptides decreased the concentration of the soluble protein fraction in testes of 4- and 8-day-old beetles as well as the dry mass of these organs but only in 8-day-old individuals. The same effects were shown with regard to accessory glands. Both peptides decrease the concentration of the soluble protein fraction but do not affect the dry mass of this organ. Furthermore, injections of Trica-sNPF at the 10–7 M concentration decrease the total sperm number in the reproductive system. Surprisingly, the same concentration of the shorter form, Trica-sNPF(4–11) increased the sperm number. It was also shown that both peptides in different manner influence contractions of ejaculatory duct. The data presented in this article give new evidence that sNPFs are involved in the regulation of reproductive events in beetles, which might be the part of a larger neuropeptide network combining feeding, growth and development with the physiology of reproduction.
Collapse
|
6
|
Marciniak P, Witek W, Szymczak M, Pacholska-Bogalska J, Chowański S, Kuczer M, Rosiński G. FMRFamide-Related Peptides Signaling Is Involved in the Regulation of Muscle Contractions in Two Tenebrionid Beetles. Front Physiol 2020; 11:456. [PMID: 32477164 PMCID: PMC7235380 DOI: 10.3389/fphys.2020.00456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Peptidergic signaling regulates various physiological processes in insects. Neuropeptides are important messenger molecules that act as neurotransmitters, neuromodulators or hormones. Neuropeptides with myotropic properties in insects are known as FMRFamide-like peptides (FaLPs). Here, we describe the myotropic effects of the endogenous FaLPs in the regulation of contractile activity of the heart, ejaculatory duct, oviduct and the hindgut in two beetle species, Tenebrio molitor and Zophobas atratus. A putative receptor was identified in silico in both species. Using RT-PCR these putative FaLPs receptors were found in the various tissues of both beetles, including visceral organs. Analysis of the amino acid sequence of the receptor indicated that it is similar to other insect FaLPs receptors and belongs to G-protein coupled receptors. A synthetic FaLP (NSNFLRFa) found as the bioanalogue of both species demonstrated concentration-dependent and organ-specific myoactive properties. The peptide had species–specific cardioactivity, in that it stimulated Z. atratus heart contractions, while slightly inhibiting that of T. molitor and had mainly myostimulatory effect on the examined visceral organs of both beetle species, with the lowest activity in the ejaculatory duct of these beetles. The peptide was the most active in the hindgut of both species, but only at high concentration of 10–5 M. The results suggest that FaLPs are potent modulators of endogenous contractile activity of the visceral muscles in beetles and may indirectly affect various physiological processes.
Collapse
Affiliation(s)
- Paweł Marciniak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Witek
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | - Monika Szymczak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | | | - Szymon Chowański
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
7
|
Komisarczuk AZ, Kongshaug H, Li M, Nilsen F. RNAi mediated myosuppressin deficiency affects muscle development and survival in the salmon louse (Lepeophtheirus salmonis). Sci Rep 2019; 9:6944. [PMID: 31061463 PMCID: PMC6502818 DOI: 10.1038/s41598-019-43515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/23/2019] [Indexed: 12/05/2022] Open
Abstract
Muscle activity is regulated by stimulatory and inhibitory neuropeptides allowing for contraction and relaxation. In Arthropods, one of the important myoinhibitors is Myosuppressin, belonging to FMRFamide-like peptides, that was shown to have inhibitory effects on visceral muscle contraction and to regulate vital physiological processes including reproduction or feeding. We have identified myosuppressin in salmon louse Lepeophtheirus salmonis (LsalMS) and systematically characterised its function and complex abnormalities emerging after LsalMS knockdown by RNAi in all developmental stages in this species. Immunohistochemistry analysis localized the LsalMS mainly to the central nervous system, but also to the vital organs within the alimentary tract and the reproductive system. The most striking feature of LsalMS deficiency during lice development was severe reduction of the muscle content, with abnormalities detected in both the visceral and skeletal muscles. Moreover, down-regulation of LsalMS affects moulting, spermatophore deposition and feeding by affecting development of the intestinal wall and increasing its contraction frequency.
Collapse
Affiliation(s)
- Anna Z Komisarczuk
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5008, Bergen, Norway.
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5008, Bergen, Norway
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5008, Bergen, Norway
| |
Collapse
|
8
|
Christ P, Hill SR, Schachtner J, Hauser F, Ignell R. Functional characterization of mosquito short neuropeptide F receptors. Peptides 2018; 103:31-39. [PMID: 29550617 DOI: 10.1016/j.peptides.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Mosquito blood feeding transiently inhibits sugar- and host seeking through neuropeptide signaling. Short neuropeptide F (sNPF) is one of the neuromodulators involved in this regulation. Here, we identified the genes for the sNPF precursor and the sNPF receptor in the southern house mosquito, Culex quinquefasciatus. Comparative analyses are made with the genes of the sNPF precursor and receptor from two other important vectors, Aedes aegypti and Anopheles coluzzii. We functionally characterized the receptors in all three species using endogenous neuropeptides, and quantified their transcript expression following a blood meal and a sugar meal. Our analysis reveals several Cx. quinquefasciatus-specific duplications of the sNPF-3 isoform on the sNPF precursor, which are not reflected in the precursors of the other two species. In contrast, the structure of the sNPF receptors is highly conserved within mosquitoes, and a putative ligand binding region is proposed and discussed. Reflecting the high structural conservation, the sNPF receptor sensitivity to endogenous sNPF isoforms is conserved across mosquito species. Using quantitative real time PCR, we demonstrate that transcript abundance of the sNPF receptor and precursor is regulated following feeding, only in Cx. quinquefasciatus. We discuss our findings in relation to previous work on sNPF signaling and its role in feeding regulation.
Collapse
Affiliation(s)
- Peter Christ
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, Sundsvägen 14, 23053, Alnarp, Sweden.
| | - Sharon R Hill
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, Sundsvägen 14, 23053, Alnarp, Sweden.
| | - Joachim Schachtner
- Neurobiology/Ethology, Department of Biology, Philipps University Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany.
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, Sundsvägen 14, 23053, Alnarp, Sweden.
| |
Collapse
|
9
|
Leprince J, Bagnol D, Bureau R, Fukusumi S, Granata R, Hinuma S, Larhammar D, Primeaux S, Sopkova-de Oliveiras Santos J, Tsutsui K, Ukena K, Vaudry H. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br J Pharmacol 2017; 174:3573-3607. [PMID: 28613414 DOI: 10.1111/bph.13907] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
The RFamide neuropeptide 26RFa was first isolated from the brain of the European green frog on the basis of cross-reactivity with antibodies raised against bovine neuropeptide FF (NPFF). 26RFa and its N-terminally extended form glutamine RF-amide peptide (QRFP) have been identified as cognate ligands of the former orphan receptor GPR103, now renamed glutamine RF-amide peptide receptor (QRFP receptor). The 26RFa/QRFP precursor has been characterized in various mammalian and non-mammalian species. In the brain of mammals, including humans, 26RFa/QRFP mRNA is almost exclusively expressed in hypothalamic nuclei. The 26RFa/QRFP transcript is also present in various organs especially in endocrine glands. While humans express only one QRFP receptor, two isoforms are present in rodents. The QRFP receptor genes are widely expressed in the CNS and in peripheral tissues, notably in bone, heart, kidney, pancreas and testis. Structure-activity relationship studies have led to the identification of low MW peptidergic agonists and antagonists of QRFP receptor. Concurrently, several selective non-peptidic antagonists have been designed from high-throughput screening hit optimization. Consistent with the widespread distribution of QRFP receptor mRNA and 26RFa binding sites, 26RFa/QRFP exerts a large range of biological activities, notably in the control of energy homeostasis, bone formation and nociception that are mediated by QRFP receptor or NPFF2. The present report reviews the current knowledge concerning the 26RFa/QRFP-QRFP receptor system and discusses the potential use of selective QRFP receptor ligands for therapeutic applications.
Collapse
Affiliation(s)
- Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| | - Didier Bagnol
- CNS Drug Discovery, Arena Pharmaceuticals Inc., San Diego, CA, USA
| | - Ronan Bureau
- Normandy Centre for Studies and Research on Medicines (CERMN), Normandy University, Caen, France
| | - Shoji Fukusumi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shuji Hinuma
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, Suita-City, Osaka, Japan
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden
| | - Stefany Primeaux
- Department of Physiology, Joint Diabetes, Endocrinology & Metabolism Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science, Tokyo, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| |
Collapse
|
10
|
Rasmussen M, Leander M, Ons S, Nichols R. Conserved molecular switch interactions in modeled cardioactive RF-NH2 peptide receptors: Ligand binding and activation. Peptides 2015. [PMID: 26211890 DOI: 10.1016/j.peptides.2015.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Peptides may act through G protein-coupled receptors to influence cardiovascular performance; thus, delineating mechanisms involved in signaling is a molecular-based strategy to influence health. Molecular switches, often represented by conserved motifs, maintain a receptor in an inactive state. However, once the switch is broken, the transmembrane regions move and activation occurs. The molecular switches of Drosophila melanogaster myosuppressin (MS) receptors were previously identified to include a unique ionic lock and novel 3-6 lock, as well as transmission and tyrosine toggle switches. In addition to MS, cardioactive ligands structurally related by a C-terminal RF-NH2 include sulfakinin, neuropeptide F (NPF), short NPF, and FMRF-NH2-containing peptide subfamilies. We hypothesized receptor molecular switch motifs were conserved within a RF-NH2 subfamily and across species. Thus, we investigated RF-NH2 receptor (RFa-R) molecular switches in D. melanogaster, Tribolium castaneum, Anopheles gambiae, Rhodnius prolixus, and Bombyx mori. Adipokinetic hormone (AKH), which does not contain a RF-NH2, was also examined. The tyrosine toggle switch and ionic lock showed a higher degree of conservation within a RF-NH2 subfamily than the transmission switch and 3-7 lock. AKH receptor motifs were not representative of a RF-NH2 subfamily. The motifs and interactions of switches in the RFa-Rs were consistent with receptor activation and ligand-specific binding.
Collapse
Affiliation(s)
- M Rasmussen
- Chemistry Undergraduate Program, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | - M Leander
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | - S Ons
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 1459, Buenos Aires, Argentina
| | - R Nichols
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA.
| |
Collapse
|
11
|
Leander M, Bass C, Marchetti K, Maynard BF, Wulff JP, Ons S, Nichols R. Cardiac contractility structure-activity relationship and ligand-receptor interactions; the discovery of unique and novel molecular switches in myosuppressin signaling. PLoS One 2015; 10:e0120492. [PMID: 25793503 PMCID: PMC4368603 DOI: 10.1371/journal.pone.0120492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
Peptidergic signaling regulates cardiac contractility; thus, identifying molecular switches, ligand-receptor contacts, and antagonists aids in exploring the underlying mechanisms to influence health. Myosuppressin (MS), a decapeptide, diminishes cardiac contractility and gut motility. Myosuppressin binds to G protein-coupled receptor (GPCR) proteins. Two Drosophila melanogaster myosuppressin receptors (DrmMS-Rs) exist; however, no mechanism underlying MS-R activation is reported. We predicted DrmMS-Rs contained molecular switches that resembled those of Rhodopsin. Additionally, we believed DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 interactions would reflect our structure-activity relationship (SAR) data. We hypothesized agonist- and antagonist-receptor contacts would differ from one another depending on activity. Lastly, we expected our study to apply to other species; we tested this hypothesis in Rhodnius prolixus, the Chagas disease vector. Searching DrmMS-Rs for molecular switches led to the discovery of a unique ionic lock and a novel 3-6 lock, as well as transmission and tyrosine toggle switches. The DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 contacts suggested tissue-specific signaling existed, which was in line with our SAR data. We identified R. prolixus (Rhp)MS-R and discovered it, too, contained the unique myosuppressin ionic lock and novel 3-6 lock found in DrmMS-Rs as well as transmission and tyrosine toggle switches. Further, these motifs were present in red flour beetle, common water flea, honey bee, domestic silkworm, and termite MS-Rs. RhpMS and DrmMS decreased R. prolixus cardiac contractility dose dependently with EC50 values of 140 nM and 50 nM. Based on ligand-receptor contacts, we designed RhpMS analogs believed to be an active core and antagonist; testing on heart confirmed these predictions. The active core docking mimicked RhpMS, however, the antagonist did not. Together, these data were consistent with the unique ionic lock, novel 3-6 lock, transmission switch, and tyrosine toggle switch being involved in mechanisms underlying TM movement and MS-R activation, and the ability of MS agonists and antagonists to influence physiology.
Collapse
Affiliation(s)
- Megan Leander
- Undergraduate Biochemistry Program, Chemistry Department, University of Michigan, Ann Arbor, Michigan, United States of America, 48109
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, 48109
| | - Chloe Bass
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, 48109
- Undergraduate Chemistry Program, Chemistry Department, University of Michigan, Ann Arbor, Michigan, United States of America, 48109
| | - Kathryn Marchetti
- Undergraduate Biochemistry Program, Chemistry Department, University of Michigan, Ann Arbor, Michigan, United States of America, 48109
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, 48109
| | - Benjamin F. Maynard
- Undergraduate Biochemistry Program, Chemistry Department, University of Michigan, Ann Arbor, Michigan, United States of America, 48109
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, 48109
| | - Juan Pedro Wulff
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 1459, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 1459, Buenos Aires, Argentina
| | - Ruthann Nichols
- Undergraduate Biochemistry Program, Chemistry Department, University of Michigan, Ann Arbor, Michigan, United States of America, 48109
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, 48109
| |
Collapse
|
12
|
Maynard BF, Bass C, Katanski C, Thakur K, Manoogian B, Leander M, Nichols R. Structure-activity relationships of FMRF-NH2 peptides demonstrate A role for the conserved C terminus and unique N-terminal extension in modulating cardiac contractility. PLoS One 2013; 8:e75502. [PMID: 24069424 PMCID: PMC3775761 DOI: 10.1371/journal.pone.0075502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
FMRF-NH2 peptides which contain a conserved, identical C-terminal tetrapeptide but unique N terminus modulate cardiac contractility; yet, little is known about the mechanisms involved in signaling. Here, the structure-activity relationships (SARs) of the Drosophila melanogaster FMRF-NH2 peptides, PDNFMRF-NH2, SDNFMRF-NH2, DPKQDFMRF-NH2, SPKQDFMRF-NH2, and TPAEDFMRF-NH2, which bind FMRFa-R, were investigated. The hypothesis tested was the C-terminal tetrapeptide FMRF-NH2, particularly F1, makes extensive, strong ligand-receptor contacts, yet the unique N terminus influences docking and activity. To test this hypothesis, docking, binding, and bioactivity of the C-terminal tetrapeptide and analogs, and the FMRF-NH2 peptides were compared. Results for FMRF-NH2 and analogs were consistent with the hypothesis; F1 made extensive, strong ligand-receptor contacts with FMRFa-R; Y → F (YMRF-NH2) retained binding, yet A → F (AMRF-NH2) did not. These findings reflected amino acid physicochemical properties; the bulky, aromatic residues F and Y formed strong pi-stacking and hydrophobic contacts to anchor the ligand, interactions which could not be maintained in diversity or number by the small, aliphatic A. The FMRF-NH2 peptides modulated heart rate in larva, pupa, and adult distinctly, representative of the contact sites influenced by their unique N-terminal structures. Based on physicochemical properties, the peptides each docked to FMRFa-R with one best pose, except FMRF-NH2 which docked with two equally favorable poses, consistent with the N terminus influencing docking to define specific ligand-receptor contacts. Furthermore, SDNAMRF-NH2 was designed and, despite lacking the aromatic properties of one F, it binds FMRFa-R and demonstrated a unique SAR, consistent with the N terminus influencing docking and conferring binding and activity; thus, supporting our hypothesis.
Collapse
Affiliation(s)
- Benjamin F. Maynard
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Undergraduate Biochemistry Honors Research Program, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chloe Bass
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Undergraduate Chemistry Honors Research Program, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chris Katanski
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Undergraduate Biochemistry Honors Research Program, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kiran Thakur
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Beth Manoogian
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Megan Leander
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Undergraduate Biochemistry Honors Research Program, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ruthann Nichols
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Undergraduate Biochemistry Honors Research Program, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, United States of America
- Undergraduate Chemistry Honors Research Program, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|