1
|
Prisinzano M, Bernacchioni C, Seidita I, Rossi M, Raeispour M, Cencetti F, Vannuccini S, Fambrini M, Petraglia F, Bruni P, Donati C. Sphingosine 1-phosphate signaling axis mediates neuropeptide S-induced invasive phenotype of endometriotic cells. FEBS J 2024; 291:1744-1758. [PMID: 38287231 DOI: 10.1111/febs.17071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Endometriosis is a chronic gynecological syndrome characterized by endometrial cell invasion of the extra-uterine milieu, pelvic pain and infertility. Treatment relies on either symptomatic drugs or hormonal therapies, even though the mechanism involved in the onset of endometriosis is yet to be elucidated. The signaling of sphingolipid sphingosine 1-phosphate (S1P) is profoundly dysregulated in endometriosis. Indeed, sphingosine kinase (SK)1, one of the two isoenzymes responsible for S1P biosynthesis, and S1P1, S1P3 and S1P5, three of its five specific receptors, are more highly expressed in endometriotic lesions compared to healthy endometrium. Recently, missense coding variants of the gene encoding the receptor 1 for neuropeptide S (NPS) have been robustly associated with endometriosis in humans. This study aimed to characterize the biological effect of NPS in endometriotic epithelial cells and the possible involvement of the S1P signaling axis in its action. NPS was found to potently induce cell invasion and actin cytoskeletal remodeling. Of note, the NPS-induced invasive phenotype was dependent on SK1 and SK2 as well as on S1P1 and S1P3, given that the biological action of the neuropeptide was fully prevented when one of the two biosynthetic enzymes or one of the two selective receptors was inhibited or silenced. Furthermore, the RhoA/Rho kinase pathway, downstream to S1P receptor signaling, was found to be critically implicated in invasion and cytoskeletal remodeling elicited by NPS. These findings provide new information to the understanding of the molecular mechanisms implicated in endometriosis pathogenesis, establishing the rationale for non-hormonal therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Matteo Prisinzano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Isabelle Seidita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Margherita Rossi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Maryam Raeispour
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Silvia Vannuccini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Massimiliano Fambrini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| |
Collapse
|
2
|
Angelakos CC, Girven KS, Liu Y, Gonzalez OC, Murphy KR, Jennings KJ, Giardino WJ, Zweifel LS, Suko A, Palmiter RD, Clark SD, Krasnow MA, Bruchas MR, de Lecea L. A cluster of neuropeptide S neurons regulates breathing and arousal. Curr Biol 2023; 33:5439-5455.e7. [PMID: 38056461 PMCID: PMC10842921 DOI: 10.1016/j.cub.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Neuropeptide S (NPS) is a highly conserved peptide found in all tetrapods that functions in the brain to promote heightened arousal; however, the subpopulations mediating these phenomena remain unknown. We generated mice expressing Cre recombinase from the Nps gene locus (NpsCre) and examined populations of NPS+ neurons in the lateral parabrachial area (LPBA), the peri-locus coeruleus (peri-LC) region of the pons, and the dorsomedial thalamus (DMT). We performed brain-wide mapping of input and output regions of NPS+ clusters and characterized expression patterns of the NPS receptor 1 (NPSR1). While the activity of all three NPS+ subpopulations tracked with vigilance state, only NPS+ neurons of the LPBA exhibited both increased activity prior to wakefulness and decreased activity during REM sleep, similar to the behavioral phenotype observed upon NPSR1 activation. Accordingly, we found that activation of the LPBA but not the peri-LC NPS+ neurons increased wake and reduced REM sleep. Furthermore, given the extended role of the LPBA in respiration and the link between behavioral arousal and breathing rate, we demonstrated that the LPBA but not the peri-LC NPS+ neuronal activation increased respiratory rate. Together, our data suggest that NPS+ neurons of the LPBA represent an unexplored subpopulation regulating breathing, and they are sufficient to recapitulate the sleep/wake phenotypes observed with broad NPS system activation.
Collapse
Affiliation(s)
- Christopher Caleb Angelakos
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kasey S Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yin Liu
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Oscar C Gonzalez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kim J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Azra Suko
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Mark A Krasnow
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
4
|
Kushikata T, Hirota K, Saito J, Takekawa D. Roles of Neuropeptide S in Anesthesia, Analgesia, and Sleep. Pharmaceuticals (Basel) 2021; 14:ph14050483. [PMID: 34069327 PMCID: PMC8158725 DOI: 10.3390/ph14050483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide S (NPS) is an endogenous peptide that regulates various physiological functions, such as immune functions, anxiety-like behaviors, learning and memory, the sleep–wake rhythm, ingestion, energy balance, and drug addiction. These processes include the NPS receptor (NPSR1). The NPS–NPSR1 system is also significantly associated with the onset of disease, as well as these physiologic functions. For example, NPS is involved in bronchial asthma, anxiety and awakening disorders, and rheumatoid arthritis. In this review, among the various functions, we focus on the role of NPS in anesthesia-induced loss of consciousness; analgesia, mainly by anesthesia; and sleep–wakefulness. Progress in the field regarding the functions of endogenous peptides in the brain, including NPS, suggests that these three domains share common mechanisms. Further NPS research will help to elucidate in detail how these three domains interact with each other in their functions, and may contribute to improving the quality of medical care.
Collapse
Affiliation(s)
- Tetsuya Kushikata
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Zaifu 5, Hirosaki 0368562, Japan; (K.H.); (J.S.)
- Correspondence:
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Zaifu 5, Hirosaki 0368562, Japan; (K.H.); (J.S.)
| | - Junichi Saito
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Zaifu 5, Hirosaki 0368562, Japan; (K.H.); (J.S.)
| | - Daiki Takekawa
- Department of Anesthesia, Hirosaki University Hospital, Honcho 53, Hirosaki 0368563, Japan;
| |
Collapse
|
5
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
6
|
Zhang ZR, Tao YX. Physiology, pharmacology, and pathophysiology of neuropeptide S receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:125-148. [PMID: 30711025 DOI: 10.1016/bs.pmbts.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropeptide S receptor 1 (NPSR1), originally named G protein-coupled receptor 154 (GPR154), was deorphanized in 2002 with neuropeptide S identified as the endogenous ligand. NPSR1 is primarily expressed in bronchus, brain as well as immune cells. It regulates multiple physiological processes, including immunoregulation, locomotor activity, anxiety, arousal, learning and memory, and food intake and energy balance. SNPs of NPSR1 are significantly associated with several diseases, including asthma, anxiolytic and arousal disorders, and rheumatoid arthritis. This chapter will summarize studies on NPSR1, including its molecular structure, tissue distribution, physiology, pharmacology, and pathophysiology.
Collapse
Affiliation(s)
- Zheng-Rui Zhang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.
| |
Collapse
|
7
|
Hu WP, Zeng YY, Zuo YH, Zhang J. Identification of novel candidate genes involved in the progression of emphysema by bioinformatic methods. Int J Chron Obstruct Pulmon Dis 2018; 13:3733-3747. [PMID: 30532529 PMCID: PMC6241693 DOI: 10.2147/copd.s183100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose By reanalyzing the gene expression profile GSE76925 in the Gene Expression Omnibus database using bioinformatic methods, we attempted to identify novel candidate genes promoting the development of emphysema in patients with COPD. Patients and methods According to the Quantitative CT data in GSE76925, patients were divided into mild emphysema group (%LAA-950<20%, n=12) and severe emphysema group (%LAA-950>50%, n=11). Differentially expressed genes (DEGs) were identified using Agilent GeneSpring GX v11.5 (corrected P-value <0.05 and |Fold Change|>1.3). Known driver genes of COPD were acquired by mining literatures and retrieving databases. Direct protein–protein interaction network (PPi) of DEGs and known driver genes was constructed by STRING.org to screen the DEGs directly interacting with driver genes. In addition, we used STRING.org to obtain the first-layer proteins interacting with DEGs’ products and constructed the indirect PPi of these interaction proteins. By merging the indirect PPi with driver genes’ PPi using Cytoscape v3.6.1, we attempted to discover potential pathways promoting emphysema’s development. Results All the patients had COPD with severe airflow limitation (age=62±8, FEV1%=28±12). A total of 57 DEGs (including 12 pseudogenes) and 135 known driving genes were identified. Direct PPi suggested that GPR65, GNB4, P2RY13, NPSR1, BCR, BAG4, and IMPDH2 were potential pathogenic genes. GPR65 could regulate the response of immune cells to the acidic microenvironment, and NPSR1’s expression on eosinophils was associated with asthma’s severity and IgE level. Indirect merging PPi demonstrated that the interacting network of TP53, IL8, CCR2, HSPA1A, ELANE, PIK3CA was associated with the development of emphysema. IL8, ELANE, and PIK3CA were molecules involved in the pathological mechanisms of emphysema, which also in return proved the role of TP53 in emphysema. Conclusion Candidate genes such as GPR65, NPSR1, and TP53 may be involved in the progression of emphysema.
Collapse
Affiliation(s)
- Wei-Ping Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Ying-Ying Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Yi-Hui Zuo
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| |
Collapse
|
8
|
Freudenberg JM, Dunham I, Sanseau P, Rajpal DK. Uncovering new disease indications for G-protein coupled receptors and their endogenous ligands. BMC Bioinformatics 2018; 19:345. [PMID: 30285606 PMCID: PMC6167889 DOI: 10.1186/s12859-018-2392-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background The Open Targets Platform integrates different data sources in order to facilitate identification of potential therapeutic drug targets to treat human diseases. It currently provides evidence for nearly 2.6 million potential target-disease pairs. G-protein coupled receptors are a drug target class of high interest because of the number of successful drugs being developed against them over many years. Here we describe a systematic approach utilizing the Open Targets Platform data to uncover and prioritize potential new disease indications for the G-protein coupled receptors and their ligands. Results Utilizing the data available in the Open Targets platform, potential G-protein coupled receptor and endogenous ligand disease association pairs were systematically identified. Intriguing examples such as GPR35 for inflammatory bowel disease and CXCR4 for viral infection are used as illustrations of how a systematic approach can aid in the prioritization of interesting drug discovery hypotheses. Combining evidences for G-protein coupled receptors and their corresponding endogenous peptidergic ligands increases confidence and provides supportive evidence for potential new target-disease hypotheses. Comparing such hypotheses to the global pharma drug discovery pipeline to validate the approach showed that more than 93% of G-protein coupled receptor-disease pairs with a high overall Open Targets score involved receptors with an existing drug discovery program. Conclusions The Open Targets gene-disease score can be used to prioritize potential G-protein coupled receptors-indication hypotheses. In addition, availability of multiple different evidence types markedly increases confidence as does combining evidence from known receptor-ligand pairs. Comparing the top-ranked hypotheses to the current global pharma pipeline serves validation of our approach and identifies and prioritizes new therapeutic opportunities. Electronic supplementary material The online version of this article (10.1186/s12859-018-2392-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Philippe Sanseau
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.,Computational Biology and Stats, Target Sciences, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Deepak K Rajpal
- Computational Biology, Target Sciences, GlaxoSmithKline, Collegeville, PA, 19426, USA.
| |
Collapse
|
9
|
Johansson MW. Eosinophil Activation Status in Separate Compartments and Association with Asthma. Front Med (Lausanne) 2017; 4:75. [PMID: 28660189 PMCID: PMC5466952 DOI: 10.3389/fmed.2017.00075] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Asthma is frequently characterized by eosinophil-rich airway inflammation. Airway eosinophilia is associated with asthma exacerbations and likely plays a part in airway remodeling. Eosinophil recruitment from the bloodstream depends on circulating eosinophils becoming activated, which leads to eosinophil arrest on activated endothelium, extravasation, and continued movement through the bronchial tissue by interaction with the extracellular matrix (ECM). Circulating eosinophils can exist at different activation levels, which include non-activated or pre-activated (sensitized or “primed”). Further, the bloodstream may lack pre-activated cells, due to such eosinophils having arrested on endothelium or extravasated into tissue. Increased expression, and in some instances, decreased expression of cell-surface proteins, including CD44, CD45, CD45R0, CD48, CD137, neuropeptide S receptor, cytokine receptors, Fc receptors, and integrins (receptors mediating cell adhesion and migration by interacting with ligands on other cells or in the ECM), and activated states of integrins or Fc receptors on blood eosinophils have been reported to correlate with aspects of asthma. A subset of these proteins has been reported to respond to intervention, e.g., with anti-interleukin (IL)-5. How these surface proteins and the activation state of the eosinophil respond to other interventions, e.g., with anti-IL-4 receptor alpha or anti-IL-13, is unknown. Eosinophil surface proteins suggested to be biomarkers of activation, particularly integrins, and reports on correlations between eosinophil activation and aspects of asthma are described in this review. Intermediate activation of beta1 and beta2 integrins on circulating eosinophils correlates with decreased pulmonary function, airway inflammation, or airway lumen eosinophils in non-severe asthma. The correlation does not appear in severe asthma, likely due to a higher degree of extravasation of pre-activated eosinophils in more severe disease. Bronchoalveolar lavage (BAL) eosinophils have highly activated integrins and other changes in surface proteins compared to blood eosinophils. The activation state of eosinophils in lung tissue, although likely very important in asthma, is largely unknown. However, some recent articles, mainly on mice but partly on human cells, indicate that tissue eosinophils may have a surface phenotype(s) different from that of sputum or BAL eosinophils.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
10
|
Neuropeptide S (NPS) variants modify the signaling and risk effects of NPS Receptor 1 (NPSR1) variants in asthma. PLoS One 2017; 12:e0176568. [PMID: 28463995 PMCID: PMC5413018 DOI: 10.1371/journal.pone.0176568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) close to the gain-of-function substitution, Asn(107)Ile (rs324981, A>T), in Neuropeptide S Receptor 1 (NPSR1) have been associated with asthma. Furthermore, a functional SNP (rs4751440, G>C) in Neuropeptide S (NPS) encodes a Val(6)Leu substitution on the mature peptide that results in reduced bioactivity. We sought to examine the effects of different combinations of these NPS and NPSR1 variants on downstream signaling and genetic risk of asthma. In transfected cells, the magnitude of NPSR1-induced activation of cAMP/PKA signal transduction pathways and downstream gene expression was dependent on the combination of the NPS and NPSR1 variants with NPS-Val(6)/NPSR1-Ile(107) resulting in strongest and NPS-Leu(6)/NPSR1-Asn(107) in weakest effects, respectively. One or two copies of the NPS-Leu(6) (rs4751440) were associated with physician-diagnosed childhood asthma (OR: 0.67, 95%CI 0.49–0.92, p = 0.01) and together with two other linked NPS variants (rs1931704 and rs10830123) formed a protective haplotype (p = 0.008) in the Swedish birth cohort BAMSE (2033 children). NPS rs10830123 showed epistasis with NPSR1 rs324981 encoding Asn(107)Ile (p = 0.009) in BAMSE and with the linked NPSR1 rs17199659 (p = 0.005) in the German MAGIC/ISAAC II cohort (1454 children). In conclusion, NPS variants modify asthma risk and should be considered in genetic association studies of NPSR1 with asthma and other complex diseases.
Collapse
|
11
|
Hamsten C, Häggmark A, Grundström J, Mikus M, Lindskog C, Konradsen JR, Eklund A, Pershagen G, Wickman M, Grunewald J, Melén E, Hedlin G, Nilsson P, van Hage M. Protein profiles of CCL5, HPGDS, and NPSR1 in plasma reveal association with childhood asthma. Allergy 2016; 71:1357-61. [PMID: 27145233 DOI: 10.1111/all.12927] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 02/03/2023]
Abstract
Asthma is a common chronic childhood disease with many different phenotypes that need to be identified. We analyzed a broad range of plasma proteins in children with well-characterized asthma phenotypes to identify potential markers of childhood asthma. Using an affinity proteomics approach, plasma levels of 362 proteins covered by antibodies from the Human Protein Atlas were investigated in a total of 154 children with persistent or intermittent asthma and controls. After screening, chemokine ligand 5 (CCL5) hematopoietic prostaglandin D synthase (HPGDS) and neuropeptide S receptor 1 (NPSR1) were selected for further investigation. Significantly lower levels of both CCL5 and HPGDS were found in children with persistent asthma, while NPSR1 was found at higher levels in children with mild intermittent asthma compared to healthy controls. In addition, the protein levels were investigated in another respiratory disease, sarcoidosis, showing significantly higher NPSR1 levels in sera from sarcoidosis patients compared to healthy controls. Immunohistochemical staining of healthy tissues revealed high cytoplasmic expression of HPGDS in mast cells, present in stroma of both airway epithelia, lung as well as in other organs. High expression of NPSR1 was observed in neuroendocrine tissues, while no expression was observed in airway epithelia or lung. In conclusion, we have utilized a broad-scaled affinity proteomics approach to identify three proteins with altered plasma levels in asthmatic children, representing one of the first evaluations of HPGDS and NPSR1 protein levels in plasma.
Collapse
Affiliation(s)
- C. Hamsten
- Immunology and Allergy Unit; Department of Medicine Solna; Karolinska Institutet; and Karolinska University Hospital
- Center for Inflammatory Diseases; Karolinska Institutet; Stockholm Sweden
| | - A. Häggmark
- Affinity Proteomics; SciLifeLab; School of Biotechnology; KTH-Royal Institute of Technology; Stockholm Sweden
| | - J. Grundström
- Immunology and Allergy Unit; Department of Medicine Solna; Karolinska Institutet; and Karolinska University Hospital
| | - M. Mikus
- Affinity Proteomics; SciLifeLab; School of Biotechnology; KTH-Royal Institute of Technology; Stockholm Sweden
| | - C. Lindskog
- SciLifeLab; Department of Immunology; Genetics and Pathology; Uppsala University; Uppsala Sweden
| | - J. R. Konradsen
- Astrid Lindgren Children's Hospital; Karolinska University Hospital; Stockholm Sweden
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| | - A. Eklund
- Respiratory Medicine Unit; Department of Medicine Solna and CMM; Karolinska Institutet and Karolinska University Hospital; Stockholm Sweden
| | - G. Pershagen
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - M. Wickman
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
- Sachs’ Children and Youth Hospital; Södersjukhuset; Stockholm Sweden
| | - J. Grunewald
- Respiratory Medicine Unit; Department of Medicine Solna and CMM; Karolinska Institutet and Karolinska University Hospital; Stockholm Sweden
| | - E. Melén
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
- Sachs’ Children and Youth Hospital; Södersjukhuset; Stockholm Sweden
| | - G. Hedlin
- Astrid Lindgren Children's Hospital; Karolinska University Hospital; Stockholm Sweden
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| | - P. Nilsson
- Affinity Proteomics; SciLifeLab; School of Biotechnology; KTH-Royal Institute of Technology; Stockholm Sweden
| | - M. van Hage
- Immunology and Allergy Unit; Department of Medicine Solna; Karolinska Institutet; and Karolinska University Hospital
| |
Collapse
|
12
|
Yang Y, Zhao M, Zhang Y, Shen X, Yuan Y. Correlation of 5-HTT, BDNF and NPSR1 gene polymorphisms with anxiety and depression in asthmatic patients. Int J Mol Med 2016; 38:65-74. [PMID: 27176146 PMCID: PMC4899034 DOI: 10.3892/ijmm.2016.2581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/15/2016] [Indexed: 12/15/2022] Open
Abstract
Asthmatic patients are known to have a higher risk of anxiety and depression. In the present study, we aimed to explore the association of serotonin transporter (5-HTT), brain-derived neurotrophic factor (BDNF) and neuropeptide S receptor 1 (NPSR1) gene polymorphisms with anxiety and depression in asthmatic patients. This was a cross-sectional study conducted on 143 asthmatic patients and 175 healthy volunteers. Of the asthmatic patients, 49 suffered from anxiety and 12 exhibited signs of depression. Patients with a lower level of education were more prone to depression. Both anxiety and depression were associated with poor asthma control as evaluated by the Asthma Control Test (ACT) score. The association of single nucleotide polymorphisms of BDNF, NPSR1 and 5-HTT with anxiety and depression in asthamtic patients was evaluated. The distribution of 5-HTT gene polymorphisms in the healthy group, the group with asthma but without anxiety, and the group with asthma and anxiety had significant differences. Females with asthma and anxiety were more prone to BDNF polymorphism. Also, BDNF gene distribution exhibited significant differences among those in the healthy group, the group with asthma but no depression, and the group with asthma and depression; however, NPSR1 gene distribution did not vary greatly between the groups. The anxiety score was significantly affected by the interaction between 5-HTT (LL, S+) and BDNF (A+, GG) (H=5.99, P=0.015). The depression score was significantly affected by the interaction between BDNF (A+, GG) and NPSR1 (AA, T+). We noted that both anxiety and depression led to poor asthma control. The interaction between 5-HTT (LL) and BDNF (A+) increased the risk of anxiety, and the interaction between BDNF (A+, GG) and NPSR1 (AA, T+) increased the risk of depression in asthmatic patients.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Respiratory Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Mingzhe Zhao
- Medical College of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuqun Zhang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xinhua Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou 3rd Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
13
|
The polyamine spermine promotes survival and activation of human eosinophils. J Allergy Clin Immunol 2015; 136:482-4.e11. [PMID: 25649081 DOI: 10.1016/j.jaci.2014.12.1922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 01/06/2023]
|
14
|
Abstract
Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodelling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or 'primed', or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins, have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAbs) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease.
Collapse
Affiliation(s)
- M W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
15
|
Pulkkinen V, Ezer S, Sundman L, Hagström J, Remes S, Söderhäll C, Greco D, Dario G, Haglund C, Kere J, Arola J. Neuropeptide S receptor 1 (NPSR1) activates cancer-related pathways and is widely expressed in neuroendocrine tumors. Virchows Arch 2014; 465:173-83. [PMID: 24915894 PMCID: PMC4116602 DOI: 10.1007/s00428-014-1602-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Neuroendocrine tumors (NETs) arise from disseminated neuroendocrine cells and express general and specific neuroendocrine markers. Neuropeptide S receptor 1 (NPSR1) is expressed in neuroendocrine cells and its ligand neuropeptide S (NPS) affects cell proliferation. Our aim was to study whether NPS/NPSR1 could be used as a biomarker for neuroendocrine neoplasms and to identify the gene pathways affected by NPS/NPSR1. We collected a cohort of NETs comprised of 91 samples from endocrine glands, digestive tract, skin, and lung. Tumor type was validated by immunostaining of chromogranin-A and synaptophysin expression and tumor grade was analyzed by Ki-67 proliferation index. NPS and NPSR1 expression was quantified by immunohistochemistry using polyclonal antibodies against NPS and monoclonal antibodies against the amino-terminus and carboxy-terminus of NPSR1 isoform A (NPSR1-A). The effects of NPS on downstream signaling were studied in a human SH-SY5Y neuroblastoma cell line which overexpresses NPSR1-A and is of neuroendocrine origin. NPSR1 and NPS were expressed in most NET tissues, with the exception of adrenal pheochromocytomas in which NPS/NPSR1 immunoreactivity was very low. Transcriptome analysis of NPSR1-A overexpressing cells revealed that mitogen-activated protein kinase (MAPK) pathways, circadian activity, focal adhesion, transforming growth factor beta, and cytokine-cytokine interactions were the most altered gene pathways after NPS stimulation. Our results show that NETs are a source of NPS and NPSR1, and that NPS affects cancer-related pathways.
Collapse
Affiliation(s)
- V Pulkkinen
- Pulmonary Division, Department of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils. Immunol Lett 2014; 160:72-78. [PMID: 24718279 DOI: 10.1016/j.imlet.2014.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/09/2014] [Accepted: 03/28/2014] [Indexed: 01/21/2023]
Abstract
Sexual dimorphism in asthma links the estrogen and allergic immune responses. The function of estrogen was classically believed to be mediated through its nuclear receptors, i.e., estrogen receptors (ERs). However, recent studies established the important roles of G-protein-coupled estrogen receptor (GPER/GPR30) as a novel membrane receptor for estrogen. To date, the role of GPER in allergic inflammation is poorly understood. The purpose of this study was to examine whether GPER might affect the functions of eosinophils, which play an important role in the pathogenesis of asthma. Here, we demonstrated that GPER was expressed in purified human peripheral blood eosinophils both at the mRNA and protein levels. Although GPER agonist G-1 did not induce eosinophil chemotaxis or chemokinesis, preincubation with G-1 enhanced eotaxin (CCL11)-directed eosinophil chemotaxis. G-1 inhibited eosinophil spontaneous apoptosis and caspase-3 activities. The anti-apoptotic effect was not affected by the cAMP-phospodiesterase inhibitor rolipram or phosphoinositide 3-kinase inhibitors. In contrast to resting eosinophils, G-1 induced apoptosis and increased caspase-3 activities when eosinophils were co-stimulated with IL-5. No effect of G-1 was observed on eosinophil degranulation in terms of release of eosinophil-derived neurotoxin (EDN). The current study indicates the functional capacities of GPER on human eosinophils and also provides the previously unrecognized mechanisms of interaction between estrogen and allergic inflammation.
Collapse
|
17
|
Affiliation(s)
- M. W. Johansson
- Department of Biomolecular Chemistry; University of Wisconsin; Madison WI USA
| |
Collapse
|