1
|
Cândido ES, Gasparetto LS, Luchi LV, Pimentel JP, Cardoso MH, Macedo ML, de la Fuente-Nunez C, Franco OL. Small and Versatile Cyclotides as Anti-infective Agents. ACS Infect Dis 2025; 11:386-397. [PMID: 39842000 PMCID: PMC11833872 DOI: 10.1021/acsinfecdis.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability. These molecules can directly target membranes of infectious agents by binding to phosphatidylethanolamine in lipid membranes, leading to membrane permeabilization. Additionally, they function as carriers and cell-penetrating molecules, demonstrating antiviral, antibacterial, antifungal, and nematicidal properties. The structure of cyclotides is also amenable to chemical synthesis, facilitating drug design through residue substitutions or grafting of bioactive epitopes within the cyclotide scaffold to enhance peptide stability. In this review, we explore the multifunctionality of these biomolecules as anti-infective agents, emphasizing their potential as a novel class of antimicrobial drugs.
Collapse
Affiliation(s)
- Elizabete
de Souza Cândido
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| | - Liryel Silva Gasparetto
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - Livia Veiga Luchi
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - João Pedro
Farias Pimentel
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - Marlon Henrique Cardoso
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
- Laboratório
de Purificação de Proteínas e suas Funções
Biológicas, Universidade Federal
de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Maria Lígia
Rodrigues Macedo
- Laboratório
de Purificação de Proteínas e suas Funções
Biológicas, Universidade Federal
de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Cesar de la Fuente-Nunez
- Machine
Biology
Group, Departments of Psychiatry and Microbiology, Institute for Biomedical
Informatics, Institute for Translational Medicine and Therapeutics,
Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, United
States
- Penn Institute
for Computational Science, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Octávio Luiz Franco
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| |
Collapse
|
2
|
Mourenza A, Ganesan R, Camarero JA. Resistance is futile: targeting multidrug-resistant bacteria with de novo Cys-rich cyclic polypeptides. RSC Chem Biol 2023; 4:722-735. [PMID: 37799576 PMCID: PMC10549238 DOI: 10.1039/d3cb00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 10/07/2023] Open
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to rapid drug resistance development to current antibiotic therapeutics. The use of disulfide-rich head-to-tail cyclized polypeptides as molecular frameworks for designing a new type of peptide antibiotics is gaining increasing attention among the scientific community and the pharmaceutical industry. The use of macrocyclic peptides, further constrained by the presence of several disulfide bonds, makes these peptide frameworks remarkably more stable to thermal, biological, and chemical degradation showing better activities when compared to their linear analogs. Many of these novel peptide scaffolds have been shown to have a high tolerance to sequence variability in those residues not involved in disulfide bonds, able to cross biological membranes, and efficiently target complex biomolecular interactions. Hence, these unique properties make the use of these scaffolds ideal for many biotechnological applications, including the design of novel peptide antibiotics. This article provides an overview of the new developments in the use of several disulfide-rich cyclic polypeptides, including cyclotides, θ-defensins, and sunflower trypsin inhibitor peptides, among others, in the development of novel antimicrobial peptides against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alvaro Mourenza
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California Los Angeles CA90033 USA
| |
Collapse
|
3
|
Ho TNT, Turner A, Pham SH, Nguyen HT, Nguyen LTT, Nguyen LT, Dang TT. Cysteine-rich peptides: From bioactivity to bioinsecticide applications. Toxicon 2023; 230:107173. [PMID: 37211058 DOI: 10.1016/j.toxicon.2023.107173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Greater levels of insect resistance and constraints on the use of current pesticides have recently led to increased crop losses in agricultural production. Further, the health and environmental impacts of pesticides now restrict their application. Biologics based on peptides are gaining popularity as efficient crop protection agents with low environmental toxicity. Cysteine-rich peptides (whether originated from venoms or plant defense substances) are chemically stable and effective as insecticides in agricultural applications. Cysteine-rich peptides fulfill the stability and efficacy requirements for commercial uses and provide an environmentally benign alternative to small-molecule insecticides. In this article, cysteine-rich insecticidal peptide classes identified from plants and venoms will be highlighted, focusing on their structural stability, bioactivity and production.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - A Turner
- Molecular Biology Department, University of Texas, 100 E 24th St. Austin, USA
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Ha T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Linh T T Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, 280 an Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam
| | - Luan T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
4
|
Tyler TJ, Durek T, Craik DJ. Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules 2023; 28:molecules28073189. [PMID: 37049950 PMCID: PMC10096437 DOI: 10.3390/molecules28073189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Bioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell permeability. In this review, we examine the utility of molecular engineering to insert bioactive sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or engineered), shown to be intrinsically stable and amenable to sequence modifications, and their utility as privileged frameworks in drug design.
Collapse
Affiliation(s)
- Tristan J. Tyler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Zhang Q, Wang Q, Chen S. A comprehensive review of phytochemistry, pharmacology and quality control of plants from the genus Viola. J Pharm Pharmacol 2023; 75:1-32. [PMID: 35866842 DOI: 10.1093/jpp/rgac041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/20/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES The genus Viola belongs to the family Violaceae, and the plants from this genus are essential folk herb medicine extensively used in many areas. The plants from the genus Viola are used to treat various diseases and exert a significant role in protecting people's health. This review summarized the genus Viola plants' phytochemistry, pharmacology, and quality control methods. KEY FINDINGS The information on chemical constituents and pharmacological effects of the genus Viola was obtained by searching the Web of Science, Pubmed, CNKI, and other databases. A total of 208 valuable articles were selected and analyzed in this review. The main chemical components of plants from the genus Viola consist of flavonoids, coumarins, alkaloids, lignans, sesquiterpenes, cyclotides, etc. The active chemical components of medicinal plants from this genus exert antibacterial, antiviral, antioxidant, anti-inflammatory, anti-tumor, neuroprotective, hepatoprotective activities, and so on. The quality control of these plants is not sufficient and needs further research. SUMMARY The chemical constituents, pharmacological effects, and quality control of plants from the genus Viola were systematically summarized in this paper, and this review provides a literature basis for the further research of plants from this genus.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Qing Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| |
Collapse
|
6
|
Attah FA, Lawal BA, Yusuf AB, Adedeji OJ, Folahan JT, Akhigbe KO, Roy T, Lawal AA, Ogah NB, Olorundare OE, Chamcheu JC. Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines. PLANTS (BASEL, SWITZERLAND) 2022; 11:3271. [PMID: 36501311 PMCID: PMC9737898 DOI: 10.3390/plants11233271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application.
Collapse
Affiliation(s)
- Francis Alfred Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Bilqis Abiola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Abdulmalik Babatunde Yusuf
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Oluwakorede Joshua Adedeji
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Kelvin Oluwafemi Akhigbe
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Azeemat Adeola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Ngozi Blessing Ogah
- Department of Biotechnology, Ebonyi State University, Abakaliki 480101, Nigeria
| | | | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| |
Collapse
|
7
|
Jacob B, Vogelaar A, Cadenas E, Camarero JA. Using the Cyclotide Scaffold for Targeting Biomolecular Interactions in Drug Development. Molecules 2022; 27:molecules27196430. [PMID: 36234971 PMCID: PMC9570680 DOI: 10.3390/molecules27196430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
This review provides an overview of the properties of cyclotides and their potential for developing novel peptide-based therapeutics. The selective disruption of protein–protein interactions remains challenging, as the interacting surfaces are relatively large and flat. However, highly constrained polypeptide-based molecular frameworks with cell-permeability properties, such as the cyclotide scaffold, have shown great promise for targeting those biomolecular interactions. The use of molecular techniques, such as epitope grafting and molecular evolution employing the cyclotide scaffold, has shown to be highly effective for selecting bioactive cyclotides.
Collapse
Affiliation(s)
- Binu Jacob
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Alicia Vogelaar
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 9033, USA
- Correspondence:
| |
Collapse
|
8
|
dos Santos-Silva CA, Tricarico PM, Vilela LMB, Roldan-Filho RS, Amador VC, d’Adamo AP, Rêgo MDS, Benko-Iseppon AM, Crovella S. Plant Antimicrobial Peptides as Potential Tool for Topic Treatment of Hidradenitis Suppurativa. Front Microbiol 2021; 12:795217. [PMID: 34966375 PMCID: PMC8710806 DOI: 10.3389/fmicb.2021.795217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Among chronic skin autoinflammatory diseases, Hidradenitis Suppurativa (HS) stands out for its chronicity, highly variable condition, and profound impact on the patients' quality of life. HS is characterized by suppurative skin lesions in diverse body areas, including deep-seated painful nodules, abscesses, draining sinus, and bridged scars, among others, with typical topography. To date, HS is considered a refractory disease and medical treatments aim to reduce the incidence, the infection, and the pain of the lesions. For this purpose, different classes of drugs, including anti-inflammatory molecules, antibiotics and biological drugs are being used. Antimicrobial peptides (AMPs), also called defense peptides, emerge as a new class of therapeutic compounds, with broad-spectrum antimicrobial action, in addition to reports on their anti-inflammatory, healing, and immunomodulating activity. Such peptides are present in prokaryotes and eukaryotes, as part of the innate eukaryotic immune system. It has been proposed that a deregulation in the expression of AMPs in human epithelial tissues of HS patients may be associated with the etiology of this skin disease. In this scenario, plant AMPs stand out for their richness, diversity of types, and broad antimicrobial effects, with potential application for topical systemic use in patients affected by HS.
Collapse
Affiliation(s)
| | | | | | | | - Vinícius Costa Amador
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Adamo Pio d’Adamo
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Mireli de Santana Rêgo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Rezende SB, Oshiro KGN, Júnior NGO, Franco OL, Cardoso MH. Advances on chemically modified antimicrobial peptides for generating peptide antibiotics. Chem Commun (Camb) 2021; 57:11578-11590. [PMID: 34652348 DOI: 10.1039/d1cc03793e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial peptides (AMPs) are pinpointed as promising molecules against antibiotic-resistant bacterial infections. Nevertheless, there is a discrepancy between the AMP sequences generated and the tangible outcomes in clinical trials. AMPs' limitations include enzymatic degradation, chemical/physical instability and toxicity toward healthy human cells. These factors compromise AMPs' bioavailability, resulting in limited therapeutic potential. To overcome such obstacles, peptidomimetic approaches, including glycosylation, PEGylation, lipidation, cyclization, grafting, D-amino acid insertion, stapling and dendrimers are promising strategies to fine-tune AMPs. Here we focused on chemical modifications applied for AMP optimization and how they have helped these peptide-based antibiotic candidates' design and translational potential.
Collapse
Affiliation(s)
- Samilla B Rezende
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Nelson G O Júnior
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
| | - Octávio L Franco
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília (UnB), Brasília, DF, Brazil.,Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
| | - Marlon H Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília (UnB), Brasília, DF, Brazil.,Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
| |
Collapse
|
10
|
Comparison of a Short Linear Antimicrobial Peptide with Its Disulfide-Cyclized and Cyclotide-Grafted Variants against Clinically Relevant Pathogens. Microorganisms 2021; 9:microorganisms9061249. [PMID: 34201398 PMCID: PMC8228819 DOI: 10.3390/microorganisms9061249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
According to the World Health Organization (WHO) the development of resistance against antibiotics by microbes is one of the most pressing health concerns. The situation will intensify since only a few pharmacological companies are currently developing novel antimicrobial compounds. Discovery and development of novel antimicrobial compounds with new modes of action are urgently needed. Antimicrobial peptides (AMPs) are known to be able to kill multidrug-resistant bacteria and, therefore, of interest to be developed into antimicrobial drugs. Proteolytic stability and toxicities of these peptides are challenges to overcome, and one strategy frequently used to address stability is cyclization. Here we introduced a disulfide-bond to cyclize a potent and nontoxic 9mer peptide and, in addition, as a proof-of-concept study, grafted this peptide into loop 6 of the cyclotide MCoTI-II. This is the first time an antimicrobial peptide has been successfully grafted onto the cyclotide scaffold. The disulfide-cyclized and grafted cyclotide showed moderate activity in broth and strong activity in 1/5 broth against clinically relevant resistant pathogens. The linear peptide showed superior activity in both conditions. The half-life time in 100% human serum was determined, for the linear peptide, to be 13 min, for the simple disulfide-cyclized peptide, 9 min, and, for the grafted cyclotide 7 h 15 min. The addition of 10% human serum led to a loss of antimicrobial activity for the different organisms, ranging from 1 to >8-fold for the cyclotide. For the disulfide-cyclized version and the linear version, activity also dropped to different degrees, 2 to 18-fold, and 1 to 30-fold respectively. Despite the massive difference in stability, the linear peptide still showed superior antimicrobial activity. The cyclotide and the disulfide-cyclized version demonstrated a slower bactericidal effect than the linear version. All three peptides were stable at high and low pH, and had very low hemolytic and cytotoxic activity.
Collapse
|
11
|
Felício MR, Silveira GGOS, Oshiro KGN, Meneguetti BT, Franco OL, Santos NC, Gonçalves S. Polyalanine peptide variations may have different mechanisms of action against multidrug-resistant bacterial pathogens. J Antimicrob Chemother 2021; 76:1174-1186. [PMID: 33501992 DOI: 10.1093/jac/dkaa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The number of bacterial pathogens resistant to the currently available antibiotics has dramatically increased, with antimicrobial peptides (AMPs) being among the most promising potential new drugs. In this study, the applicability and mechanisms of action of Pa-MAP 2 and Pa-MAP 1.9, two AMPs synthetically designed based on a natural AMP template, were evaluated. METHODS Pa-MAP 2 and Pa-MAP 1.9 were tested against a clinically isolated multidrug-resistant (MDR) Escherichia coli strain. Biophysical approaches were used to evaluate the preference of both peptides for specific lipid membranes, and bacterial surface changes imaged by atomic force microscopy (AFM). The efficacy of both peptides was assessed both in vitro and in vivo. RESULTS Experimental results showed that both peptides have antimicrobial activity against the E. coli MDR strain. Zeta potential and surface plasmon resonance assays showed that they interact extensively with negatively charged membranes, changing from a random coil structure, when free in solution, to an α-helical structure after membrane interaction. The antibacterial efficacy was evaluated in vitro, by several techniques, and in vivo, using a wound infection model, showing a concentration-dependent antibacterial effect. Different membrane properties were evaluated to understand the mechanism underlying peptide action, showing that both promote destabilization of the bacterial surface, as imaged by AFM, and change properties such as membrane surface and dipole potential. CONCLUSIONS Despite their similarity, data indicate that the mechanisms of action of the peptides are different, with Pa-MAP 1.9 being more effective than Pa-MAP 2. These results highlight their potential use as antimicrobial agents against MDR bacteria.
Collapse
Affiliation(s)
- Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gislaine G O S Silveira
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Beatriz T Meneguetti
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
12
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
13
|
Zhang J, Yuan J, Li Z, Fu C, Xu M, Yang J, Jiang X, Zhou B, Ye X, Xu C. Exploring and exploiting plant cyclic peptides for drug discovery and development. Med Res Rev 2021; 41:3096-3117. [PMID: 33599316 DOI: 10.1002/med.21792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Ever since the discovery of insulin, natural peptides have become an important resource for therapeutic development. Decades of research has led to the discovery of a long list of peptide drugs with broad applications in clinics, from antibiotics to hypertension treatment to pain management. Many of these US FDA-approved peptide drugs are derived from microorganisms and animals. By contrast, the great potential of plant cyclic peptides as therapeutics remains largely unexplored. These macrocyclic peptides typically have rigid structures, good bioavailability and membrane permeability, making them appealing candidates for drug development and engineering. In this review, we introduce the three major classes of plant cyclic peptides and summarize their potential medical applications. We discuss how we can leverage the genome information of many different plants to quickly search for new cyclic peptides and how we can take advantage of the insights gained from their biosynthetic pathways to transform the process of production and drug development. These recent developments have provided a new angle for exploring and exploiting plant cyclic peptides, and we believe that many more peptide drugs derived from plants are about to come.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Jimin Yuan
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhijie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chunjin Fu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Menglong Xu
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jing Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xin Jiang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Boping Zhou
- Department of Infectious Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xiufeng Ye
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chengchao Xu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Grover T, Mishra R, Gulati P, Mohanty A. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides 2021; 135:170430. [PMID: 33096195 DOI: 10.1016/j.peptides.2020.170430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
Cyclotides are plant-derived mini-proteins of 28 - 37 amino acids. They have a characteristic head-to-tail cyclic backbone and three disulfide cross-linkages formed by six highly conserved cysteine residues, creating a unique knotted ring structure, known as a cyclic cystine knot (CCK) motif. The CCK topology confers immense stability to cyclotides with resistance to thermal and enzymatic degradation. Native cyclotides are of interest due to their multiple biological activities with several potential applications in agricultural (e.g. biopesticides, antifungal) and pharmaceutical (e.g. anti-HIV, cytotoxic to tumor cells) sectors. The most recent application of insecticidal activity of cyclotides is the commercially available biopesticidal spray known as 'Sero X' for cotton crops. Cyclotides have a general mode of action and their potency of bioactivity is determined through their binding ability, pore formation and disruption of the target biological membranes. Keeping in view the important potential applications of biological activities of cyclotides and the lack of an extensive and analytical compilation of bioactive cyclotides, the present review systematically describes eight major biological activities of the native cyclotides from four angiosperm families viz. Fabaceae, Poaceae, Rubiaceae, Violaceae. The bioactivities of 94 cytotoxic, 57 antibacterial, 44 hemolytic, 25 antifungal, 21 anti-HIV, 20 nematocidal, 10 insecticidal and 5 molluscicidal cyclotides have been comprehensively elaborated. Further, their distribution in angiosperm families, mode of action and future prospects have also been discussed.
Collapse
Affiliation(s)
- Tripti Grover
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India
| | - Reema Mishra
- Department of Botany, Gargi College, University of Delhi, India
| | - Pooja Gulati
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India.
| |
Collapse
|
15
|
Rowe SM, Spring DR. The role of chemical synthesis in developing RiPP antibiotics. Chem Soc Rev 2021; 50:4245-4258. [DOI: 10.1039/d0cs01386b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This tutorial review discusses the potential of ribosomally synthesised and post-translationally modified peptides (RiPPs) as antimicrobials and looks at the chemical synthesis of three classes of RiPP: lasso peptides, cyclotides, and lanthipeptides.
Collapse
Affiliation(s)
- Sam M. Rowe
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | | |
Collapse
|
16
|
Kurpe SR, Grishin SY, Surin AK, Panfilov AV, Slizen MV, Chowdhury SD, Galzitskaya OV. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2? Int J Mol Sci 2020; 21:E9552. [PMID: 33333996 PMCID: PMC7765370 DOI: 10.3390/ijms21249552] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
At present, much attention is paid to the use of antimicrobial peptides (AMPs) of natural and artificial origin to combat pathogens. AMPs have several points that determine their biological activity. We analyzed the structural properties of AMPs, as well as described their mechanism of action and impact on pathogenic bacteria and viruses. Recently published data on the development of new AMP drugs based on a combination of molecular design and genetic engineering approaches are presented. In this article, we have focused on information on the amyloidogenic properties of AMP. This review examines AMP development strategies from the perspective of the current high prevalence of antibiotic-resistant bacteria, and the potential prospects and challenges of using AMPs against infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Stanislav R. Kurpe
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Sergei Yu. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Alexander V. Panfilov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Mikhail V. Slizen
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Saikat D. Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India;
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
17
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Alternative Anti-Infective Treatments to Traditional Antibiotherapy against Staphylococcal Veterinary Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9100702. [PMID: 33076497 PMCID: PMC7602553 DOI: 10.3390/antibiotics9100702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
The genus Staphylococcus encompasses many species that may be pathogenic to both humans and farm animals. These bacteria have the potential to acquire multiple resistant traits to the antimicrobials currently used in the veterinary or medical settings. These pathogens may commonly cause zoonoses, and the infections they cause are becoming difficult to treat due to antimicrobial resistance. Therefore, the development of novel alternative treatments to traditional antibiotherapy has gained interest in recent years. Here, we reviewed the most promising therapeutic strategies developed to control staphylococcal infections in the veterinary field to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
- Correspondence: (L.M.M.); (M.L.)
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
- Correspondence: (L.M.M.); (M.L.)
| |
Collapse
|
18
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
19
|
Huang YH, Du Q, Craik DJ. Cyclotides: Disulfide-rich peptide toxins in plants. Toxicon 2019; 172:33-44. [DOI: 10.1016/j.toxicon.2019.10.244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022]
|
20
|
Ojeda PG, Cardoso MH, Franco OL. Pharmaceutical applications of cyclotides. Drug Discov Today 2019; 24:2152-2161. [PMID: 31541712 DOI: 10.1016/j.drudis.2019.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Cyclotides are cyclic peptides, present in several plant families, that show diverse biological properties. Structurally, cyclotides share a distinctive head-to-tail circular knotted topology of three disulfide bonds. This framework provides cyclotides with extraordinary resistance to thermal and chemical denaturation. There is increasing interest in the therapeutic potential of cyclotides, which combine several promising pharmaceutical properties, including binding affinity, target selectivity, and low toxicity towards healthy mammalian cells. Recently, cyclotides have been reported to be orally bioavailable and have proved to be amenable to modifications. Here, we provide an overview of the structure, properties, and pharmaceutical applications of cyclotides.
Collapse
Affiliation(s)
- Paola G Ojeda
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile
| | - Marlon H Cardoso
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil; 3S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil; 3S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
21
|
Camarero JA, Campbell MJ. The Potential of the Cyclotide Scaffold for Drug Development. Biomedicines 2019; 7:biomedicines7020031. [PMID: 31010257 PMCID: PMC6631875 DOI: 10.3390/biomedicines7020031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclotides are a novel class of micro-proteins (≈30-40 residues long) with a unique topology containing a head-to-tail cyclized backbone structure further stabilized by three disulfide bonds that form a cystine knot. This unique molecular framework makes them exceptionally stable to physical, chemical, and biological degradation compared to linear peptides of similar size. The cyclotides are also highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, and are orally bioavailable and able to cross cellular membranes to modulate intracellular protein-protein interactions (PPIs), both in vitro and in vivo. These unique properties make them ideal scaffolds for many biotechnological applications, including drug discovery. This review provides an overview of the properties of cyclotides and their potential for the development of novel peptide-based therapeutics. The selective disruption of PPIs still remains a very challenging task, as the interacting surfaces are relatively large and flat. The use of the cell-permeable highly constrained polypeptide molecular frameworks, such as the cyclotide scaffold, has shown great promise, as it provides unique pharmacological properties. The use of molecular techniques, such as epitope grafting, and molecular evolution have shown to be highly effective for the selection of bioactive cyclotides. However, despite successes in employing cyclotides to target PPIs, some of the challenges to move them into the clinic still remain.
Collapse
Affiliation(s)
- Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA 9033, USA.
| | - Maria Jose Campbell
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
| |
Collapse
|
22
|
Cardoso MH, Cândido ES, Chan LY, Der Torossian Torres M, Oshiro KGN, Rezende SB, Porto WF, Lu TK, de la Fuente-Nunez C, Craik DJ, Franco OL. A Computationally Designed Peptide Derived from Escherichia coli as a Potential Drug Template for Antibacterial and Antibiofilm Therapies. ACS Infect Dis 2018; 4:1727-1736. [PMID: 30346140 DOI: 10.1021/acsinfecdis.8b00219] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computer-aided screening of antimicrobial peptides (AMPs) is a promising approach for discovering novel therapies against multidrug-resistant bacterial infections. Here, we functionally and structurally characterized an Escherichia coli-derived AMP (EcDBS1R5) previously designed through pattern identification [α-helical set (KK[ILV](3)[AILV])], followed by sequence optimization. EcDBS1R5 inhibited the growth of Gram-negative and Gram-positive, susceptible and resistant bacterial strains at low doses (2-32 μM), with no cytotoxicity observed against non-cancerous and cancerous cell lines in the concentration range analyzed (<100 μM). Furthermore, EcDBS1R5 (16 μM) acted on Pseudomonas aeruginosa pre-formed biofilms by compromising the viability of biofilm-constituting cells. The in vivo antibacterial potential of EcDBS1R5 was confirmed as the peptide reduced bacterial counts by two-logs 2 days post-infection using a skin scarification mouse model. Structurally, circular dichroism analysis revealed that EcDBS1R5 is unstructured in hydrophilic environments, but has strong helicity in 2,2,2-trifluoroethanol (TFE)/water mixtures (v/v) and sodium dodecyl sulfate (SDS) micelles. The TFE-induced nuclear magnetic resonance structure of EcDBS1R5 was determined and showed an amphipathic helical segment with flexible termini. Moreover, we observed that the amide protons for residues Met2-Ala8, Arg10, Ala13-Ala16, and Trp19 in EcDBS1R5 are protected from the solvent, as their temperature coefficients values are more positive than -4.6 ppb·K-1. In summary, this study reports a novel dual-antibacterial/antibiofilm α-helical peptide with therapeutic potential in vitro and in vivo against clinically relevant bacterial strains.
Collapse
Affiliation(s)
- Marlon H. Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Elizabete S. Cândido
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - Lai Y. Chan
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Marcelo Der Torossian Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210170, Brazil
| | - Karen G. N. Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - Samilla B. Rezende
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - William F. Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
- Porto Reports, Brasília, DF 70790160, Brazil
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Octávio L. Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| |
Collapse
|
23
|
Parsley NC, Kirkpatrick CL, Crittenden CM, Rad JG, Hoskin DW, Brodbelt JS, Hicks LM. PepSAVI-MS reveals anticancer and antifungal cycloviolacins in Viola odorata. PHYTOCHEMISTRY 2018; 152:61-70. [PMID: 29734037 PMCID: PMC6003877 DOI: 10.1016/j.phytochem.2018.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 05/07/2023]
Abstract
Widespread resistance to antimicrobial and cancer therapeutics is evolving in every country worldwide and has a direct impact on global health, agriculture and the economy. The specificity and selectivity of bioactive peptide natural products present a possible stopgap measure to address the ongoing deficit of new therapeutic compounds. PepSAVI-MS (Statistically-guided bioActive Peptides prioritized VIa Mass Spectrometry) is an adaptable method for the analysis of natural product libraries to rapidly identify bioactive peptides. This pipeline was validated via screening of the cyclotide-rich botanical species Viola odorata and identification of the known antimicrobial and anticancer cyclotide cycloviolacin O2. Herein we present and validate novel bioactivities of the anthelmintic V. odorata cyclotide, cycloviolacin O8 (cyO8), including micromolar anticancer activity against PC-3 prostate, MDA-MB-231 breast, and OVCAR-3 ovarian cancer cell lines and antifungal activity against the agricultural pathogen Fusarium graminearum. A reduction/alkylation strategy in tandem with PepSAVI-MS analysis also revealed several previously uncharacterized putatively bioactive cyclotides. Downstream implementation of ultraviolet photodissociation (UVPD) tandem mass spectrometry is demonstrated for cyO8 as a method to address traditionally difficult-to-sequence cyclotide species. This work emphasizes the therapeutic and agricultural potential of natural product bioactive peptides and the necessity of developing robust analytical tools to deconvolute nature's complexity.
Collapse
Affiliation(s)
- Nicole C Parsley
- Department of Chemistry, University of North Carolina at Chapel Hill, NC, USA
| | | | | | | | - David W Hoskin
- Department of Pathology, Dalhousie University, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Nova Scotia, Canada; Department of Surgery, Dalhousie University, Nova Scotia, Canada
| | | | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
24
|
In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun 2018; 9:1490. [PMID: 29662055 PMCID: PMC5902452 DOI: 10.1038/s41467-018-03746-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/02/2018] [Indexed: 12/29/2022] Open
Abstract
Plants are extensively used in traditional medicine, and several plant antimicrobial peptides have been described as potential alternatives to conventional antibiotics. However, after more than four decades of research no plant antimicrobial peptide is currently used for treating bacterial infections, due to their length, post-translational modifications or high dose requirement for a therapeutic effect . Here we report the design of antimicrobial peptides derived from a guava glycine-rich peptide using a genetic algorithm. This approach yields guavanin peptides, arginine-rich α-helical peptides that possess an unusual hydrophobic counterpart mainly composed of tyrosine residues. Guavanin 2 is characterized as a prototype peptide in terms of structure and activity. Nuclear magnetic resonance analysis indicates that the peptide adopts an α-helical structure in hydrophobic environments. Guavanin 2 is bactericidal at low concentrations, causing membrane disruption and triggering hyperpolarization. This computational approach for the exploration of natural products could be used to design effective peptide antibiotics. Antimicrobial peptides are considered promising alternatives to antibiotics. Here the authors developed a computational algorithm that starts with peptides naturally occurring in plants and optimizes this starting material to yield new variants which are highly distinct from the parent peptide.
Collapse
|
25
|
Camarero JA. Cyclotides, a versatile ultrastable micro-protein scaffold for biotechnological applications. Bioorg Med Chem Lett 2017; 27:5089-5099. [PMID: 29110985 PMCID: PMC5812341 DOI: 10.1016/j.bmcl.2017.10.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/13/2017] [Accepted: 10/21/2017] [Indexed: 01/26/2023]
Abstract
Cyclotides are fascinating microproteins (≈30-40 residues long) with a unique head-to-tail cyclized backbone, stabilized by three disulfide bonds forming a cystine knot. This unique topology makes them exceptionally stable to chemical, thermal and biological degradation compared to other peptides of similar size. Cyclotides have been also found to be highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, able to cross cellular membranes and modulate intracellular protein-protein interactions both in vitro and in vivo. These properties make them ideal scaffolds for many biotechnological applications. This article provides and overview of the properties of cyclotides and their applications as molecular imaging agents and peptide-based therapeutics.
Collapse
Affiliation(s)
- Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|
26
|
Uppu DSSM, Konai MM, Sarkar P, Samaddar S, Fensterseifer ICM, Farias-Junior C, Krishnamoorthy P, Shome BR, Franco OL, Haldar J. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria. PLoS One 2017; 12:e0183263. [PMID: 28837596 PMCID: PMC5570306 DOI: 10.1371/journal.pone.0183263] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.
Collapse
Affiliation(s)
- Divakara S. S. M. Uppu
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Mohini M. Konai
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Paramita Sarkar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Sandip Samaddar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Isabel C. M. Fensterseifer
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UC, Brası´lia, Brazil
- Molecular Pathology Post-Graduate Program, University of Brasília, Brasília, Brazil
| | | | - Paramanandam Krishnamoorthy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Bibek R. Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UC, Brası´lia, Brazil
- Molecular Pathology Post-Graduate Program, University of Brasília, Brasília, Brazil
- S-inova Biotech, Pos-Graduação em Biotecnoloia, Universidade Catolica Dom Bosco, Campo Grande, Brazil
| | - Jayanta Haldar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
27
|
Craik DJ, Lee MH, Rehm FBH, Tombling B, Doffek B, Peacock H. Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorg Med Chem 2017; 26:2727-2737. [PMID: 28818463 DOI: 10.1016/j.bmc.2017.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Owing to their exceptional stability and favourable pharmacokinetic properties, plant-derived cyclic peptides have recently attracted significant attention in the field of peptide-based drug design. This article describes the three major classes of ribosomally-synthesised plant peptides - the cyclotides, the PawS-derived peptides and the orbitides - and reviews their applications as leads or scaffolds in drug design. These ribosomally-produced peptides have a range of biological activities, including anti-HIV, cytotoxic and immunomodulatory activity. In addition, recent interest has focused on their use as scaffolds to stabilise bioactive peptide sequences, thereby enhancing their biopharmaceutical properties. There are now more than 30 published papers on such 'grafting' applications, most of which have been reported only in the last few years, and several such studies have reported in vivo activity of orally delivered cyclic peptides. In this article, we describe approaches to the synthesis of cyclic peptides and their pharmaceutically-grafted derivatives as well as outlining their biosynthetic routes. Finally, we describe possible bioproduction routes for pharmaceutically active cyclic peptides, involving plants and plant suspension cultures.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Meng-Han Lee
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Tombling
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Doffek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hayden Peacock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
28
|
Abstract
Cyclotides are globular microproteins with a unique head-to-tail cyclized backbone, stabilized by three disulfide bonds forming a cystine knot. This unique circular backbone topology and knotted arrangement of three disulfide bonds makes them exceptionally stable to chemical, thermal, and biological degradation compared to other peptides of similar size. In addition, cyclotides have been shown to be highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot. Cyclotides can also cross cellular membranes and are able to modulate intracellular protein-protein interactions, both in vitro and in vivo. All of these features make cyclotides highly promising as leads or frameworks for the design of peptide-based diagnostic and therapeutic tools. This article provides an overview on cyclotides and their applications as molecular imaging agents and peptide-based therapeutics.
Collapse
Affiliation(s)
- Andrew Gould
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-9121, USA
| |
Collapse
|
29
|
Qu H, Smithies BJ, Durek T, Craik DJ. Synthesis and Protein Engineering Applications of Cyclotides. Aust J Chem 2017. [DOI: 10.1071/ch16589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclotides are a group of plant-derived peptides with a head-to-tail cyclized backbone that is stabilized by three knotted disulfide bonds. Their exceptional stability and tolerance for residue substitutions have led to interest in their application as drug design scaffolds. To date, chemical synthesis has been the dominant methodology for producing cyclotides and their analogues. Native chemical ligation is the most common strategy to generate the cyclic backbone and has been highly successful at producing a wide range of cyclotides for studies of structure–activity relationships. Both this and other chemical approaches require a specific linker at the C-terminus and typically involve a non-directed folding (disulfide oxidation) regimen, which can sometimes be a limiting factor in final yields. Following the recent discovery of enzymes involved in peptide cyclization in planta, site-specific and highly efficient enzymatic ligations have been used for synthetic cyclotide backbone cyclization. In this review, chemical synthesis strategies and approaches involving cyclization via enzymes for the production of cyclotides are described.
Collapse
|
30
|
Weidmann J, Craik DJ. Discovery, structure, function, and applications of cyclotides: circular proteins from plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4801-12. [PMID: 27222514 DOI: 10.1093/jxb/erw210] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cyclotides are plant-derived cyclic peptides that have a head-to-tail cyclic backbone and three conserved disulphide bonds that form a cyclic cystine knot motif. They occur in plants from the Violaceae, Rubiaceae, Cucurbitaceae, Fabaceae, and Solanaceae families, typically with 10-100 cyclotides in a given plant species, in a wide range of tissues, including flowers, leaves, stems, and roots. Some cyclotides are expressed in large amounts (up to 1g kg(-1) wet plant weight) and their natural function appears to be to protect plants from pests or pathogens. This article provides a brief overview of their discovery, distribution in plants, and applications. In particular, their exceptional stability has led to their use as peptide-based scaffolds in drug design applications. They also have potential as natural 'ecofriendly' insecticides, and as protein engineering frameworks.
Collapse
Affiliation(s)
- Joachim Weidmann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
31
|
Structural Studies of a Lipid-Binding Peptide from Tunicate Hemocytes with Anti-Biofilm Activity. Sci Rep 2016; 6:27128. [PMID: 27292548 PMCID: PMC4904370 DOI: 10.1038/srep27128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 05/13/2016] [Indexed: 11/21/2022] Open
Abstract
Clavanins is a class of peptides (23aa) histidine-rich, free of post-translational modifications. Clavanins have been studied largely for their ability to disrupt bacterial membranes. In the present study, the interaction of clavanin A with membranes was assessed by dynamic light scattering, zeta potential and permeabilization assays. We observed through those assays that clavanin A lysis bacterial cells at concentrations corresponding to its MIC. Further, the structure and function of clavanin A was investigated. To better understand how clavanin interacted with bacteria, its NMR structure was elucidated. The solution state NMR structure of clavanin A in the presence of TFE-d3 indicated an α-helical conformation. Secondary structures, based on circular dichroism measurements in anionic sodium dodecyl sulfate (SDS) and TFE (2,2,2-trifluorethanol), in silico lipid-peptide docking and molecular simulations with lipids DPPC and DOPC revealed that clavanin A can adopt a variety of folds, possibly influencing its different functions. Microcalorimetry assays revealed that clavanin A was capable of discriminating between different lipids. Finally, clavanin A was found to eradicate bacterial biofilms representing a previously unrecognized function.
Collapse
|
32
|
Modifying natural antimicrobial peptides to generate bioinspired antibiotics and devices. Future Med Chem 2015; 7:413-5. [DOI: 10.4155/fmc.15.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|