1
|
Lai JC, Chang GRL, Tu MY, Cidem A, Chen IC, Chen CM. Potential of Kefir-Derived Peptides, Probiotics, and Exopolysaccharides for Osteoporosis Management. Curr Osteoporos Rep 2025; 23:18. [PMID: 40192921 PMCID: PMC11976759 DOI: 10.1007/s11914-025-00910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Osteoporosis is a prevalent skeletal disorder in postmenopausal women and older adults. Kefir has gained attention for its potent antioxidative, anti-inflammatory, and immunomodulatory properties. This review consolidates findings on kefir-derived peptides' interventions in osteoporosis models and evaluates the therapeutic potential of kefir components in preventing osteoporosis, thereby enhancing its application in clinical nutrition strategies for osteoporosis management. RECENT FINDINGS Kefir-derived peptides exhibit osteoprotective potential in various animal models of osteoporosis, in which several antioxidative and ACE-inhibitory peptides have been shown to promote osteoblast differentiation and mineralization. In addition, emerging evidence supports the role of kefir-derived probiotics and exopolysaccharides (kefiran) in mitigating bone loss. Kefir holds significant promise in the management of osteoporosis due to its unique composition of bioactive components promoting bone health. While research is still in its early stages, evidence suggests kefir's potential as a natural approach to osteoporosis prevention and management.
Collapse
Affiliation(s)
- Jen-Chieh Lai
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Gary Ro-Lin Chang
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Min-Yu Tu
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Abdulkadir Cidem
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - I-Chien Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Rong Hsing Research Center for Translational Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan.
- Center for General Educational, National Quemoy University, Kinmen, 892, Taiwan.
| |
Collapse
|
2
|
Fortuin J, Leclercq CC, Iken M, Villas-Boas SG, Soukoulis C. Proteomic and peptidomic profiling of spirulina-fortified probiotic powder formulations during in vitro digestion. Int J Biol Macromol 2025; 302:140432. [PMID: 39884605 DOI: 10.1016/j.ijbiomac.2025.140432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
This study reports on the influence of lactic acid fermentation on the proteomic and peptidomic profiles of spirulina protein isolate (SPI)-fortified, freeze-dried powders containing living Lacticaseibacillus rhamnosus GG (LGG) cells during in vitro digestion. For comparison, powders fortified with whey protein isolate (WPI) and pea protein isolate (PPI) were also evaluated. Prior to freeze-drying, the powder precursors were either non-treated or fermented. Capillary SDS-PAGE electropherograms revealed a mild proteolytic effect due to fermentation. C-phycocyanin (SPI) and β-lactoglobulin (WPI) showed the highest resistance to pepsinolysis. All samples were responsive to pancreases, with fermented WPI showing the lowest responsiveness. Fermentation enhanced the degree of hydrolysis (DH) in gastric chymes, whereas in intestinal chymes, DH followed the order SPI > PPI > WPI, with fermentation showing no significant impact. A total of 6, 11, and 52 potential bioactive peptide sequences, associated with various beneficial activities, were identified in the SPI, PPI, and WPI digesta, respectively. The highest amino acid bioaccessibilities were observed for cysteine and methionine in SPI, isoleucine and arginine in PPI, and glycine in WPI. In conclusion, fortifying probiotic formulations with protein isolates offers secondary health benefits, stemming from the release of bioactive peptides and bioaccessible essential amino acids.
Collapse
Affiliation(s)
- Jennyfer Fortuin
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg; Food Quality and Design Group, Wageningen University and Research, 6708, NL, Wageningen, the Netherlands
| | - Céline C Leclercq
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg
| | | | - Silas G Villas-Boas
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg
| | - Christos Soukoulis
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
3
|
Nielsen SDH, Liang N, Rathish H, Kim BJ, Lueangsakulthai J, Koh J, Qu Y, Schulz HJ, Dallas DC. Bioactive milk peptides: an updated comprehensive overview and database. Crit Rev Food Sci Nutr 2024; 64:11510-11529. [PMID: 37504497 PMCID: PMC10822030 DOI: 10.1080/10408398.2023.2240396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.
Collapse
Affiliation(s)
| | - Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Harith Rathish
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | | | - Jeewon Koh
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Yunyao Qu
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Hans-Jörg Schulz
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Yan X, Cao Y, Chen W, Yu Q, Chen Y, Yao S, Jiang C, Chen X, Han S. Peptide Tat(48-60) YVEEL protects against necrotizing enterocolitis through inhibition of toll-like receptor 4-mediated signaling in a phosphatidylinositol 3-kinase/AKT dependent manner. Front Nutr 2022; 9:992145. [PMID: 36299988 PMCID: PMC9590307 DOI: 10.3389/fnut.2022.992145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a catastrophic disease largely occurring in preterm infants, and toll-like receptor 4 (TLR4) has been implicated in its pathogenesis. The current therapeutic strategies for NEC are, however, far from optimal. In the present study, a whey-derived antioxidative peptide conjugated with a cell-penetrating TAT [Tat (48-60) YVEEL] was prepared to endow it with enhanced cell uptake capability and bioavailability. The protective effect of Tat (48-60) YVEEL on experimental NEC was evaluated both in vitro and in vivo. Inhibition of TLR4-mediated signaling by Tat (48-60) YVEEL was assessed in FHC and IEC-6 enterocytes, neonatal rat model of NEC, and the mechanism underlying this effect was determined. Tat (48-60) YVEEL significantly inhibited TLR4-mediated expression of pro-inflammatory cytokines, p65 nuclear translocation and restored the impaired enterocyte migration in cultured enterocytes. In addition, Tat (48-60) YVEEL administration strikingly increased the survival rate, and reduced the severity of NEC in rats through inhibition of TLR4-mediated signaling. These protective effects of Tat (48-60) YVEEL occurred in a PI3K/AKT dependent manner, as administration of PI3K activator Ys49 abrogated its protective effects. Combined with liposomes, Tat (48-60) YVEEL demonstrated longer retention in the intestines that better for potential clinical applications. These data demonstrate that Tat (48-60) YVEEL protects against NEC through inhibition of TLR4-mediated signaling in a PI3K/AKT dependent manner, and offer a potential therapeutic approach to this disease.
Collapse
Affiliation(s)
- Xiangyun Yan
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjuan Chen
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinlei Yu
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanjie Chen
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuwen Yao
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyao Jiang
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohui Chen
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,Xiaohui Chen,
| | - Shuping Han
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Shuping Han,
| |
Collapse
|
5
|
Okagu IU, Aham EC, Ezeorba TPC, Ndefo JC, Aguchem RN, Udenigwe CC. Osteo‐modulatory dietary proteins and peptides: A concise review. J Food Biochem 2022; 46:e14365. [DOI: 10.1111/jfbc.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Emmanuel Chigozie Aham
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | | | - Joseph Chinedum Ndefo
- Department of Science Laboratory Technology Faculty of Physical Sciences, University of Nigeria Nsukka Nigeria
| | - Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
6
|
A Low-Phenylalanine-Containing Whey Protein Hydrolysate Stimulates Osteogenic Activity through the Activation of p38/Runx2 Signaling in Osteoblast Cells. Nutrients 2022; 14:nu14153135. [PMID: 35956311 PMCID: PMC9370741 DOI: 10.3390/nu14153135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
A phenylalanine (Phe)-restricted diet is indispensable for individuals suffering from phenylketonuria (PKU). Our previous study reported a low-Phe-containing whey protein hydrolysate (LPH) prepared from a selected whey protein hydrolysate (TA2H). This study aimed to investigate the osteogenic activity of LPH and TA2H in MC3T3-E1 preosteoblast cells and explore the underlying mechanism. Results showed that the treatment of TA2H and LPH (at the final concentrations of 100–1000 μg/mL) had a stimulatory effect on the proliferation, differentiation, and mineralization of MC3T3-E1 cells. The LPH of 1000 μg/mL significantly increased cell proliferation (2.15- ± 0.11-fold) and alkaline phosphatase activity (1.22- ± 0.07-fold), promoted the protein and mRNA levels of runt-related transcription factor 2 (Runx2, 2.50- ± 0.14-fold and 2.97- ± 0.23-fold, respectively), enhanced the expression of differentiation biomarkers (type-I collagen, osteocalcin, and osteopontin), increased calcium deposition (1.56- ± 0.08-fold), and upregulated the ratio of osteoprotegerin/receptor activator of nuclear factor-κB ligand. The exploration of signaling pathways indicated that the activated p38-dependent Runx2 signaling contributed to the LPH-induced osteogenesis. These results provided evidence, for the first time, that a prepared low-Phe whey protein hydrolysate positively modulated the activity of osteoblasts through the p38/Runx2 pathway, thereby providing a new osteoinductive protein substitute to make functional PKU food.
Collapse
|
7
|
Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients 2022; 14:nu14153001. [PMID: 35893855 PMCID: PMC9331789 DOI: 10.3390/nu14153001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Milk-derived bioactive peptides (BAPs) possess several potential attributes in terms of therapeutic capacity and their nutritional value. BAPs from milk proteins can be liberated by bacterial fermentation, in vitro enzymatic hydrolysis, food processing, and gastrointestinal digestion. Previous evidence suggested that milk protein-derived BAPs have numerous health-beneficial characteristics, including anti-cancerous activity, anti-microbial activity, anti-oxidative, anti-hypertensive, lipid-lowering, anti-diabetic, and anti-osteogenic. In this literature overview, we briefly discussed the production of milk protein-derived BAPs and their mechanisms of action. Milk protein-derived BAPs are gaining much interest worldwide due to their immense potential as health-promoting agents. These BAPs are now used to formulate products sold in the market, which reflects their safety as natural compounds. However, enhanced commercialization of milk protein-derived BAPs depends on knowledge of their particular functions/attributes and safety confirmation using human intervention trials. We have summarized the therapeutic potentials of these BAPs based on data from in vivo and in vitro studies.
Collapse
|
8
|
Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022; 63:10351-10381. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.
Collapse
Affiliation(s)
- L B Olvera-Rosales
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - A E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - J M García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
- Departamento de Ciencias de la Alimentación Lerma de Villada, Universidad Autónoma Metropolitana-Lerma, Edo. de México, México
| | - L C Gómez-Ruíz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - E Contreras-López
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - F Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - L G González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
9
|
Bu T, Zhang L, Liu L, Yu S, Zheng J, Wu J, Yang K. Evaluation of the anti-osteoporotic effect of a low-phenylalanine whey protein hydrolysate in an ovariectomized mice model. Food Funct 2022; 13:3957-3967. [PMID: 35293905 DOI: 10.1039/d1fo04030h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A phenylalanine (Phe)-restricted diet is indispensable to control the blood Phe for individuals with phenylketonuria (PKU), who are also confronted with progressive bone impairment. Thus, the development of a low-Phe protein substitute that could positively regulate bone metabolism is desired for their bone health. Our previous study reported the preparation of a low-Phe containing whey hydrolysate (LPH) from a selected whey protein hydrolysate (TAH). However, the effect of LPH on the bone status is unknown. In this study, we used an ovariectomized (OVX) mice model to evaluate the anti-osteoporotic potential of oral administration of whey protein concentrate (WPC, protein control), TAH, and LPH on bone physiology and bone metabolism. The results showed that after 12 weeks of treatment, the decreased bone mineral density, the deteriorated trabecular microarchitecture, and the reduced ultimate load due to ovariectomy were significantly attenuated by two whey protein hydrolysates (TAH and LPH); meanwhile, the body weight, uterine weight, bone composition, and the femoral elastic load of OVX mice had not been significantly affected by whey samples. In addition, LPH and TAH dual-regulated bone remodeling in OVX mice through triggering osteogenesis (promoted the expression of runt-related protein 2 (Runx2) and osteoformation markers) and inhibiting osteoresorption as well as inflammation. The modulated mitogen-activated protein kinase signaling and the inhibited nuclear factor κB signaling by LPH and TAH might relate to the dual-regulatory activities on bone. Overall, in the OVX mice model, LPH exerted higher osteoprotective potential than TAH of the same dose by activating the bone formation markers and inhibiting the inflammatory status. The current study demonstrated for the first time the potential use of a low-Phe whey hydrolysate, a protein substitute for PKU individuals, in the prevention of osteoporosis.
Collapse
Affiliation(s)
- Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Ling Zhang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Songfeng Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
LI H, CHEN X, GUO Y, HOU T, HU J. A pivotal peptide (Ile-Leu-Lys-Pro) with high ACE- inhibitory activity from duck egg white: identification and molecular docking. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.66121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haitao LI
- Zhejiang Pharmaceutical College, China
| | | | - Yan GUO
- Zhejiang Pharmaceutical College, China
| | - Tao HOU
- Huazhong Agricultural University, China
| | - Jun HU
- Huazhong Agricultural University, China
| |
Collapse
|
12
|
Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021; 63:1437-1463. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food-derived antihypertensive peptides have attracted increasing attention in functional foods for health promotion, due to their high biological activity, low toxicity and easy metabolism in the human body. Angiotensin converting enzyme (ACE) is a key enzyme that causes the increase in blood pressure in mammals. However, few reviews have summarized the current understanding of ACE inhibitory peptides and their knowledge gaps. This paper focuses on the food origins and production methods of ACE inhibitory peptides. Compared with conventional methods, the advanced technologies and emerging bioinformatics approaches have recently been applied for efficient and targeted release of ACE inhibitory peptides from food proteins. Furthermore, the transport and underlying mechanisms of ACE inhibitory peptides are emphatically described. Molecular modeling and the Michaelis-Menten equation can provide information on how ACE inhibitors function. Finally, we discuss the structure-activity relationships and other bio-functional properties of ACE inhibitory peptides. Molecular weight, hydrophobic amino acid residues, charge, amino acid composition and sequence (especially at the C-terminal and N-terminal) have a significant influence on ACE inhibitory activity. Some studies are required to increase productivity, improve bioavailability of peptides, evaluate their bio-accessibility and efficiency on reducing blood pressure to provide a reference for the development and application of health products and auxiliary treatment drugs.
Collapse
Affiliation(s)
- Lu Xiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhichang Qiu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renjie Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
13
|
Tyagi A, Yeon SJ, Daliri EBM, Chen X, Chelliah R, Oh DH. Untargeted Metabolomics of Korean Fermented Brown Rice Using UHPLC Q-TOF MS/MS Reveal an Abundance of Potential Dietary Antioxidative and Stress-Reducing Compounds. Antioxidants (Basel) 2021; 10:antiox10040626. [PMID: 33921826 PMCID: PMC8072674 DOI: 10.3390/antiox10040626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Free radical-induced oxidative stress is the root cause of many diseases, such as diabetes, stress and cardiovascular diseases. The objective of this research was to screen GABA levels, antioxidant activities and bioactive compounds in brown rice. In this study, we first fermented brown rice with different lactic acid bacteria (LABs), and the best LAB was selected based on the levels of GABA in the fermentate. Lactobacillus reuterii generated the highest levels of GABA after fermentation. To ascertain whether germination can improve the GABA levels of brown rice, we compared the levels of GABA in raw brown rice (Raw), germinated brown rice (Germ), fermented brown rice (Ferm) and fermented-germinated brown rice (G+F) to identify the best approach. Then, antioxidant activities were investigated for Raw BR, Germ BR, Ferm BR and G+F BR. Antioxidant activity was calculated using a 2,2-diphenyl-1-picryl hydrazile radical assay, 2,2-azino-bis-(3-ethylene benzothiozoline-6-sulfonic acid) radical assay and ferric-reducing antioxidant power. In Ferm BR, DPPH (114.40 ± 0.66), ABTS (130.52 ± 0.97) and FRAP (111.16 ± 1.83) mg Trolox equivalent 100 g, dry weight (DW), were observed as the highest among all samples. Total phenolic content (97.13 ± 0.59) and total flavonoids contents (79.62 ± 1.33) mg GAE/100 g and catechin equivalent/100 g, DW, were also found to be highest in fermented BR. Furthermore, an untargeted metabolomics approach using ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of bioactive compounds in fermented BR, such as GABA, tryptophan, coumaric acid, L-ascorbic acid, linoleic acid, β-carotenol, eugenol, 6-gingerol, etc., as well as bioactive peptides which could contribute to the health-promoting properties of L. reuterii fermented brown rice.
Collapse
|
14
|
Isolation and Characterization of Angiotensin Converting Enzyme Inhibitory Peptide from Buffalo Casein. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10185-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Bu T, Zheng J, Liu L, Li S, Wu J. Milk proteins and their derived peptides on bone health: Biological functions, mechanisms, and prospects. Compr Rev Food Sci Food Saf 2021; 20:2234-2262. [PMID: 33522110 DOI: 10.1111/1541-4337.12707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone is a dynamic organ under constant metabolism (or remodeling), where a delicate balance between bone resorption and bone formation is maintained. Disruption of this coordinated bone remodeling results in bone diseases, such as osteoporosis, the most common bone disorder characterized by decreased bone mineral density and microarchitectural deterioration. Epidemiological and clinical evidence support that consumption of dairy products is beneficial for bone health; this benefit is often attributed to the presence of calcium, the physiological contributions of milk proteins on bone metabolism, however, are underestimated. Emerging evidence highlighted that not only milk proteins (including individual milk proteins) but also their derived peptides positively regulate bone remodeling and attenuate bone loss, via the regulation of cellular markers and signaling of osteoblasts and osteoclasts. This article aims to review current knowledge about the roles of milk proteins, with an emphasis on individual milk proteins, bioactive peptides derived from milk proteins, and effect of milk processing in particular fermentation, on bone metabolism, to highlight the potential uses of milk proteins in the prevention and treatment of osteoporosis, and, to discuss the knowledge gap and to recommend future research directions.
Collapse
Affiliation(s)
- Tingting Bu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Jianping Wu
- ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Tu MY, Han KY, Chang GRL, Lai GD, Chang KY, Chen CF, Lai JC, Lai CY, Chen HL, Chen CM. Kefir Peptides Prevent Estrogen Deficiency-Induced Bone Loss and Modulate the Structure of the Gut Microbiota in Ovariectomized Mice. Nutrients 2020; 12:nu12113432. [PMID: 33182364 PMCID: PMC7695289 DOI: 10.3390/nu12113432] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a major skeletal disease associated with estrogen deficiency in postmenopausal women. Kefir-fermented peptides (KPs) are bioactive peptides with health-promoting benefits that are produced from the degradation of dairy milk proteins by the probiotic microflora in kefir grains. This study aimed to evaluate the effects of KPs on osteoporosis prevention and the modulation of the composition of the gut microbiota in ovariectomized (OVX) mice. OVX mice receiving an 8-week oral gavage of 100 mg of KPs and 100 mg of KPs + 10 mg Ca exhibited lower trabecular separation (Tb. Sp), and higher bone mineral density (BMD), trabecular number (Tb. N) and bone volume (BV/TV), than OVX groups receiving Ca alone and untreated mice, and these effects were also reflected in bones with better mechanical properties of strength and fracture toughness. The gut microbiota of the cecal contents was examined by 16S rDNA amplicon sequencing. α-Diversity analysis indicated that the gut microbiota of OVX mice was enriched more than that of sham mice, but the diversity was not changed significantly. Treatment with KPs caused increased microbiota richness and diversity in OVX mice compared with those in sham mice. The microbiota composition changed markedly in OVX mice compared with that in sham mice. Following the oral administration of KPs for 8 weeks, the abundances of Alloprevotella, Anaerostipes, Parasutterella, Romboutsia, Ruminococcus_1 and Streptococcus genera were restored to levels close to those in the sham group. However, the correlation of these bacterial populations with bone metabolism needs further investigation. Taken together, KPs prevent menopausal osteoporosis and mildly modulate the structure of the gut microbiota in OVX mice.
Collapse
Affiliation(s)
- Min-Yu Tu
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.T.); (G.R.-L.C.); (G.-D.L.); (C.-F.C.); (J.-C.L.)
- Aviation Physiology Research Laboratory, Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung 820, Taiwan
- Department of Health Business Administration, Meiho University, Pingtung 912, Taiwan
- Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan
| | - Kuei-Yang Han
- Department of Family Medicine, Jen-Ai Hospital, Dali Branch, Taichung 402, Taiwan; (K.-Y.H.); (K.-Y.C.)
- Department of Orthopedic Surgery, Jen-Ai Hospital, Dali Branch, Taichung 402, Taiwan
| | - Gary Ro-Lin Chang
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.T.); (G.R.-L.C.); (G.-D.L.); (C.-F.C.); (J.-C.L.)
| | - Guan-Da Lai
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.T.); (G.R.-L.C.); (G.-D.L.); (C.-F.C.); (J.-C.L.)
| | - Ku-Yi Chang
- Department of Family Medicine, Jen-Ai Hospital, Dali Branch, Taichung 402, Taiwan; (K.-Y.H.); (K.-Y.C.)
- Department of Orthopedic Surgery, Jen-Ai Hospital, Dali Branch, Taichung 402, Taiwan
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| | - Chien-Fu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.T.); (G.R.-L.C.); (G.-D.L.); (C.-F.C.); (J.-C.L.)
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| | - Jen-Chieh Lai
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.T.); (G.R.-L.C.); (G.-D.L.); (C.-F.C.); (J.-C.L.)
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| | - Chung-Yu Lai
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei 114, Taiwan;
| | - Hsiao-Ling Chen
- Department of Biomedical Sciences, Da-Yeh University, Changhua 515, Taiwan;
- Department of Bioresources, Da-Yeh University, Changhua 515, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.T.); (G.R.-L.C.); (G.-D.L.); (C.-F.C.); (J.-C.L.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2285-6309
| |
Collapse
|
17
|
Ayabe T, Ohya R, Ano Y. β-lactolin, a whey-derived glycine-threonine-tryptophan-tyrosine lactotetrapeptide, improves prefrontal cortex-associated reversal learning in mice. Biosci Biotechnol Biochem 2020; 84:1039-1046. [PMID: 31928148 DOI: 10.1080/09168451.2020.1714424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dementia and cognitive decline have become worldwide public health problems. We have previously reported that a whey-derived glycine-threonine-tryptophan-tyrosine peptide, β-lactolin, improves hippocampus-dependent memory functions in mice. The supplementation with a whey digest rich in β-lactolin improves memory retrieval and executive function in a clinical trial, but the effect of β-lactolin on prefrontal cortex (PFC)-associated cognitive function was unclear. Here we examined the effect of β-lactolin and the whey digest on PFC-associated visual discrimination (VD) and reversal discrimination (RD) learning, using a rodent touch panel-based operant system. β-Lactolin and the whey digest significantly improved the RD learning, and the whey digest enhanced the response latency during the VD task, indicating that β-lactolin and the whey digest improve PFC-associated cognitive functions. Given the translational advantages of the touch panel operant system, consumption of β-lactolin in daily life could be beneficial for improving human PFC-associated cognitive function, helping to prevent dementia.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd, Yokohama-shi, Japan
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd, Yokohama-shi, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd, Yokohama-shi, Japan
| |
Collapse
|
18
|
Blockade of the angiotensin II type 1 receptor increases bone mineral density and left ventricular contractility in a mouse model of juvenile Paget disease. Eur J Pharmacol 2019; 859:172519. [PMID: 31271743 DOI: 10.1016/j.ejphar.2019.172519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
Juvenile Paget disease (JPD1), an autosomal-recessive disorder, is characterized by extremely rapid bone turnover due to osteoprotegerin deficiency. Its extra-skeletal manifestations, such as hypertension and heart failure, suggest a pathogenesis with shared skeletal and cardiovascular system components. In spite of this, the effects of anti-hypertensive drugs on bone morphometry remain unknown. We administered an angiotensin II type 1 receptor blocker, olmesartan (5 mg/kg/day) to 8-week-old male mice lacking the osteoprotegerin gene, with and without 1 μg/kg/min of angiotensin II infusion for 14 days. Olmesartan treatment decreased systolic blood pressure, and echocardiography showed increased left ventricular systolic contractility. Three-dimensional micro-computed tomography scans demonstrated that olmesartan treatment increased trabecular bone volume (sham, +176%; angiotensin II infusion, +335%), mineral density (sham, +150%; angiotensin II infusion, +313%), and trabecular number (sham, +407%; angiotensin II infusion, +622%) in the tibia. Olmesartan increased cortical mineral density (sham, +19%; angiotensin II infusion, +24%), decreased the cortical bone section area (sham, -16%; angiotensin II infusion, -18%), decreased thickness (sham, -18%; angiotensin II infusion, -31%), and decreased the lacunar area (sham, -41%; angiotensin II infusion, -27%) in the tibia. Similar trend was observed in the femur. Moreover, olmesartan decreased angiotensin II-induced increases in tartrate-resistant acid phosphatase concentrations in plasma, but it affected neither type I procollagen N-terminal propeptides, nor the receptor activator of nuclear factor kappa-B ligand. Our data suggest that blockade of the angiotensin II type 1 receptor improves bone vulnerability, and helps to maintain the heart's structural integrity in osteoprotegerin-deficient mice.
Collapse
|
19
|
Qu H, Yi J, Gao X, Zhao H, Wang Z. Anti-Disuse Osteoporosis Activity of a Complex of Calcium-Binding Peptide from Auricularia auricula Protein Hydrolysates. J Food Sci 2019; 84:1909-1919. [PMID: 31237973 DOI: 10.1111/1750-3841.14697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022]
Abstract
Osteoporosis is a common metabolic bone disease that is often seen in bedridden patients and astronauts. Long-term bed rest and nonweight bearing tend to induce disuse osteoporosis. Calcium supplements are commonly used to help treat disuse osteoporosis along with medications, most of which are calcium carbonate based, but they have poor absorption effects. In this study, we prepared a novel Auricularia auricula peptide-calcium complex (AP-Ca) and evaluated its protective effects on disuse osteoporosis. In vitro assays showed that AP-Ca significantly increased the contents of calcium (P < 0.05) and the activity of alkaline phosphatase (AKP; P < 0.05) of osteoblasts cultured in a two-dimensional-rotating wall vessel. Meanwhile, supplementation with AP-Ca also inhibited the production of pro-inflammatory factors induced by the loss of stress, especially TNF-α (P < 0.05). In vivo, a mouse tail suspension (TS) model was established, and the results showed that AP-Ca helped to improve bone mineral density, bone mineral content, and bone organic content in TS mice and effectively alleviated the alteration of enzymes related to bone metabolism, including AKP (P < 0.05) and serum tartrate-resistant acid phosphatase (P < 0.05), to avoid more serious bone loss induced by TS. Furthermore, we found that AP-Ca downregulated the bone resorption-associated pro-inflammatory genes interleukin-1 (IL-1), tumor necrosis factor-α, and IL-6 by 59.53 ± 3.55%, 48.01 ± 5.68%, and 40.00 ± 5.89%, respectively (P < 0.05). In conclusion, AP-Ca showed potential to suppress bone loss induced by disuse and might be considered a new alternative to reduce the risk of disuse osteoporosis. PRACTICAL APPLICATION: This peptide-calcium complex supplement exhibited protective effects on the bone loss induced by disuse, which provided a new alternative for patients and astronauts to reduce the risk of disuse osteoporosis.
Collapse
Affiliation(s)
- Hang Qu
- Dept. of Food Science and Engineering, School of Chemical Engineering and Chemistry, Harbin Inst. of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150000, China
| | - Juanjuan Yi
- School of life sciences, Zhengzhou Univ., 100 Science Road, Zhengzhou, 450001, China
| | - Xin Gao
- Dept. of Food Science and Engineering, School of Chemical Engineering and Chemistry, Harbin Inst. of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150000, China
| | - Haitian Zhao
- Dept. of Food Science and Engineering, School of Chemical Engineering and Chemistry, Harbin Inst. of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150000, China
| | - Zhenyu Wang
- Dept. of Food Science and Engineering, School of Chemical Engineering and Chemistry, Harbin Inst. of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150000, China
| |
Collapse
|
20
|
Intiquilla A, Jiménez-Aliaga K, Guzmán F, Alvarez CA, Zavaleta AI, Izaguirre V, Hernández-Ledesma B. Novel antioxidant peptides obtained by alcalase hydrolysis of Erythrina edulis (pajuro) protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2420-2427. [PMID: 30362128 DOI: 10.1002/jsfa.9449] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Oxidative reactions are responsible for the changes in quality during food processing and storage. Oxidative stress is also involved in multiple chronic diseases, such as cardiovascular and neurodegenerative disorders, diabetes, cancer, and aging. The consumption of dietary antioxidants has been demonstrated to help to reduce the oxidative damage in both the human body and food systems. In this study, the potential of Erythrina edulis (pajuro) protein as source of antioxidant peptides was evaluated. RESULTS Pajuro protein concentrate hydrolyzed by alcalase for 120 min showed potent ABTS·+ and peroxyl radical scavenging activity with Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) values of 1.37 ± 0.09 µmol TE mg-1 peptide and 2.83 ± 0.07 µmol TE mg-1 peptide, respectively. Fractionation of the hydrolyzate to small peptides resulted in increased antioxidant activity. De novo sequencing of most active fractions collected by chromatographic analysis enabled 30 novel peptides to be identified. Of these, ten were synthesized and their radical activity evaluated, demonstrating their relevant contribution to the antioxidant effects observed for pajuro protein hydrolyzate. CONCLUSIONS The sequences identified represent an important advance in the molecular characterization of the pajuro protein, demonstrating its potential as a source of antioxidant peptides for food and nutraceutical applications. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Arturo Intiquilla
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Karim Jiménez-Aliaga
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudio A Alvarez
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Amparo I Zavaleta
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Víctor Izaguirre
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| |
Collapse
|
21
|
Mangano KM, Bao Y, Zhao C. Nutritional Properties of Whey Proteins. WHEY PROTEIN PRODUCTION, CHEMISTRY, FUNCTIONALITY, AND APPLICATIONS 2019:103-140. [DOI: 10.1002/9781119256052.ch5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Pandey M, Kapila S, Kapila R, Trivedi R, Karvande A. Evaluation of the osteoprotective potential of whey derived-antioxidative (YVEEL) and angiotensin-converting enzyme inhibitory (YLLF) bioactive peptides in ovariectomised rats. Food Funct 2019; 9:4791-4801. [PMID: 30128468 DOI: 10.1039/c8fo00620b] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Milk contains various bioactive components with osteoanabolic properties. This study investigates the comparative effect of the whey-derived antioxidative (YVEEL) and angiotensin-converting enzyme inhibitory (YLLF) bioactive peptides on bone remodelling in ovariectomised (OVX) osteoporotic rat model. OVX animals were administered with antioxidative (AO) (500 μg kg-1 day-1) and angiotensin-converting enzyme inhibitory (ACE inhibitory) (50 μg kg-1 day-1) peptides for eight weeks. Trabecular microarchitectural parameters of femoral and tibiae bone were determined using micro-CT scan. Bone formation, resorption, turnover markers (ALP, RANKL, OCN) and inflammatory cytokines (TNF-α, TGF-β, IFN-γ) were determined by ELISA. Both AO and ACE inhibitory peptides inhibited the increase in bone turnover and inflammatory cytokines while increased the bone formation markers. The altered morphometric parameters of femoral and tibiae bones due to OVX were strikingly attenuated by the peptide administration. The results indicated that AO peptide exerts more osteoprotective potential than ACE inhibitory peptide by suppressing inflammatory status and enhancing bone formation markers.
Collapse
Affiliation(s)
- Masum Pandey
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India.
| | | | | | | | | |
Collapse
|
23
|
Lin X, Yang L, Wang M, Zhang T, Liang M, Yuan E, Ren J. Preparation, purification and identification of cadmium-induced osteoporosis-protective peptides from chicken sternal cartilage. J Funct Foods 2018; 51:130-141. [DOI: 10.1016/j.jff.2018.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
24
|
Agarwal S, Duffy B, Curtin J, Jaiswal S. Effect of High- and Low-Molecular-Weight Hyaluronic-Acid-Functionalized-AZ31 Mg and Ti Alloys on Proliferation and Differentiation of Osteoblast Cells. ACS Biomater Sci Eng 2018; 4:3874-3884. [PMID: 33429610 DOI: 10.1021/acsbiomaterials.8b00968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The quality of patient care has increased dramatically in recent years because of the development of lightweight orthopedic metal implants. The success of these orthopedic implants may be compromised by impaired cytocompatibility and osteointegration. Biomimetic surface engineering of metal implants using biomacromolecules including hyaluronic acid (HA) has been used an effective approach to provide conditions favorable for the growth of bone forming cells. To date, there have been limited studies on osteoblasts functions in response to metal substrates modified with the hyaluronic acid of different molecular weight for orthopedic applications. In this study, we evaluated the osteoblasts functions such as adhesion, proliferation, and differentiation in response to high- and low-molecular-weight HA (denoted as h-HA and l-HA, respectively) functionalized on Ti (h-HA-Ti and l-HA-Ti substrates, respectively) and corrosion-resistant silane coated-AZ31 Mg alloys (h-HA-AZ31 and l-HA-AZ31). The DNA quantification study showed that adhesion and proliferation of osteoblasts were significantly decreased by h-HA immobilized on Ti or AZ31 substrates when compared to low-molecular-weight counterpart over a period of 14 days. On the contrary, h-HA significantly increased the osteogenic differentiation of osteoblast over l-HA, as confirmed by the enhanced expression of ALP, total collagen, and mineralization of extracellular matrix. In particular, the h-HA-AZ31 substrates greatly enhanced the osteoblast differentiation among tested samples (l-HA-AZ31, l-HA-Ti, h-HA-Ti, and Ti alone), which is ascribed to the osteoinductive activity of h-HA, relatively up-regulated intracellular Ca2+ ([Ca2+]i) and Mg2+ ([Mg2+]i) concentrations as well as the alkalization of the cell culture medium. This study suggesting that HA of appropriate molecular weight can be successfully used to modify the surface of metal implants for orthopedic applications.
Collapse
Affiliation(s)
- Sankalp Agarwal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.,School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
25
|
Agarwal S, Labour MN, Hoey D, Duffy B, Curtin J, Jaiswal S. Enhanced corrosion resistance and cytocompatibility of biomimetic hyaluronic acid functionalised silane coating on AZ31 Mg alloy for orthopaedic applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:144. [PMID: 30155669 DOI: 10.1007/s10856-018-6150-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
This paper reports the corrosion resistant and cytocompatible properties of the hyaluronic acid-silane coating on AZ31 Mg alloy. In this study, the osteoinductive properties of high molecular weight hyaluronic acid (HA, 1-4 MDa) and the corrosion protection of silane coatings were incorporated as a composite coating on biodegradable AZ31 Mg alloy for orthopaedic applications. The multi-step fabrication of coatings first involved dip coating of a passivated AZ31 Mg alloy with a methyltriethoxysilane-tetraethoxysilane sol-gel to deposit a dense, cross-linked and corrosion resistant silane coating (AZ31-MT). The second step was to create an amine-functionalised surface by treating coated alloy with 3-aminopropyl-triethoxy silane (AZ31-MT-A) which facilitated the immobilisation of HA via EDC-NHS coupling reactions at two different concentrations i.e 1 mg.ml-1 (AZ31-MT-A-HA1) and 2 mg.ml-1 (AZ31-MT-A-HA2). These coatings were characterised by Fourier transform infrared spectroscopy, atomic force microscopy and static contact angle measurements which confirmed the successful assembly of the full coatings onto AZ31 Mg alloy. The influence of HA-silane coating on the corrosion of Mg alloy was investigated by electrical impedance spectroscopy and long-term immersion studies measurements in HEPES buffered DMEM. The results showed an enhanced corrosion resistance of HA functionalised silane coated AZ31 substrate over the uncoated equivalent alloy. Furthermore, the cytocompatibility of MC3T3-E1 osteoblasts was evaluated on HA-coated AZ31-MT-A substrates by live-dead staining, quantification of total cellular DNA content, scanning electron microscope and alkaline phosphatase activity. The results showed HA concentration-dependent improvement of osteoblast cellular response in terms of enhanced cell adhesion, proliferation and differentiation. These findings hold great promise in employing such biomimetic multifunctional coatings to improve the corrosion resistance and cytocompatibility of biodegradable Mg-based alloy for orthopaedic applications.
Collapse
Affiliation(s)
- Sankalp Agarwal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
- School of Food Science and Environmental Health, Cathal Brugha Street, Dublin Institute of Technology, Dublin 1, Ireland
| | - Marie-Noelle Labour
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - David Hoey
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, Cathal Brugha Street, Dublin Institute of Technology, Dublin 1, Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
26
|
Dullius A, Goettert MI, de Souza CFV. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.063] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|