1
|
Phelps HM, Warner BW. Intestinal adaptation and rehabilitation. Semin Pediatr Surg 2023; 32:151314. [PMID: 37276784 DOI: 10.1016/j.sempedsurg.2023.151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Massive intestinal resection is a regrettably necessary but life-saving intervention for progressive or fulminant necrotizing enterocolitis (NEC). However, the resultant short bowel syndrome (SBS) poses its own array of challenges and complications. Within hours of such an abrupt loss of intestinal length, the intestine begins to adapt. Our ability to understand this process of intestinal adaptation has proven critical in our ability to clinically treat the challenging problem of short bowel syndrome. This review first highlights key data relating to intestinal adaptation including structural and functional changes, biochemical regulation, and other factors affecting the magnitude of intestinal adaptation responses. We then focus on intestinal rehabilitation as it relates to strategies to enhance intestinal adaptation while meeting nutritional needs and preventing complications of parenteral nutrition.
Collapse
Affiliation(s)
- Hannah M Phelps
- Division of Pediatric Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, 9901 Wohl Hospital, Campus Box 8109, St. Louis, MO 63110, USA.
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, 9901 Wohl Hospital, Campus Box 8109, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Wang W, Wang Y, Lu Y, Tian X, Chen S, Wu B, Du J, Xiao Y, Cai W. Inositol hexaphosphate promotes intestinal adaptation in short bowel syndrome via an HDAC3-mediated epigenetic pathway. Food Nutr Res 2023; 67:8694. [PMID: 36794012 PMCID: PMC9899046 DOI: 10.29219/fnr.v67.8694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 02/05/2023] Open
Abstract
Background Short bowel syndrome (SBS) has high morbidity and mortality rates, and promoting intestinal adaptation of the residual intestine is a critical treatment. Dietary inositol hexaphosphate (IP6) plays an important role in maintaining intestinal homeostasis, but its effect on SBS remains unclear. This study aimed at investigating the effect of IP6 on SBS and clarified its underlying mechanism. Methods Forty male Sprague-Dawley rats (3-week-old) were randomly assigned into four groups (Sham, Sham + IP6, SBS, and SBS + IP6 groups). Rats were fed standard pelleted rat chow and underwent resection of 75% of the small intestine after 1 week of acclimation. They received 1 mL IP6 treatment (2 mg/g) or sterile water daily for 13 days by gavage. Intestinal length, levels of inositol 1,4,5-trisphosphate (IP3), histone deacetylase 3 (HDAC3) activity, and proliferation of intestinal epithelial cell-6 (IEC-6) were detected. Results IP6 treatment increased the length of the residual intestine in rats with SBS. Furthermore, IP6 treatment caused an increase in body weight, intestinal mucosal weight, and IEC proliferation, and a decrease in intestinal permeability. IP6 treatment led to higher levels of IP3 in feces and serum, and higher HDAC3 activity of the intestine. Interestingly, HDAC3 activity was positively correlated with the levels of IP3 in feces (r = 0.49, P = 0.01) and serum (r = 0.44, P = 0.03). Consistently, IP3 treatment promoted the proliferation of IEC-6 cells by increasing HDAC3 activity in vitro. IP3 regulated the Forkhead box O3 (FOXO3)/Cyclin D1 (CCND1) signaling pathway. Conclusion IP6 treatment promotes intestinal adaptation in rats with SBS. IP6 is metabolized to IP3 to increase HDAC3 activity to regulate the FOXO3/CCND1 signaling pathway and may represent a potential therapeutic approach for patients with SBS.
Collapse
Affiliation(s)
- Weipeng Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xinbei Tian
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Chen
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Wu
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Du
- Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,Yongtao Xiao Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai, China.
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,Wei Cai Department of Pediatric Surgery, Xin Hua Hospital, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, 200092 Shanghai, China.
| |
Collapse
|
3
|
Takamiya S, Kawabori M, Yamazaki K, Yamaguchi S, Tanimori A, Yamamoto K, Ohnishi S, Seki T, Konno K, Tha KK, Hashimoto D, Watanabe M, Houkin K, Fujimura M. Intravenous transplantation of amnion-derived mesenchymal stem cells promotes functional recovery and alleviates intestinal dysfunction after spinal cord injury. PLoS One 2022; 17:e0270606. [PMID: 35802703 PMCID: PMC9269969 DOI: 10.1371/journal.pone.0270606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is often accompanied by gastrointestinal dysfunction due to the disconnection of the spinal autonomic nervous system. Gastrointestinal dysfunction reportedly upregulates intestinal permeability, leading to bacterial translocation of the gut microbiome to the systemic circulation, which further activates systemic inflammation, exacerbating neuronal damage. Mesenchymal stem cells (MSC) reportedly ameliorate SCI. Here, we aimed to investigate their effect on the associated gastrointestinal dysfunction. Human amnion-derived MSC (AMSCs) were intravenously transplanted one day after a rat model of midthoracic SCI. Biodistribution of transplanted cells, behavioral assessment, and histological evaluations of the spinal cord and intestine were conducted to elucidate the therapeutic effect of AMSCs. Bacterial translocation of the gut microbiome was examined by in situ hybridization and bacterial culture of the liver. Systemic inflammations were examined by blood cytokines, infiltrating immune cells in the spinal cord, and the size of the peripheral immune tissue. AMSCs released various neurotrophic factors and were mainly distributed in the liver and lung after transplantation. AMSC-transplanted animals showed smaller spinal damage and better neurological recovery with preserved neuronal tract. AMSCs transplantation ameliorated intestinal dysfunction both morphologically and functionally, which prevented translocation of the gut microbiome to the systemic circulation. Systemic inflammations were decreased in animals receiving AMSCs in the chronic phase. Intravenous AMSC administration during the acute phase of SCI rescues both spinal damage and intestinal dysfunction. Reducing bacterial translocation may contribute to decreasing systemic inflammation.
Collapse
Affiliation(s)
- Soichiro Takamiya
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| | - Kazuyoshi Yamazaki
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Hyogo, Japan
| | - Aki Tanimori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshitaka Seki
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kotaro Konno
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Khin Khin Tha
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Daigo Hashimoto
- Department of Hematology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Yano K, Sugita K, Muto M, Matsukubo M, Onishi S, Kedoin C, Matsui M, Murakami M, Harumatsu T, Yamada K, Yamada W, Kumagai K, Ido A, Kaji T, Ieiri S. The preventive effect of recombinant human hepatocyte growth factor for hepatic steatosis in a rat model of short bowel syndrome. J Pediatr Surg 2022; 57:1286-1292. [PMID: 35396090 DOI: 10.1016/j.jpedsurg.2022.02.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Short bowel syndrome (SBS) patients require total parenteral nutrition (TPN) following massive small bowel resection (SBR), which may cause intestinal failure-associated liver disease (IFALD), a life-threatening complication. Hepatocyte growth factor (HGF) acts as a potent hepatocyte mitogen with anti inflammatory and antioxidant actions. The present study evaluated the effect of recombinant human HGF (rh-HGF) on SBR and subsequent IFALD using a parentally fed rat model of SBS. METHODS Rats underwent jugular vein catheterization for continuous TPN and 90% SBR. They were divided into 2 groups: TPN alone (SBS/TPN group: n = 7) or TPN plus the intravenous administration of rh-HGF (0.3 mg/kg/day) (SBS/TPN+HGF group: n = 7). On day 7, their tissues and stool were harvested to evaluate the effects of HGF. RESULTS Regarding the histological findings, based on the nonalcoholic fatty liver disease (NAFLD) activity score, the SBS/TPN+HGF group showed significantly less hepatic steatosis and inflammatory cell infiltration than the SBS/TPN group (NAFLD activity score, 4.00 ± 1.83 vs. 1.00 ± 0.82; p < 0.01). The SBS/TPN+HGF group showed a higher expression of Farnesoid X receptor in the liver and lower expression of Toll-like receptor 4 in the ileum than the SBS/TPN group. Regarding the composition of the bacterial gut microbiota, Actinobacteria, Bacteroidetes and Proteobacteria were decreased in the SBS/TPN+HGF group compared with the SBS/TPN group. CONCLUSION In our SBS with TPN rat model, rh-HGF administration had a preventive effect against hepatic steatosis and dysbiosis. rh-HGF may therefore be a potentially effective therapeutic agent for SBS and subsequent IFALD. TYPE OF STUDY Experimental research.
Collapse
Affiliation(s)
- Keisuke Yano
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Koshiro Sugita
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Mitsuru Muto
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Makoto Matsukubo
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Shun Onishi
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Chihiro Kedoin
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Mayu Matsui
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Masakazu Murakami
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Toshio Harumatsu
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Koji Yamada
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Waka Yamada
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan; Clinical Training Center, Kagoshima University Hospital, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, School of Medical and Dental Sciences, Kagoshima University Graduate, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, School of Medical and Dental Sciences, Kagoshima University Graduate, Kagoshima, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan; Clinical Training Center, Kagoshima University Hospital, Kagoshima, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
5
|
Villarreal D, Pradhan G, Zhou Y, Xue B, Sun Y. Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules 2022; 12:517. [PMID: 35454106 PMCID: PMC9028691 DOI: 10.3390/biom12040517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Ghrelin and obestatin are two "sibling proteins" encoded by the same preproghrelin gene but possess an array of diverse and complex functions. While there are ample literature documenting ghrelin's functions, the roles of obestatin are less clear and controversial. Ghrelin and obestatin have been perceived to be antagonistic initially; however, recent studies challenge this dogma. While they have opposing effects in some systems, they function synergistically in other systems, with many functions remaining debatable. In this review, we discuss their functional relationship under three "C" categories, namely complex, complementary, and contradictory. Their functions in food intake, weight regulation, hydration, gastrointestinal motility, inflammation, and insulin secretion are complex. Their functions in pancreatic beta cells, cardiovascular, muscle, neuroprotection, cancer, and digestive system are complementary. Their functions in white adipose tissue, thermogenesis, and sleep regulation are contradictory. Overall, this review accumulates the multifaceted functions of ghrelin and obestatin under both physiological and pathological conditions, with the intent of contributing to a better understanding of these two important gut hormones.
Collapse
Affiliation(s)
- Daniel Villarreal
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
| | - Geetali Pradhan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
6
|
Zhang Q, Huang L, Leng B, Li Y, Jiao N, Jiang S, Yang W, Yuan X. Zearalenone Affect the Intestinal Villi Associated with the Distribution and the Expression of Ghrelin and Proliferating Cell Nuclear Antigen in Weaned Gilts. Toxins (Basel) 2021; 13:toxins13100736. [PMID: 34679029 PMCID: PMC8537219 DOI: 10.3390/toxins13100736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
This study explored and investigated how zearalenone (ZEA) affects the morphology of small intestine and the distribution and expression of ghrelin and proliferating cell nuclear antigen (PCNA) in the small intestine of weaned gilts. A total of 20 weaned gilts (42-day-old, D × L × Y, weighing 12.84 ± 0.26 kg) were divided into the control and ZEA groups (ZEA at 1.04 mg/kg in diet) in a 35-d study. Histological observations of the small intestines revealed that villus injuries of the duodenum, jejunum and ileum, such as atrophy, retardation and branching dysfunction, were observed in the ZEA treatment. The villi branch of the ileum in the ZEA group was obviously decreased compared to that of the ileum, jejunum and duodenum, and the number of lymphoid nodules of the ileum was increased. Additionally, the effect of ZEA (1.04 mg/kg) was decreased by the immunoreactivity and distribution of ghrelin and PCNA in the duodenal and jejunal mucosal epithelial cells. Interestingly, ZEA increased the immunoreactivity of ghrelin in the ileal mucosal epithelial cells and decreased the immunoreactivity expression of PCNA in the gland epithelium of the small intestine. In conclusion, ZEA (1.04 mg/kg) had adverse effects on the development and the absorptive capacity of the villi of the intestines; yet, the small intestine could resist or ameliorate the adverse effects of ZEA by changing the autocrine of ghrelin in intestinal epithelial cells.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Libo Huang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Bo Leng
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Yang Li
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Ning Jiao
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Shuzhen Jiang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Weiren Yang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
- Correspondence: (W.Y.); (X.Y.); Tel.: +86-186-0548-9796 (W.Y.); +86-134-7538-6175 (X.Y.)
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an City 271018, China
- Correspondence: (W.Y.); (X.Y.); Tel.: +86-186-0548-9796 (W.Y.); +86-134-7538-6175 (X.Y.)
| |
Collapse
|
7
|
Protective and Healing Effects of Ghrelin and Risk of Cancer in the Digestive System. Int J Mol Sci 2021; 22:ijms221910571. [PMID: 34638910 PMCID: PMC8509076 DOI: 10.3390/ijms221910571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
Ghrelin is an endogenous ligand for the ghrelin receptor, previously known as the growth hormone secretagogue receptor. This hormone is mainly produced by endocrine cells present in the gastric mucosa. The ghrelin-producing cells are also present in other organs of the body, mainly in the digestive system, but in much smaller amount. Ghrelin exhibits a broad spectrum of physiological effects, such as stimulation of growth hormone secretion, gastric secretion, gastrointestinal motility, and food intake, as well as regulation of glucose homeostasis and bone formation, and inhibition of inflammatory processes. This review summarizes the recent findings concerning animal and human data showing protective and therapeutic effects of ghrelin in the gut, and also presents the role of growth hormone and insulin-like growth factor-1 in these effects. In addition, the current data on the possible influence of ghrelin on the carcinogenesis, its importance in predicting the risk of developing gastrointestinal malignances, as well as the potential usefulness of ghrelin in the treatment of cancer, have been presented.
Collapse
|
8
|
Höllwarth ME, Solari V. Nutritional and pharmacological strategy in children with short bowel syndrome. Pediatr Surg Int 2021; 37:1-15. [PMID: 33392698 DOI: 10.1007/s00383-020-04781-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Short bowel syndrome in neonates is a severe and life-threatening disease after a major loss of small bowel with or without large bowel. Intestinal adaptation, by which the organism tries to restore digestive and absorptive capacities, is entirely dependent on stimulation of the active enterocytes by enteral nutrition. This review summarizes recent knowledge about the pathophysiologic consequences after the loss of different intestinal parts and outlines the options for enteral nutrition and pharmacological therapies to support the adaptation process.
Collapse
Affiliation(s)
- Michael E Höllwarth
- Univ. Clinic of Pediatric and Adolescent Surgery, Medical University, Graz, Austria.
| | - Valeria Solari
- Department of Pediatric Surgery, Klinik Donaustadt, 1220, Vienna, Austria
| |
Collapse
|
9
|
Wauters L, Vanuytsel T. Applications of peptide hormone ligands for the treatment of dumping and short bowel syndrome. Curr Opin Pharmacol 2018; 43:118-123. [DOI: 10.1016/j.coph.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022]
|