1
|
Kaya C, Kapisiz A, Eryilmaz S, Karabulut R, Turkyilmaz Z, Inan MA, Aydin GY, Sonmez K. Protective Effect of Fasudil on Testicular Ischemia-Reperfusion Injury in Rats. Drug Des Devel Ther 2024; 18:4319-4326. [PMID: 39347537 PMCID: PMC11439356 DOI: 10.2147/dddt.s480774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background Ischemia-reperfusion (I/R) injury to the testis can lead to organ damage, infertility, and subfertility. The goal of this study was to investigate the effects of fasudil on this devastating condition. Methods Thirty male Long-Evans rats were divided into five groups: a control group (no torsion), rats administered fasudil (30 mg/kg, no torsion), rats subject to ischemia with no treatment (I) (I/R injury), injured rats that received treatment 1 (T1) (I/R with 30 mg/kg fasudil before detorsion), and injured rats that received treatment 2 (T2) (I/R with 30 mg/kg fasudil after detorsion). Serum levels of TNF-ɑ and IL-6, along with tissue levels of glutathione (GSH), malondialdehyde (MDA), caspase-3, and Johnsen Tubular Biopsy Score (JTBS), were measured. Results Group I exhibited significantly higher levels of MDA and caspase-3 than all other groups except T2 (p ˂ 0.05). Although the difference was not statistically significant, Group T2 exhibited lower MDA and caspase-3 levels than Group I (p ˃ 0.05). Additionally, Group I displayed significantly higher TNF-ɑ and IL-6 levels, and lower GSH and JTBS values, than the other groups (p ˂ 0.05). Conclusion Our findings indicate that fasudil protects the testis from I/R injury, particularly when administered early.
Collapse
Affiliation(s)
- Cem Kaya
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | - Alparslan Kapisiz
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | - Sibel Eryilmaz
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | - Ramazan Karabulut
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | - Zafer Turkyilmaz
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | - Mehmet Arda Inan
- Pathology, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | - Gizem Yaz Aydin
- Biochemistry, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | - Kaan Sonmez
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| |
Collapse
|
2
|
Damian-Buda AC, Matei DM, Ciobanu L, Damian-Buda DZ, Pop RM, Buzoianu AD, Bocsan IC. Nesfatin-1: A Novel Diagnostic and Prognostic Biomarker in Digestive Diseases. Biomedicines 2024; 12:1913. [PMID: 39200377 PMCID: PMC11352118 DOI: 10.3390/biomedicines12081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Nesfatin-1, deriving from a precursor protein, NUCB2, is a newly discovered molecule with anti-apoptotic, anti-inflammatory, antioxidant, and anorexigenic effects. It was initially identified in the central nervous system (CNS) and received increasing interest due to its energy-regulating properties. However, research showed that nesfatin-1 is also expressed in peripheral tissues, including the digestive system. The aim of this review is to give a résumé of the present state of knowledge regarding its structure, immunolocalization, and potential implications in diseases with inflammatory components. The main objective was to focus on its clinical importance as a diagnostic biomarker and potential therapeutic molecule in a variety of disorders, among which digestive disorders were of particular interest. Previous studies have shown that nesfatin-1 regulates the balance between pro- and antioxidant agents, which makes nesfatin-1 a promising therapeutic agent. Further in-depth research regarding the underlying mechanisms of action is needed for a better understanding of its effects.
Collapse
Affiliation(s)
- Adriana-Cezara Damian-Buda
- Pharmacology, Toxicology and Clinical Pharmacology Laboratory, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniela Maria Matei
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Lidia Ciobanu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | | | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| |
Collapse
|
3
|
Besong EE, Akhigbe RE. Sodium acetate prevents testicular damage in Wistar rats subjected to testicular ischaemia/reperfusion injury. Exp Mol Pathol 2024; 137:104901. [PMID: 38749364 DOI: 10.1016/j.yexmp.2024.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/29/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024]
Abstract
AIMS The aim of this study was to investigate the potential antioxidant, anti-inflammatory, and sperm function-preserving properties of sodium acetate (ACE), a histone deacetylase (HDAC) inhibitor, in a rat model of testicular torsion/detorsion (T/D). MAIN METHODS Littermate Wistar rats of identical weight were subjected to sham surgery or testicular T/D by rotating the left testis at 720° around its axis along the spermatic cord clockwise and fixing it in this position for two and a half hours. 1 h before detorsion, T/D + ACE-treated rats were treated with ACE (200 mg/kg/day, per os) while T/D rats were vehicle-treated by administering 0.5 mL of distilled water. After 72 h, animals were euthanized, and the left testes were harvested for bio-molecular and histological analysis. KEY FINDINGS Acetate administration attenuated T/D-induced rises in serum and testicular HDAC and testicular xanthine oxidase, uric acid, MDA, GSSG, MPO, TNF-α, IL-1β, IL-6, NFkB, HIF-1α, and VCAM-1. In addition, acetate treatment alleviated T/D-induced decline in sperm quality (count, motility, viability, and normal morphology) and testicular 3β-HSD, 17β-HSD, testosterone, GSH, GSH/GSSG, SOD, catalase, GPx, GST, Nrf2, and HO-1. Furthermore, acetate prevented T/D-distorted testicular histoarchitecture and spermatogenic germ cell loss. SIGNIFICANCE Sodium acetate during the post-ischaemic phase of testicular T/D may be beneficial in preventing I/R injury and maintaining fertility.
Collapse
Affiliation(s)
- Elizabeth Enohnyket Besong
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria.
| | - Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| |
Collapse
|
4
|
Yilmaz N, Hudaykulıyeva J, Gul S. Phoenixin-14 may ameliorate testicular damage caused by torsion-detorsion by reducing oxidative stress and inflammation in prepubertal rats. Tissue Cell 2024; 88:102405. [PMID: 38754242 DOI: 10.1016/j.tice.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
The present study aimed to investigate the effects of Phoenixin-14 (PNX-14) on oxidative damage, inflammatory response, histopathological variations, and serum testosterone levels in testicular tissues. Forty-eight Wistar albino prepubertal male rats were divided into 4 groups (Sham, TTD, TT+PNX+TD, TTD+PNX) (n=12). The torsion period was 2 hours and the detorsion period was 24 hours in the testicular torsion/detorsion (TD) groups. A single PNX-14 (50 µg/kg) dose was injected into the rats in the TT+PNX TD group on the 90th minute of torsion, and it was injected into the rats in the TTD+PNX group at the beginning of detorsion. Oxidative damage in testicular tissues was determined based on superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS), and inflammatory damage was determined based on TNF-α and IL-6 levels. Histopathological variations were investigated with the Periodic Acid Schiff (PAS) staining method in testicular tissues and analyzed based on Johnsen scores. Spermatogonia cells were examined immunohistochemically. Serum testosterone levels were determined with the enzyme-linked immunosorbent assay (ELISA). A significant increase in oxidative stress and inflammation parameters was determined in the TTD group when compared to the other groups (p<0.05). PNX-14 treatment led to a statistically significant decrease in these parameters and significantly repaired the TD damage in testicular tissue (p<0.05). Johnsen scoring revealed significant improvement in PNX-14 groups and an increase in spermatogonia count, supporting the biochemical findings (p<0.05). PNX-14 could be a potential therapeutic agent in testicular TD damage and further studies should be conducted to elucidate the present study findings.
Collapse
Affiliation(s)
- Nesibe Yilmaz
- Department of Anatomy, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Jemal Hudaykulıyeva
- Department of Anatomy, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Semir Gul
- Department of Histology and Embryology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya, Turkey
| |
Collapse
|
5
|
Akhigbe R, Odetayo A, Akhigbe T, Hamed M, Ashonibare P. Pathophysiology and management of testicular ischemia/reperfusion injury: Lessons from animal models. Heliyon 2024; 10:e27760. [PMID: 38694115 PMCID: PMC11058307 DOI: 10.1016/j.heliyon.2024.e27760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Testicular torsion is a urological emergency that involves the twisting of the spermatic cord along its course. Compelling pieces of evidence have implicated oxidative stress-sensitive signaling in pathogenesis of testicular I/R injury. Although, surgical detorsion is the mainstay management; blockade of the pathways involved in the pathogenesis may improve the surgical outcome. Experimental studies using various testicular I/R models have been reported in a bid to explore the mechanisms associated with testicular I/R and evaluate the benefits of potential therapeutic measures; however, most are limited by their shortcomings. Thus, this review was intended to describe the details of the available testicular I/R models as well as their merits and drawbacks, the pathophysiological basis and consequences of testicular I/R, and the pharmacological agents that have being proposed to confer testicular benefits against testicular I/R. This provides an understanding of the pathophysiological events and available models used in studying testicular I/R. In addition, this research provides evidence-based molecules with therapeutic potentials as well as their mechanisms of action in testicular I/R.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A.F. Odetayo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osun State, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - P.J. Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
6
|
Ahn C, Sun S, Ha J, Yang H. Nesfatin-1 regulates steroidogenesis in mouse Leydig cells. Peptides 2023; 166:171036. [PMID: 37269882 DOI: 10.1016/j.peptides.2023.171036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Nesfatin-1 is a polypeptide hormone known to regulate appetite and energy metabolism and is derived from the precursor protein nucleobindin 2 (NUCB2). Recent studies have shown that nesfatin-1 is expressed in many peripheral tissues in mice, including the reproductive organs. However, its function and regulation in the testis remain unknown. In this study, we investigated the expression of Nucb2 mRNA and nesfatin-1 protein in mouse Leydig cells and the Leydig cell line, TM3 cells. We also examined whether Nucb2 mRNA expression is regulated by gonadotropins and whether exogenous nesfatin-1 affects steroidogenesis in primary Leydig cells isolated from the testis and TM3 cells. We found that Nucb2 mRNA and nesfatin-1 protein were present in primary Leydig cells and TM3 cells, and nesfatin-1 binding sites were also found in both cell types. Nucb2 mRNA expression in testis, primary Leydig cells, and TM3 cells was increased after treatment with pregnant mare's serum gonadotropin and human chorionic gonadotropin. After nesfatin-1 treatment, the expression of steroidogenesis-related enzyme genes Cyp17a1 and Hsd3b was upregulated in primary Leydig cells and TM3 cells. Our results suggest that NUCB2/nesfatin-1 expression in mouse Leydig cells may be regulated through the hypothalamic-pituitary-gonadal axis and that nesfatin-1 produced by Leydig cells may locally regulate steroidogenesis in an autocrine manner. This study provides insight into the regulation of NUCB2/nesfatin-1 expression in Leydig cells and the effect of nesfatin-1 on steroidogenesis, which may have implications for male reproductive health.
Collapse
Affiliation(s)
- Chaeyoung Ahn
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea
| | - Sojung Sun
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea
| | - Jinah Ha
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea
| | - Hyunwon Yang
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea.
| |
Collapse
|
7
|
Kim S, Sun S, Kim M, Ha J, Seok E, Yang H. NUCB2/nesfatin-1 suppresses the acrosome reaction in sperm within the mouse epididymis. Anim Cells Syst (Seoul) 2023; 27:120-128. [PMID: 37197085 PMCID: PMC10184593 DOI: 10.1080/19768354.2023.2212741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Nesfatin-1, a polypeptide hormone derived from the nucleobindin 2 (NUCB2) precursor protein, is known to regulate appetite and energy metabolism. Recent studies have also shown that NUCB2/nesfatin-1 is expressed in the reproductive organs of mice. However, the expression and potential role of NUCB2/nesfatin-1 in the mouse epididymis remain unclear. Therefore, we investigated the expression of NUCB2/nesfatin-1 in the mouse epididymis and its potential function. NUCB2/nesfatin-1 was detected in the epididymis by qRT-PCR and western blotting, and high expression levels were observed in epididymal epithelial cells by immunohistochemical staining. Pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) injections significantly increased NUCB2/nesfatin-1 expression in the epididymis. After castration, NUCB2/nesfatin-1 expression in the epididymis decreased, but was significantly increased by testosterone injection. Nesfatin-1-binding sites were found in the middle piece of testicular sperm, but were scarcely detected in the sperm head. By contrast, nesfatin-1 binding sites were identified on the sperm head within the epididymis. Furthermore, nesfatin-1 treatment inhibited the acrosome reaction in epididymal sperm. These results suggest that the nesfatin-1 protein produced in the epididymis binds to nesfatin-1 binding sites on the sperm head and plays a role in suppressing the acrosome reaction before ejaculation.
Collapse
Affiliation(s)
- Soohyun Kim
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Sojung Sun
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Minbi Kim
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Jinah Ha
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Eunji Seok
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Hyunwon Yang
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
- Hyunwon Yang Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, 621 Hwarang-ro, Seoul01794, South Korea
| |
Collapse
|
8
|
Huang K, Liang Y, Wang K, Wu J, Luo H, Yi B. Influence of circulating nesfatin-1, GSH and SOD on insulin secretion in the development of T2DM. Front Public Health 2022; 10:882686. [PMID: 36045734 PMCID: PMC9421132 DOI: 10.3389/fpubh.2022.882686] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
Aims To evaluate the correlation of nesfatin-1, GSH and SOD levels with β-cell insulin secretion and their influence on insulin secretion in the development of type 2 diabetes mellitus (T2DM). Materials and methods 75 patients with T2DM, 67 with prediabetes and 37 heathy participants were recruited in this study. Serum levels of nesfatin-1, GSH and SOD were quantified and statistically analyzed. Results The levels of nesfatin-1, GSH and SOD in T2DM were significantly decreased (P < 0.001) compared to either in prediabetes or in healthy control, and significant reduction of these biomarkers was also observed in prediabetes when compared to the control (P < 0.001). Circulating nesfatin-1, GSH and SOD were not only strongly correlated with β-cell insulin secretion, but also exerted remarkable influence on the secretion. Conclusion Serum nesfatin-1, GSH and SOD are important factors involving insulin secretion in the development of T2DM, which may help provide new ideas for forthcoming investigations on the roles of these factors in pathogenesis of T2DM, as well as for active prediction and prevention of prediabetes before it develops into overt T2DM.
Collapse
Affiliation(s)
- Kangkang Huang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunlai Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Wu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huidan Luo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Bin Yi
| |
Collapse
|
9
|
Liu H, Shi M, Li X, Lu W, Zhang M, Zhang T, Wu Y, Zhang Z, Cui Q, Yang S, Li Z. Adipose Mesenchymal Stromal Cell-Derived Exosomes Prevent Testicular Torsion Injury via Activating PI3K/AKT and MAPK/ERK1/2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8065771. [PMID: 35757503 PMCID: PMC9225846 DOI: 10.1155/2022/8065771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
Adipose mesenchymal stromal cell-derived exosomes (ADSC-Exos) have shown great potential in the treatment of oxidative stress induced by ischemia-reperfusion injury. However, alleviation of testicular torsion injury by ADSC-Exos has not been reported. Therefore, we investigated the protective effect of ADSC-Exos against testicular torsion-detorsion injury. ADSC-Exos were isolated by ultracentrifugation and injected into torsion-detorsion-affected testes of rats. H&E staining and sperm quality were used to evaluate the therapeutic effects of ADSC-Exos, and tissue oxidative stress was measured by determining MDA and SOD levels. In addition, TUNEL staining and immunohistological analysis (Ki67, Cleaved Caspase-3, IL-6, IL-10, CCR7, and CD163) were used to clarify the effects of ADSC-Exos on spermatogenic cell proliferation, apoptosis, and the inflammatory microenvironment in vivo. Possible signaling pathways were predicted using sequencing technology and bioinformatics analysis. The predicted signaling pathways were validated in vitro by assessing the proliferation (EdU assay), migration (transwell assay and scratch test), and apoptosis (flow cytometry, TUNEL staining, and western blotting) of spermatogenic cells. The results showed that ADSC-Exos alleviated testicular torsion-detorsion injury by attenuating oxidative stress and the inflammatory response. In addition, ADSC-Exos promoted the proliferation and migration of spermatogenic cells and inhibited their apoptosis by activating the PI3K/AKT and MAPK/ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Hengchen Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Xiangqi Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Wenjun Lu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Mingzhao Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Yang Wu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Zenan Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| |
Collapse
|
10
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
11
|
Tezcan N, Özdemir-Kumral ZN, Yenal NÖ, Çilingir-Kaya ÖT, Virlan AT, Özbeyli D, Çetinel Ş, Yeğen BÇ, Koç M. Nesfatin-1 treatment preserves antioxidant status and attenuates renal fibrosis in rats with unilateral ureteral obstruction. Nephrol Dial Transplant 2022; 37:1238-1248. [PMID: 35218196 DOI: 10.1093/ndt/gfac053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nesfatin-1 (NES-1), an anorexigenic peptide, was reported to have anti-inflammatory and anti-apoptotic actions in several inflammation models. METHODS To elucidate potential renoprotective effects of NES-1, unilateral ureteral obstruction (UUO) was induced in male Sprague Dawley rats by ligating left ureters. The rats were injected intraperitoneally with either saline (SL) or NES-1 (10 μg/kg/day) for 7 or 14 days (n = 8 in each group). On the 7th or 14th day, obstructed kidneys were removed for the isolation of leukocytes for flow-cytometric analysis and for the assessments of biochemical and histopathological changes. RESULTS Opposite to glutathione levels, renal myeloperoxidase activity in the SL-treated UUO group was significantly increased compared to sham-operated group, while NES-1 treatment abolished the elevation. The percentages of CD8+/CD4+ T-lymphocytes infiltrating the obstructed kidneys were increased in SL-treated groups but treatment with NES-1 did not prevent lymphocyte infiltration. Elevated TNF-a levels in SL-treated UUO group was decreased with NES-1. Although total degeneration scores were similarly increased in all UUO groups, tubular dilatation scores were significantly increased in UUO groups and lowered by NES-1 only in the 7-day treated group. Elevated interstitial fibrosis scores in the SL-treated groups were decreased in both 7- and 14-day NES-1 treated groups, while alpha smooth muscle actin (α-SMA) and apoptosis scores were depressed in both NES-1 treated groups. CONCLUSION The present data demonstrate that UUO-induced renal fibrosis is ameliorated by NES-1, which appears to involve the inhibition of neutrophil infiltration and thereby amelioration of oxidative stress and inflammation. These data suggest that NES-1 may have a regulatory role in protecting the kidneys against obstruction-induced renal injury.
Collapse
Affiliation(s)
- Neslihan Tezcan
- Marmara University School of Medicine, Department of Internal Medicine, Turkey
| | | | - Naziye Özkan Yenal
- Marmara University Vocational School of Health Services, Department of Pathology Laboratory Techniques, Turkey
| | | | | | - Dilek Özbeyli
- Marmara University Vocational School of Health Services, Department of Pathology Laboratory Techniques, Turkey
| | - Şule Çetinel
- Marmara University School of Medicine, Department of Histology & Embryology, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Mehmet Koç
- Marmara University School of Medicine, Department of Physiology, Turkey.,Marmara University School of Medicine, Division of Nephrology, Turkey
| |
Collapse
|
12
|
Tamer SA, Koyuncuoğlu T, Karagöz A, Akakın D, Yüksel M, Yeğen BÇ. Nesfatin-1 ameliorates oxidative brain damage and memory impairment in rats induced with a single acute epileptic seizure. Life Sci 2022; 294:120376. [DOI: 10.1016/j.lfs.2022.120376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
13
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
14
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
15
|
Akhigbe RE, Hamed MA, Odetayo AF, Akhigbe TM, Ajayi AF, Ajibogun FAH. Omega-3 fatty acid rescues ischaemia/perfusion-induced testicular and sperm damage via modulation of lactate transport and xanthine oxidase/uric acid signaling. Biomed Pharmacother 2021; 142:111975. [PMID: 34343894 DOI: 10.1016/j.biopha.2021.111975] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
This study aimed to explore the potential antioxidant, anti-inflammatory, and anti-apoptotic effects of omega 3 fatty acid (Ω-3) in a rat model of testicular torsion/detorsion (T/D). Under ketamine/xylazine anaesthesia, age-matched adult male Wistar rats of comparable weight underwent sham-operation or testicular torsion by fixing the left testis rotated at 720° for two and half hours. After detorsion, animals were treated with either olive oil as vehicle or Ω-3 subcutaneously for three days. On post-operative day 3, rats were culled and the ipsilateral and contralateral testes, as well as obtained blood samples, were analyzed. Our findings revealed that T/D led to significant poor weight gain, distorted gross anatomy, and cytoarchitecture of the testes, low sperm quality, redox imbalance, and inflammation of the ipsilateral and contralateral testes. This was accompanied by reduced circulatory testosterone, a decline in testicular lactate metabolism and transport, upregulation of xanthine oxidase/uric acid signaling, and increased testicular DNA fragmentation. Administration of Ω-3 attenuated T/D-induced damage to the testes and sperm cells with a significant rise in the level of serum testosterone. Enhancement of lactate transport and down-regulation of xanthine oxidase/uric acid signaling by Ω-3 may be beneficial in protecting against T/D-related oxido-inflammatory damage and male infertility.
Collapse
Affiliation(s)
- R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Chemical Sciences, Kings University, Odeomu, Osun, Nigeria.
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Buntai Medical and Diagnostic Laboratories, Osogbo, Nigeria.
| | - A F Odetayo
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria.
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Crop Production and Soil Science, Faculty of Agricultural Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - A F Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - F A H Ajibogun
- Bioresources Development Centre, National Biotechnology Development Agency, Ministry of Science and Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
16
|
Cai P, Feng Z, Feng N, Zou H, Gu J, Liu X, Liu Z, Yuan Y, Bian J. Activated AMPK promoted the decrease of lactate production in rat Sertoli cells exposed to Zearalenone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112367. [PMID: 34052758 DOI: 10.1016/j.ecoenv.2021.112367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Zearalenone, which is ubiquitous in grains and animal feed, is a mycotoxin that can cause serious damage to animals and humans. Sertoli cells (SCs) can be used to study ZEA male reproductive toxicity in vitro. SCs provide energy for germ cells, where AMPK regulates intracellular energy. In order to explore the regulatory effect of AMPK on ZEA-induced lactate decline, we activated AMPK by AICAR and then inhibited AMPK by Compound C with ZEA-treated SCs for 24 h to detect intracellular lactate production-related indicators. Cell viability in the presence of 20 μmol/L ZEA and either 50 μmol/L AICAR or 5 μmol/L Compound C, respectively, did not damage SCs, and could effectively either activate or inhibit AMPK. Inhibition of AMPK promoted the production of pyruvate and lactate via increased expression of the glycolysis-related genes Pgam1 and the lactate production-related proteins GLUT1, LDHA, and MCT4. Activating AMPK inhibited the production of lactate and pyruvate by suppressing the expression of glycolysis-related genes HK1, Pgam1, and Gpi1 and that of lactate production-related proteins LDHA and MCT4. Zearalenone destroys the energy balance in SCs, activates P-AMPK, which inhibit the production of lactate and pyruvate in SCs. This also leads to the decrease of energy supply of SCs to spermatogenic cells, damages to reproductive system.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhiheng Feng
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
17
|
Pahlitzsch M, Fritsche-Guenther R, Pompös I, Pohlmann D, Maier AKB, Winterhalter S, Erb C, Rübsam A. Correlation of NUCB2/Nesfatin-1 with Cytokine Levels in Primary Open-Angle Glaucoma. Clin Ophthalmol 2021; 15:2505-2517. [PMID: 34163135 PMCID: PMC8216077 DOI: 10.2147/opth.s307379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Nesfatin-1 is produced in various tissues of the body including the hypothalamus. Neuroprotective properties of the neuropeptide hormone Nesfatin-1 were recently described. The aim of the study was to analyze the molecule Nesfatin-1 as a possible biomarker in POAG with neuroprotective properties pointing out the retinal-hypothalamic axis as target site in POAG and to obtain a molecular signature of cytokines in POAG as neuroinflammatory processes are a key factor of glaucoma development. Methods In this study, n=35 patients with moderate and advanced POAG (mean age 65.0y, IOP 13.9±3.0mmHg) and n=35 healthy controls (mean age 51.6y, IOP 14.3±2.7mmHg) were included. Clinical parameters including IOP, cup to disc ratio (CDR), glaucoma medication and retinal nerve fiber layer thickness (RNFL) were recorded. Plasma was collected for NUCB2/nesfatin-1 measurement using a Nesfatin-1 ELISA and for detection of 13 inflammatory cytokines using a multiplex bead-based immunoassay (MagPix). Multiple linear regression analysis was performed to adjust for confounding factors. Results Sex-independent or sex-dependent variables showed no significant differences in the Nesfatin-1 level (p>0.05). As a trend, an increase in NUCB2/nesfatin-1 in male glaucoma patients was found. Increased concentrations of 11 cytokines (GM-CSF, Interferon-γ, Interleukin-1β, IL-2, 4, 5, 6, 7, 10, 12 and TNF-α) were detected in POAG. The female glaucoma patients demonstrated elevated cytokine concentrations compared to male patients. NUCB2/nesfatin-1 showed a significant correlation to IL-2 and IL-13 levels in POAG. Stepwise multiple regression analysis showed no difference in NUCB2/nesfatin-1 level between POAG and healthy controls after adjusting for sex and age (all p>0.05). Conclusion As a trend, male POAG patients showed increased plasma NUCB2/nesfatin-1 levels. We further found inflammation as contributing factor to the pathogenesis of glaucoma, with a greater inflammatory response in women.
Collapse
Affiliation(s)
- Milena Pahlitzsch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Metabolomics Platform, Berlin, Germany
| | - Inga Pompös
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominika Pohlmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna-Karina B Maier
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sibylle Winterhalter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carl Erb
- Eye clinic Wittenbergplatz, Berlin, Germany
| | - Anne Rübsam
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
18
|
Madi NM, Abo El Gheit RE, Barhoma RA, El Saadany A, Alghazaly GM, Marea K, El-Saka MH. Beneficial impact of Nesfatin-1 on reproductive dysfunction induced by nicotine in male rats: Possible modulation of autophagy and pyroptosis signaling pathways. Physiol Int 2021; 108:185-201. [PMID: 34166222 DOI: 10.1556/2060.2021.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
This study was conducted to explore the beneficial impact of nesfatin-1 on reproductive dysfunction induced by nicotine (NT) in male rats with possible modulation of autophagy and pyroptosis signaling pathways. This research was performed on 40 Wistar male rats. They were distributed into four groups: control, normal+nesfatin-1, NT, and NT+nesfatin-1. At the end of the experimental period, the serum was separated for assay of testosterone, FSH and LH. Also, sperm parameters were determined. Histopathological examination of testicular tissue and immunohistochemical analysis was done for mammalian target of rapamycin, AMP-activated protein kinase, and mitogen-activated protein kinases including phosphorylated extracellular signal regulated kinase and phosphorylated cJun N-terminal kinase. Relative gene expression was determined for testicular nucleotide oligomerization domain (NOD)-like receptors proteins and Caspase-1, and autophagy markers including microtubule-associated protein 1 light chain 3 alpha and Beclin-1. Also, the following testicular parameters were assayed: 3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase, malondialdehyde, superoxide dismutase activity, catalase, glucose-6 phosphate dehydrogenase, reactive oxygen species, caspase-3 activity, IL-1β, IL-18, mitochondrial transmembrane potential and Complex-I activity. The results revealed that the normal+nesfatin-1 group showed insignificant changes as compared to the control group. Meanwhile, the NT group exhibited prominent reproductive dysfunction in male rats. On the other hand, in the NT+nesfatin-1 group nesfatin-1 notably attenuated this reproductive dysfunction as evidenced by improvement of hormonal assay, sperm parameters, histopathological picture, immunohistochemical evaluation and real time relative gene expressions. In conclusion: Nesfatin-1 alleviated the impairment of male reproductive functions induced by NT via enhancement of autophagy pathways, suppression of pyroptosis, apoptosis, mitochondrial dysfunction and ROS production. Thus nesfatin-1 may offer a novel protective or therapeutic access for treating male infertility.
Collapse
Affiliation(s)
- N M Madi
- 1Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - R E Abo El Gheit
- 1Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - R A Barhoma
- 1Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A El Saadany
- 2Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - G M Alghazaly
- 3Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - K Marea
- 4Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - M H El-Saka
- 1Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
19
|
Karakuş SC, Süzen A, Yenisey Ç, Ertürk N, Epikmen T, İpek E, User İR, Abas Bİ. The effect of hypothermia in a rat testicular torsion/detorsion model. J Pediatr Urol 2021; 17:291.e1-291.e8. [PMID: 33610458 DOI: 10.1016/j.jpurol.2021.01.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/29/2020] [Accepted: 01/31/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Testicular torsion is an emergent condition. The protective effect of medical hypothermia in ischemia/reperfusion injury is well defined. OBJECTIVES To evaluate the late results of hypothermia through a rat testicular torsion/detorsion model compatible with human testicular torsion. STUDY DESIGN Rats were divided into 5 groups (n = 7): (1)Sham (S) group, (2)T/D group: right testis was torted for 1-h, (3)T/D + H30 group: hypothermia at 4 °C was applied for 30 min before detorsion, (4)T/D + H90 group: hypothermia at 4 °C was applied for a total of 90 min (30 min before and 1-h after detorsion), (5)H group: hypothermia at 4 °C was applied to right testis for 90 min. Testicular diameters at preoperative period and 8th postoperative week were measured. Biochemically, MPO, NO, 3-NT and 4-HNE in testicular tissue and serum levels of NO, PGF 2α, 3-NT, 8-OHdG and 4-HNE were studied. Histopathologic examination and TUNEL assay were also performed. RESULTS Biochemical and macroscopical parameters of both T/D + H30 and T/D + H90 groups were statistically different from group T/D with respect to protective effects of hypothermia. Johnsen's score was also statistically different in group T/D + H90. DISCUSSION Hypothermia can easily be applied with ice bags both in perioperative period. This is the first study evaluating the effect of hypothermia applied postoperatively. Tissue level of protein oxidation marker (3-NT) and serum levels of DNA damage (8-OHdG), lipid peroxidation (4-HNE), protein oxidation (3-NT) and oxidative stress (PGF-2α) markers were measured for the first time. CONCLUSIONS Hypothermia has been shown to be macroscopically, biochemically and histopathologically beneficial in the long-term experimental testicular torsion model.
Collapse
Affiliation(s)
- Süleyman Cüneyt Karakuş
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Surgery, Muğla, Turkey.
| | - Alev Süzen
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Surgery, Muğla, Turkey
| | - Çiğdem Yenisey
- Adnan Menderes University, Faculty of Medicine, Department of Medical Biochemistry, Aydın, Turkey
| | - Nazile Ertürk
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Surgery, Muğla, Turkey
| | - Tuğrul Epikmen
- Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pathology, Aydın, Turkey
| | - Emrah İpek
- Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pathology, Aydın, Turkey
| | - İdil Rana User
- Hacettepe University, Faculty of Medicine, Department of Pediatric Surgery, Ankara, Turkey
| | - Burçin İrem Abas
- Adnan Menderes University, Faculty of Medicine, Department of Medical Biochemistry, Aydın, Turkey
| |
Collapse
|
20
|
Karadeniz Cerit K, Koyuncuoğlu T, Yağmur D, Peker Eyüboğlu İ, Şirvancı S, Akkiprik M, Aksu B, Dağlı ET, Yeğen BÇ. Nesfatin-1 ameliorates oxidative bowel injury in rats with necrotizing enterocolitis: The role of the microbiota composition and claudin-3 expression. J Pediatr Surg 2020; 55:2797-2810. [PMID: 32171536 DOI: 10.1016/j.jpedsurg.2020.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Ongoing high mortality due to necrotizing enterocolitis (NEC) necessitates the investigation of novel treatments to improve the outcome of the affected newborns. The aim was to elucidate the potential therapeutic impact of the nesfatin-1, a peptide with anti-inflammatory and anti-apoptotic effects in several inflammatory processes, on NEC-induced newborn rats. MATERIALS AND METHODS Sprague-Dawley pups were separated from their mothers, fed with a hyperosmolar formula and exposed to hypoxia, while control pups had no intervention. NEC-induced pups received saline or nesfatin-1 (0.2 μg/kg/day) for 3 days, while some nesfatin-1 treated pups were injected with capsaicin (50 μg/g) for the chemical ablation of afferent neurons. On the 4th day, clinical state and macroscopic gut assessments were made. In intestines, immunohistochemical staining of cycloxygenase-2 (COX-2), nuclear factor (NF)-κB-p65 (RelA), vascular endothelial growth factor (VEGF), claudin-3 and zonula occludens-1 (ZO-1) were performed, while gene expressions of COX-2, occludin, claudin-3, NF-κB-p65 (RelA) and VEGF were determined using q-PCR. In fecal samples, relative abundance of bacteria was quantified by q-PCR. Biochemical evaluation of oxidant/antioxidant parameters was performed in both intestinal and cerebral tissues. RESULTS Claudin-3 and ZO-1 immunoreactivity scores were significantly elevated in the nesfatin-1 treated control pups. Nesfatin-1 reduced NEC-induced high macroscopic and clinical scores, inhibited NF-κB-65 pathway and maintained the balance of oxidant/antioxidant systems. NEC increased the abundance of Proteobacteria with a concomitant reduction in Actinobacteria and Bacteroidetes, while nesfatin-1 treatment reversed these alterations. Modulatory effects of nesfatin-1 on microbiota and oxidative injury were partially reversed by capsaicin. Immunohistochemistry demonstrated that nesfatin-1 abolished NEC-induced reduction in claudin-3. Gene expressions of COX-2, NF-κB, occludin and claudin-3 were elevated in saline-treated NEC pups, while these up-regulated mRNA levels were not further altered in nesfatin-1-treated NEC pups. CONCLUSION Nesfatin-1 could be regarded as a potential preventive agent for the treatment of NEC.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Damla Yağmur
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - İrem Peker Eyüboğlu
- Department of Medical Biology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Serap Şirvancı
- Department of Histology & Embryology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Mustafa Akkiprik
- Department of Medical Biology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Burak Aksu
- Department of Medical Microbiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - E Tolga Dağlı
- Department of Pediatric Surgery, Marmara University, School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
21
|
Xu Y, Chen F. Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities of Nesfatin-1: A Review. J Inflamm Res 2020; 13:607-617. [PMID: 33061526 PMCID: PMC7532075 DOI: 10.2147/jir.s273446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Nesfatin-1, a newly identified energy-regulating peptide, is widely expressed in the central and peripheral tissues, and has a variety of physiological activities. A large number of recent studies have shown that nesfatin-1 exhibits antioxidant, anti-inflammatory, and anti-apoptotic properties and is involved in the occurrence and progression of various diseases. This review summarizes current data focusing on the therapeutic effects of nesfatin-1 under different pathophysiological conditions and the mechanisms underlying its antioxidant, anti-inflammatory, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| |
Collapse
|
22
|
Erdogan O, Çetinkaya M, Sahin H, Deliktas H, Dere Y, Yılmaz M, Tosun K, Aktas S. Investigation of the protective effect of nesfatin-1 on testicular ischaemia-reperfusion damage: An experimental study. Andrologia 2020; 52:e13769. [PMID: 32799376 DOI: 10.1111/and.13769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 11/27/2022] Open
Abstract
This study aimed to determine oxidative stress in the tissue after testicular torsion biochemically and histopathologically and to examine the effects of Nesfatin-1 treatment on this injury. Thirty-two rats were randomly divided into four groups: sham, torsion + detorsion (4 hr torsion followed by 1 hr detorsion), ischaemia/reperfusion + saline (I/R + S) and I/R + nesfatin-1. I/R + S group a single-dose saline treatment was administered intraperitoneally at the two-hundred-tenth minute of torsion (ischaemia; 10 cc/kg). Similarly, I/R + nesfatin-1 group a single dose of nesfatin-1 treatment was administered intraperitoneally at the two-hundred-tenth minute of ischaemia (10 µg/kg). Myeloperoxidase, total oxidant status and oxidative stress index values were significantly increased in the I/R and I/R + S group compared to the sham group. Superoxide dismutase was significantly decreased in the I/R + S group compared to the sham group. No significant difference was found between the I/R + nesfatin-1 group and the other I/R groups (I/R and I/R + S) in terms of biochemical parameters. The mean diameter of the seminiferous tubule decreased in the I/R groups. However, the mean diameter of the seminiferous tubules was not significantly different between the I/R + S group and the I/R + nesfatin-1 group. Thus, the administration of nesfatin-1 after ischaemia did not reduce testicular-oxidative stress.
Collapse
Affiliation(s)
- Omer Erdogan
- Urology Department, Siirt State Hospital, Siirt, Turkey
| | - Mehmet Çetinkaya
- Urology Department, Mugla Sitki Kocman University, Mugla, Turkey
| | - Hayrettin Sahin
- Urology Department, Mugla Sitki Kocman University, Mugla, Turkey
| | - Hasan Deliktas
- Urology Department, Mugla Sitki Kocman University, Mugla, Turkey
| | - Yelda Dere
- Pathology Department, Mugla Sitki Kocman University, Mugla, Turkey
| | - Mustafa Yılmaz
- Biochemistry Department, Adnan Menderes University, Aydın, Turkey
| | - Kursad Tosun
- Department of Biostatistics, Mugla Sitki Kocman University, Mugla, Turkey
| | - Serdar Aktas
- Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
23
|
Mohamed MZ, Morsy MA, Mohamed HH, Hafez HM. Paeonol protects against testicular ischaemia-reperfusion injury in rats through inhibition of oxidative stress and inflammation. Andrologia 2020; 52:e13599. [PMID: 32314822 DOI: 10.1111/and.13599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ischaemia-reperfusion (IR) is the most common form of testicular injury that results in oxidative damage and inflammation ending by subinfertility. Paeonol, a natural phenolic compound, exhibits antioxidant and anti-inflammatory effects. Thus, the present study investigated the role of paeonol in rat testicular IR injury. Thirty adult Wistar rats were randomly divided into five groups; sham, sham treated with paeonol, IR injury, and IR pre-treated with paeonol at low and high doses. Serum testosterone and testicular levels of malondialdehyde and reduced glutathione (GSH) besides superoxide dismutase (SOD) activity were determined. Gene quantifications for tumour necrosis factor-α (TNF-α), hypoxia-inducible factor-1α (HIF-1α) and heat shock protein 70 (HSP70) were also assessed. Histopathological pictures and the immunohistochemical expression of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were shown. Pre-treatment with paeonol prevented the drop in serum testosterone, alongside with improvement of testicular malondialdehyde and GSH levels plus SOD activity. Paeonol regained the normal spermatogenesis with prevention of IR-induced increase in TNF-α, HIF-1α and HSP70 gene expression besides IL-1β and IL-6 immunostaining and reduction in Nrf2 protein expression. Paeonol exerted a dose-dependent beneficial effect on testicular IR injury. This effect was achieved by its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Mohamed A Morsy
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt.,Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hanaa H Mohamed
- Department of Histology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Heba M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
24
|
Abdelzaher WY, Rofaeil RR, Ali DME, Attya ME. Protective effect of dipeptidyl peptidase-4 inhibitors in testicular torsion/detorsion in rats: a possible role of HIF-1α and nitric oxide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:603-614. [PMID: 31773182 DOI: 10.1007/s00210-019-01765-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022]
Abstract
Spermatic cord torsion is a serious and common urologic emergency. It requires early diagnosis for prevention of subfertility and testicular necrosis. Vildagliptin and sitagliptin are anti-diabetic drugs of the dipeptidyl peptidase-4 (DPP-4) inhibitors that have a protective role against cerebral ischemic stroke and cardiac ischemia reperfusion. This study aimed to investigate the role and mechanism of action of vildagliptin and sitagliptin in a model of testicular ischemia/reperfusion injury by testicular torsion/detorsion (T/D). Testicular T/D was done and vildagliptin and sitagliptin were administered either alone or in combination with nitric oxide synthase (NOS) inhibitor. Serum total cholesterol and testosterone were measured, while in testicular tissue testosterone, malondialdehyde (MDA) level, total antioxidant capacity (TAC), nitric oxide level, caspase-3, superoxide dismutase (SOD), hypoxia-inducible factor-1α (HIF-1α), tumor necrosis factor-α (TNF-α) and endothelial NOS (eNOS), and inducible NOS (iNOS) and neuronal NOS (nNOS) were measured. Histopathology of testicular tissue was done. Vildagliptin and sitagliptin increased serum testosterone, expression, and activity of SOD and testicular TAC. It also reduced total serum cholesterol, testicular MDA, caspase-3, HIF-1α, TNF-α, and expression of eNOS, iNOS, and nNOS. Vildagliptin and sitagliptin also improved histopathological picture of testicular tissue. NOS inhibitor produced similar result to DDP-4 inhibitors; however, its co-administration augmented the effect of vildagliptin and sitagliptin on these parameters. DPP-4 inhibitors, vildagliptin, and sitagliptin were protective against testicular T/D-induced injury mostly by anti-oxidative stress, and anti-apoptotic and anti-inflammatory actions that was augmented by NOS inhibition with a possible role for HIF-1α expression.
Collapse
Affiliation(s)
| | - Remon Roshdy Rofaeil
- Department of Pharmacology, Minia University, Minia, 61111, Egypt. .,Department of Pharmacology, Deraya University, New Minia City, Egypt.
| | | | | |
Collapse
|
25
|
Arabacı Tamer S, Yıldırım A, Arabacı Ş, Çiftçi S, Akın S, Sarı E, Köroğlu MK, Ercan F, Yüksel M, Çevik Ö, Yeğen BÇ. Treatment with estrogen receptor agonist ERβ improves torsion-induced oxidative testis injury in rats. Life Sci 2019; 222:203-211. [DOI: 10.1016/j.lfs.2019.02.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/04/2023]
|