1
|
Mendez-Hernandez R, Braga I, Bali A, Yang M, de Lartigue G. Vagal Sensory Gut-Brain Pathways That Control Eating-Satiety and Beyond. Compr Physiol 2025; 15:e70010. [PMID: 40229922 DOI: 10.1002/cph4.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The vagus nerve is the body's primary sensory conduit from gut to brain, traditionally viewed as a passive relay for satiety signals. However, emerging evidence reveals a far more complex system-one that actively encodes diverse aspects of meal-related information, from mechanical stretch to nutrient content, metabolic state, and even microbial metabolites. This review challenges the view of vagal afferent neurons (VANs) as simple meal-termination sensors and highlights their specialized subpopulations, diverse sensory modalities, and downstream brain circuits, which shape feeding behavior, metabolism, and cognition. We integrate recent advances from single-cell transcriptomics, neural circuit mapping, and functional imaging to examine how VANs contribute to gut-brain communication beyond satiety, including their roles in food reward and memory formation. By synthesizing the latest research and highlighting emerging directions for the field, this review provides a comprehensive update on vagal sensory pathways and their role as integrators of meal information.
Collapse
Affiliation(s)
- Rebeca Mendez-Hernandez
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isadora Braga
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Avnika Bali
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mingxin Yang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guillaume de Lartigue
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Costantini S. Special Issue "Cancer Biomarker: Current Status and Future Perspectives". Int J Mol Sci 2025; 26:2164. [PMID: 40076787 PMCID: PMC11900974 DOI: 10.3390/ijms26052164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
In recent years, advancements in omics technologies have significantly accelerated the identification of a broad spectrum of biomarkers based on DNA, RNA, microRNAs (miRNAs), and long non-coding RNAs, as well as proteins and metabolic and lipid alterations (Figure 1) [...].
Collapse
Affiliation(s)
- Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
3
|
Voros C, Mavrogianni D, Bananis K, Varthaliti A, Papahliou AM, Topalis V, Kondili P, Darlas M, Daskalaki MA, Pantou A, Athanasiou D, Mathiopoulos D, Theodora M, Antsaklis P, Loutradis D, Daskalakis G. Unlocking Fertility: How Nitric Oxide Pathways Connect Obesity and Reproductive Health-The Role of Bariatric Surgery. Antioxidants (Basel) 2025; 14:240. [PMID: 40002424 PMCID: PMC11851409 DOI: 10.3390/antiox14020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the relationship between obesity, oxidative stress, and reproductive dysfunction. It focuses on the effects of sleeve gastrectomy on gene expression and hormone profiles in 29 women with severe obesity (BMI ≥ 40 kg/m2). Pre- and post-surgical investigations revealed significant differences in major gene expressions and hormonal markers. CART expression reduced significantly from 0.27 ± 4.43 to -3.42 ± 1.14 (p < 0.001), while leptin expression decreased from -1.87 ± 1.75 to -0.13 ± 1.55 (p < 0.001), indicating better metabolic regulation. In contrast, eNOS expression increased considerably from -4.87 ± 1.70 to 1.18 ± 2.31 (p = 0.003), indicating improved endothelial function and nitric oxide bioavailability, which is critical for vascular health and reproduction. Correlation research before surgery indicated no significant relationships between eNOS, CART, or leptin and clinical indicators, implying that these genes function independently in pre-surgical metabolism. While most associations remained negligible after surgery, a significant negative connection between eNOS expression and SHBG levels appeared (r = -0.365, p = 0.049), indicating potential interactions in hormonal regulation pathways following metabolic improvements. These findings emphasize the importance of bariatric surgery in reducing the negative effects of obesity on reproductive health by altering critical cellular pathways. Significant increases in CART, leptin, and eNOS expression indicate reduced oxidative stress, improved vascular tone, and hormonal balance, all of which contribute to increased reproductive capacity. This study sheds light on the molecular processes that link obesity, metabolic health, and fertility, underlining bariatric surgery's therapeutic potential for women experiencing obesity-related infertility.
Collapse
Affiliation(s)
- Charalampos Voros
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Despoina Mavrogianni
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Kyriakos Bananis
- King’s College Hospitals NHS Foundation Trust, London SE5 9RS, UK;
| | - Antonia Varthaliti
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Anthi-Maria Papahliou
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Vasileios Topalis
- Department of Internal Medicine, Hospital of Thun, 3600 Thun, Switzerland;
| | - Panagiota Kondili
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Menelaos Darlas
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Maria Anastasia Daskalaki
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Agni Pantou
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | | | - Dimitris Mathiopoulos
- Rea Maternity Hospital S.A., Avenue Siggrou 383 &Pentelis 17, P. Faliro, 17564 Athens, Greece;
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Panagiotis Antsaklis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Dimitrios Loutradis
- Fertility Institute-Assisted Reproduction Unit, Paster 15, 11528 Athens, Greece;
- Athens Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios Daskalakis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| |
Collapse
|
4
|
Schafer RM, Giancotti LA, Davis DJ, Larrea IG, Farr SA, Salvemini D. Behavioral characterization of G-protein-coupled receptor 160 knockout mice. Pain 2024; 165:1361-1371. [PMID: 38198232 PMCID: PMC11090760 DOI: 10.1097/j.pain.0000000000003136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/23/2023] [Indexed: 01/12/2024]
Abstract
ABSTRACT Neuropathic pain is a devastating condition where current therapeutics offer little to no pain relief. Novel nonnarcotic therapeutic targets are needed to address this growing medical problem. Our work identified the G-protein-coupled receptor 160 (GPR160) as a potential target for therapeutic intervention. However, the lack of small-molecule ligands for GPR160 hampers our understanding of its role in health and disease. To address this void, we generated a global Gpr160 knockout (KO) mouse using CRISPR-Cas9 genome editing technology to validate the contributions of GPR160 in nociceptive behaviors in mice. Gpr160 KO mice are healthy and fertile, with no observable physical abnormalities. Gpr160 KO mice fail to develop behavioral hypersensitivities in a model of neuropathic pain caused by constriction of the sciatic nerve. On the other hand, responses of Gpr160 KO mice in the hot-plate and tail-flick assays are not affected. We recently deorphanized GPR160 and identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a potential ligand. Using Gpr160 KO mice, we now report that the development of behavioral hypersensitivities after intrathecal or intraplantar injections of CARTp are dependent on GPR160. Cocaine- and amphetamine-regulated transcript peptide plays a role in various affective behaviors, such as anxiety, depression, and cognition. There are no differences in learning, memory, and anxiety between Gpr160 KO mice and their age-matched and sex-matched control floxed mice. Results from these studies support the pronociceptive roles of CARTp/GPR160 and GPR160 as a potential therapeutic target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Daniel J Davis
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Ivonne G Larrea
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Susan A Farr
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
- Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, MO, USA
- VA Medical Center, St Louis. MO 63106, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Voros C, Mpananis K, Papapanagiotou A, Pouliakis A, Mavrogianni D, Mavriki K, Gkaniatsos I, Karasmani C, Prokopakis I, Darlas M, Anysiadou S, Daskalakis G, Domali E. Prospective Study on the Correlation between CART and Leptin Gene Expression, Obesity, and Reproductive Hormones in Individuals Undergoing Bariatric Surgery. J Clin Med 2024; 13:1146. [PMID: 38398459 PMCID: PMC10889785 DOI: 10.3390/jcm13041146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Obesity, a global health concern affecting 650 million individuals of all ages worldwide, prompts health complications, including fertility issues. This research investigates the impact of bariatric surgery on morbidly obese females under 40, examining the relationship between CART and leptin gene expressions and reproductive hormones. Post-surgery, a significant reduction in BMI (16.03 kg/m2, n = 29) was observed, accompanied by notable hormonal changes. FSH levels showed a mean difference of 3.18 ± 1.19 pre- and post-surgery (p < 0.001), LH levels exhibited a mean difference of 2.62 ± 1.1 (p < 0.001), E2 levels demonstrated a mean difference of 18.62 ± 5.02 (p < 0.001), and AMH levels showed a mean difference of 3.18 ± 1.19 (p < 0.001). High CART and leptin expressions before treatment correlated with lower expressions after treatment. These findings, rooted in statistically significant correlations (CART: rs = 0.51, p = 0.005; leptin: rs = 0.75, p < 0.001), shed light on potential molecular pathways connecting gene expressions with reproductive hormones post-bariatric surgery. Our study uniquely investigates the interplay between genetic markers, infertility, and bariatric surgery in women. It stands out by providing distinctive insights into the development of personalized treatment strategies for obesity-related infertility, contributing to a deeper understanding of this complex medical issue.
Collapse
Affiliation(s)
- Charalampos Voros
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| | - Kyriakos Mpananis
- Ealing Hospital, London North West University Healthcare NHS Trust, 601 Uxbridge Road, Southall UB1 3HW, UK
| | - Angeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Abraham Pouliakis
- 2nd Department of Pathology, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 124 62 Athens, Greece;
| | - Despoina Mavrogianni
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| | - Konstantina Mavriki
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| | - Ioannis Gkaniatsos
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| | - Christina Karasmani
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| | - Ioannis Prokopakis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| | - Menelaos Darlas
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| | - Sofia Anysiadou
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| | - Ekaterini Domali
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece; (C.V.); (D.M.); (K.M.); (I.G.); (C.K.); (I.P.); (M.D.); (S.A.); (G.D.); (E.D.)
| |
Collapse
|
6
|
Song J, Choi SY. Arcuate Nucleus of the Hypothalamus: Anatomy, Physiology, and Diseases. Exp Neurobiol 2023; 32:371-386. [PMID: 38196133 PMCID: PMC10789173 DOI: 10.5607/en23040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
The hypothalamus is part of the diencephalon and has several nuclei, one of which is the arcuate nucleus. The arcuate nucleus of hypothalamus (ARH) consists of neuroendocrine neurons and centrally-projecting neurons. The ARH is the center where the homeostasis of nutrition/metabolism and reproduction are maintained. As such, dysfunction of the ARH can lead to disorders of nutrition/metabolism and reproduction. Here, we review various types of neurons in the ARH and several genetic disorders caused by mutations in the ARH.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
| |
Collapse
|
7
|
Makowska K, Fagundes KRC, Gonkowski S. Influence of bisphenol A and its analog bisphenol S on cocaine- and amphetamine-regulated transcript peptide-positive enteric neurons in the mouse gastrointestinal tract. Front Mol Neurosci 2023; 16:1234841. [PMID: 37675141 PMCID: PMC10477371 DOI: 10.3389/fnmol.2023.1234841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Bisphenol A (BPA) is used in large quantities for the production of plastics and is present in various everyday objects. It penetrates living organisms and shows multidirectional adverse influence on many internal organs. For this reason, BPA is often replaced in plastic production by other substances. One of them is bisphenol S (BPS), whose effects on the enteric nervous system (ENS) have not been explained. Methods Therefore, the present study compares the influence of BPA and BPS on the number of enteric neurons immunoreactive to cocaine-and amphetamine-regulated transcript (CART) peptide located in the ENS of the stomach, jejunum and colon with the use of double immunofluorescence method. Results The obtained results have shown that both bisphenols studied induced an increase in the number of CART-positive enteric neurons, and the severity of changes depended on the type of enteric ganglion, the dose of bisphenols and the segment of the digestive tract. The most visible changes were noted in the myenteric ganglia in the colon. Moreover, in the colon, the changes submitted by BPS are more noticeable than those observed after BPA administration. In the stomach and jejunum, bisphenol-induced changes were less visible, and changes caused by BPS were similar or less pronounced than those noted under the impact of BPA, depending on the segment of the gastrointestinal tract and ganglion type studied. Discussion The results show that BPS affects the enteric neurons containing CART in a similar way to BPA, and the BPS impact is even stronger in the colon. Therefore, BPS is not neutral for the gastrointestinal tract and ENS.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kainã R. C. Fagundes
- Laboratório de Morfofisiologia Animal, Instituto de Biociências, Universidade Estadual Paulista, São Paulo, Brazil
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
8
|
Owe-Larsson M, Pawłasek J, Piecha T, Sztokfisz-Ignasiak A, Pater M, Janiuk IR. The Role of Cocaine- and Amphetamine-Regulated Transcript (CART) in Cancer: A Systematic Review. Int J Mol Sci 2023; 24:9986. [PMID: 37373130 PMCID: PMC10297965 DOI: 10.3390/ijms24129986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The functions of cocaine- and amphetamine-regulated transcript (CART) neuropeptide encoded by the CARTPT gene vary from modifying behavior and pain sensitivity to being an antioxidant. Putative CART peptide receptor GPR160 was implicated recently in the pathogenesis of cancer. However, the exact role of CART protein in the development of neoplasms remains unclear. This systematic review includes articles retrieved from the Scopus, PubMed, Web of Science and Medline Complete databases. Nineteen publications that met the inclusion criteria and describe the association of CART and cancer were analyzed. CART is expressed in various types of cancer, e.g., in breast cancer and neuroendocrine tumors (NETs). The role of CART as a potential biomarker in breast cancer, stomach adenocarcinoma, glioma and some types of NETs was suggested. In various cancer cell lines, CARTPT acts an oncogene, enhancing cellular survival by the activation of the ERK pathway, the stimulation of other pro-survival molecules, the inhibition of apoptosis or the increase in cyclin D1 levels. In breast cancer, CART was reported to protect tumor cells from tamoxifen-mediated death. Taken together, these data support the role of CART activity in the pathogenesis of cancer, thus opening new diagnostic and therapeutic approaches in neoplastic disorders.
Collapse
Affiliation(s)
- Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Jan Pawłasek
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Tomasz Piecha
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland;
| | - Alicja Sztokfisz-Ignasiak
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Mikołaj Pater
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Izabela R. Janiuk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| |
Collapse
|
9
|
de Araujo AM, Braga I, Leme G, Singh A, McDougle M, Smith J, Vergara M, Yang M, Lin M, Khoshbouei H, Krause E, de Oliveira AG, de Lartigue G. Asymmetric control of food intake by left and right vagal sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539627. [PMID: 37214924 PMCID: PMC10197596 DOI: 10.1101/2023.05.08.539627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the lateralization of gut-innervating vagal sensory neurons and their roles in feeding behavior. Using genetic, anatomical, and behavioral analyses, we discovered a subset of highly lateralized vagal sensory neurons with distinct sensory responses to intestinal stimuli. Our results demonstrated that left vagal sensory neurons (LNG) are crucial for distension-induced satiety, while right vagal sensory neurons (RNG) mediate preference for nutritive foods. Furthermore, these lateralized neurons engage different central circuits, with LNG neurons recruiting brain regions associated with energy balance and RNG neurons activating areas related to salience, memory, and reward. Altogether, our findings unveil the diverse roles of asymmetrical gut-vagal-brain circuits in feeding behavior, offering new insights for potential therapeutic interventions targeting vagal nerve stimulation in metabolic and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alan Moreira de Araujo
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Isadora Braga
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Gabriel Leme
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Arashdeep Singh
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Molly McDougle
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Justin Smith
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Macarena Vergara
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Mingxing Yang
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - M Lin
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - H Khoshbouei
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - Eric Krause
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Andre G de Oliveira
- Dept of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillaume de Lartigue
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| |
Collapse
|
10
|
Freitas-Lima LC, Pačesová A, Staňurová J, Šácha P, Marek A, Hubálek M, Kuneš J, Železná B, Maletínská L. GPR160 is not a receptor of anorexigenic cocaine- and amphetamine-regulated transcript peptide. Eur J Pharmacol 2023; 949:175713. [PMID: 37054941 DOI: 10.1016/j.ejphar.2023.175713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
COCAINE: and amphetamine-regulated transcript peptide (CARTp) is an anorexigenic neuropeptide whose receptor is undisclosed. Previously, we reported the specific binding of CART(61-102) to pheochromocytoma PC12 cells, where CART(61-102) affinity and the number of binding sites per cell corresponded to ligand-receptor binding. Recently, Yosten et al. designated orphan GPR160 as the CARTp receptor, because the GPR160 antibody abolished neuropathic pain and anorexigenic effects induced by CART(55-102) and exogenous CART(55-102) coimmunoprecipitated with GPR160 in KATOIII cells. As no direct evidence that CARTp is a ligand for GPR160 has been described, we decided to verify this hypothesis by testing CARTp affinity to the GPR160 receptor. We investigated the GPR160 expression in PC12 cells since it is cell line known to specifically bind CARTp. Moreover, we examined the specific CARTp binding in THP1 cells, with high endogenous GPR160 expression and GPR160-transfected cell lines U2OS and U-251 MG. In PC12 cells, the GPR160 antibody did not compete for specific binding with 125I-CART(61-102) or with 125I-CART(55-102), and GPR160 mRNA expression and GPR160 immunoreactivity were not detected. Moreover, THP1 cells did not show any 125I-CART(61-102) or 125I-CART(55-102) specific binding despite GPR160 detection by fluorescent immunocytochemistry (ICC). Finally, no 125I-CART(61-102) or 125I-CART(55-102) specific binding in the GPR160-transfected cell lines U2OS and U-251 MG, selected due to their negligible endogenous expression of GPR160, was detected, despite the detection of GPR160 by fluorescent ICC. Our binding studies clearly demonstrated that GPR160 cannot be a receptor for CARTp. Further studies are needed to identify true CARTp receptors.
Collapse
Affiliation(s)
- Leandro Ceotto Freitas-Lima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic
| | - Jana Staňurová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic.
| |
Collapse
|
11
|
Chen G, Lai S, Bao G, Ke J, Meng X, Lu S, Wu X, Xu H, Wu F, Xu Y, Xu F, Bi GQ, Peng G, Zhou K, Zhu Y. Distinct reward processing by subregions of the nucleus accumbens. Cell Rep 2023; 42:112069. [PMID: 36753418 DOI: 10.1016/j.celrep.2023.112069] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shishi Lai
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Yunnan University School of Medicine, Yunnan University, Kunming 650091, China
| | - Guo Bao
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jincan Ke
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaogao Meng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Science and Technology of China, Hefei 230026, China
| | - Shanshan Lu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiaocong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Hua Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Fengyi Wu
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Fang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangdun Peng
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kuikui Zhou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
12
|
Bodas DS, Maduskar A, Kaniganti T, Wakhloo D, Balasubramanian A, Subhedar N, Ghose A. Convergent Energy State-Dependent Antagonistic Signaling by Cocaine- and Amphetamine-Regulated Transcript (CART) and Neuropeptide Y (NPY) Modulates the Plasticity of Forebrain Neurons to Regulate Feeding in Zebrafish. J Neurosci 2023; 43:1089-1110. [PMID: 36599680 PMCID: PMC9962846 DOI: 10.1523/jneurosci.2426-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Dynamic reconfiguration of circuit function subserves the flexibility of innate behaviors tuned to physiological states. Internal energy stores adaptively regulate feeding-associated behaviors and integrate opposing hunger and satiety signals at the level of neural circuits. Across vertebrate lineages, the neuropeptides cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) have potent anorexic and orexic functions, respectively, and show energy-state-dependent expression in interoceptive neurons. However, how the antagonistic activities of these peptides modulate circuit plasticity remains unclear. Using behavioral, neuroanatomical, and activity analysis in adult zebrafish of both sexes, along with pharmacological interventions, we show that CART and NPY activities converge on a population of neurons in the dorsomedial telencephalon (Dm). Although CART facilitates glutamatergic neurotransmission at the Dm, NPY dampens the response to glutamate. In energy-rich states, CART enhances NMDA receptor (NMDAR) function by protein kinase A/protein kinase C (PKA/PKC)-mediated phosphorylation of the NR1 subunit of the NMDAR complex. Conversely, starvation triggers NPY-mediated reduction in phosphorylated NR1 via calcineurin activation and inhibition of cAMP production leading to reduced responsiveness to glutamate. Our data identify convergent integration of CART and NPY inputs by the Dm neurons to generate nutritional state-dependent circuit plasticity that is correlated with the behavioral switch induced by the opposing actions of satiety and hunger signals.SIGNIFICANCE STATEMENT Internal energy needs reconfigure neuronal circuits to adaptively regulate feeding behavior. Energy-state-dependent neuropeptide release can signal energy status to feeding-associated circuits and modulate circuit function. CART and NPY are major anorexic and orexic factors, respectively, but the intracellular signaling pathways used by these peptides to alter circuit function remain uncharacterized. We show that CART and NPY-expressing neurons from energy-state interoceptive areas project to a novel telencephalic region, Dm, in adult zebrafish. CART increases the excitability of Dm neurons, whereas NPY opposes CART activity. Antagonistic signaling by CART and NPY converge onto NMDA-receptor function to modulate glutamatergic neurotransmission. Thus, opposing activities of anorexic CART and orexic NPY reconfigure circuit function to generate flexibility in feeding behavior.
Collapse
Affiliation(s)
- Devika S Bodas
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aditi Maduskar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Tarun Kaniganti
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Debia Wakhloo
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | | | - Nishikant Subhedar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| |
Collapse
|
13
|
Funayama Y, Li H, Ishimori E, Kawatake-Kuno A, Inaba H, Yamagata H, Seki T, Nakagawa S, Watanabe Y, Murai T, Oishi N, Uchida S. Antidepressant Response and Stress Resilience Are Promoted by CART Peptides in GABAergic Neurons of the Anterior Cingulate Cortex. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:87-98. [PMID: 36712563 PMCID: PMC9874166 DOI: 10.1016/j.bpsgos.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 02/01/2023] Open
Abstract
Background A key challenge in the understanding and treatment of depression is identifying cell types and molecular mechanisms that mediate behavioral responses to antidepressant drugs. Because treatment responses in clinical depression are heterogeneous, it is crucial to examine treatment responders and nonresponders in preclinical studies. Methods We used the large variance in behavioral responses to long-term treatment with multiple classes of antidepressant drugs in different inbred mouse strains and classified the mice into responders and nonresponders based on their response in the forced swim test. Medial prefrontal cortex tissues were subjected to RNA sequencing to identify molecules that are consistently associated across antidepressant responders. We developed and used virus-mediated gene transfer to induce the gene of interest in specific cell types and performed forced swim, sucrose preference, social interaction, and open field tests to investigate antidepressant-like and anxiety-like behaviors. Results Cartpt expression was consistently upregulated in responders to four types of antidepressants but not in nonresponders in different mice strains. Responder mice given a single dose of ketamine, a fast-acting non-monoamine-based antidepressant, exhibited high CART peptide expression. CART peptide overexpression in the GABAergic (gamma-aminobutyric acidergic) neurons of the anterior cingulate cortex led to antidepressant-like behavior and drove chronic stress resiliency independently of mouse genetic background. Conclusions These data demonstrate that activation of CART peptide signaling in GABAergic neurons of the anterior cingulate cortex is a common molecular mechanism across antidepressant responders and that this pathway also drives stress resilience.
Collapse
Affiliation(s)
- Yuki Funayama
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Erina Ishimori
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Tomoe Seki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Schuller J, Koch M. Investigating a role of orexin and ‘cocaine- and amphetamine-regulated transcript’ in the nucleus accumbens shell in binge eating of male rats and the relationship with impulsivity. Physiol Behav 2022; 257:114000. [DOI: 10.1016/j.physbeh.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
15
|
van de Haar LL, Riga D, Boer JE, Garritsen O, Adolfs Y, Sieburgh TE, van Dijk RE, Watanabe K, van Kronenburg NCH, Broekhoven MH, Posthuma D, Meye FJ, Basak O, Pasterkamp RJ. Molecular signatures and cellular diversity during mouse habenula development. Cell Rep 2022; 40:111029. [PMID: 35793630 DOI: 10.1016/j.celrep.2022.111029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The habenula plays a key role in various motivated and pathological behaviors and is composed of molecularly distinct neuron subtypes. Despite progress in identifying mature habenula neuron subtypes, how these subtypes develop and organize into functional brain circuits remains largely unknown. Here, we performed single-cell transcriptional profiling of mouse habenular neurons at critical developmental stages, instructed by detailed three-dimensional anatomical data. Our data reveal cellular and molecular trajectories during embryonic and postnatal development, leading to different habenular subtypes. Further, based on this analysis, our work establishes the distinctive functional properties and projection target of a subtype of Cartpt+ habenula neurons. Finally, we show how comparison of single-cell transcriptional profiles and GWAS data links specific developing habenular subtypes to psychiatric disease. Together, our study begins to dissect the mechanisms underlying habenula neuron subtype-specific development and creates a framework for further interrogation of habenular development in normal and disease states.
Collapse
Affiliation(s)
- Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Danai Riga
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Juliska E Boer
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Oxana Garritsen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Thomas E Sieburgh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Roland E van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Mark H Broekhoven
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands.
| |
Collapse
|
16
|
Neuropeptide Y interaction with dopaminergic and serotonergic pathways: interlinked neurocircuits modulating hedonic eating behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110449. [PMID: 34592387 DOI: 10.1016/j.pnpbp.2021.110449] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
Abstract
Independent from homeostatic needs, the consumption of foods originating from hyperpalatable diets is defined as hedonic eating. Hedonic eating can be observed in many forms of eating phenotypes, such as compulsive eating and stress-eating, heightening the risk of obesity development. For instance, stress can trigger the consumption of palatable foods as a type of coping strategy, which can become compulsive, particularly when developed as a habit. Although eating for pleasure is observed in multiple maladaptive eating behaviours, the current understanding of the neurobiology underlying hedonic eating remains deficient. Intriguingly, the combined orexigenic, anxiolytic and reward-seeking properties of Neuropeptide Y (NPY) ignited great interest and has positioned NPY as one of the core neuromodulators operating hedonic eating behaviours. While extensive literature exists exploring the homeostatic orexigenic and anxiolytic properties of NPY, the rewarding effects of NPY continue to be investigated. As deduced from a series of behavioural and molecular-based studies, NPY appears to motivate the consumption and enhancement of food-rewards. As a possible mechanism, NPY may modulate reward-associated monoaminergic pathways, such as the dopaminergic and serotoninergic neural networks, to modulate hedonic eating behaviours. Furthermore, potential direct and indirect NPYergic neurocircuitries connecting classical homeostatic and hedonic neuropathways may also exist involving the anti-reward centre the lateral habenula. Therefore, this review investigates the participation of NPY in orchestrating hedonic eating behaviours through the modulation of monoaminergic pathways.
Collapse
|
17
|
Job MO, Kuhar MJ. Commentary: GPR160 De-Orphanization Reveals Critical Roles in Neuropathic Pain in Rodents (Finally, a Receptor for CART Peptide). ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10012. [PMID: 38410642 PMCID: PMC10896429 DOI: 10.3389/adar.2021.10012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 02/28/2024]
Affiliation(s)
- Martin O Job
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Michael J Kuhar
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|