1
|
Zhang X, Yang L. Elucidating the Pathogenic Mechanism of Spinal Muscular Atrophy Through the Investigation of UTS2. FRONT BIOSCI-LANDMRK 2025; 30:28242. [PMID: 40018937 DOI: 10.31083/fbl28242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by mutations in the survival motor neuron 1 (SMN1) gene, resulting in progressive motor neuron loss and muscle atrophy. The urotensin 2 (UTS2) gene, located on chromosome 9q34.2, plays a significant role in cellular activities such as proliferation, apoptosis, and inflammatory responses. Notably, elevated expression levels of UTS2 have been observed in SMA patients. However, its precise contribution to disease pathogenesis remains unclear. This study aimed to investigate the effects of UTS2, which is overexpressed in SMA patients, in SMA cell models using a UTS2 inhibitor. METHODS We conducted genomic sequencing and bioinformatics analysis on clinical samples to identify proteins highly expressed in association with SMA. Using RNA interference technology, we suppressed SMN1 gene expression in bone marrow mesenchymal stem cells (MSCs) to establish an in vitro cellular model of SMA. To assess the biological consequences of SMN1 gene knockdown, we employed molecular biological techniques such as immunofluorescence, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and western blotting. Furthermore, we treated the SMA cellular model with the urantide UTS2 receptor inhibitor and examined its effects on cell proliferation, apoptosis, and the expression of relevant proteins. RESULTS UTS2 was successfully identified as a highly expressed protein associated with SMA. A stable MSC model with SMN1 gene knockdown was established. RNA interference (RNAi) technology effectively suppressed SMN1 gene expression, leading to changes in cellular morphology and neuron-specific marker expression. Urantide intervention significantly affected both proliferation and apoptosis in the SMA cell model in a dose-dependent manner. Techniques such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, TUNEL fluorescence staining, and flow cytometry analysis revealed that uride decreased cell viability while increasing the proportion of apoptotic cells. Following urantide intervention, there was a notable increase in caspase-3 messenger ribonucleic acid (mRNA) levels, as well as an increase in caspase-3 protein expression, as demonstrated by immunofluorescence analysis. CONCLUSION We elucidated the role of the UTS2 gene in an SMA cell model, emphasizing its dysregulation and identifying potential therapeutic targets. Urantide, a UTS2 inhibitor, had significant biological effects on the SMA cell model, indicating that it is a promising therapeutic strategy for SMA. These findings provide valuable insights for advancing drug development and clinical treatment of SMA.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, 230601 Hefei, Anhui, China
- Department of Pediatrics, Fuyang People's Hospital, 236000 Fuyang, Anhui, China
| | - Liqi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, 230601 Hefei, Anhui, China
| |
Collapse
|
2
|
Carrara M, Gaillard AL, Brion A, Duvernois-Berthet E, Giovannangeli C, Concordet JP, Pézeron G. Dynamic interplay of cNHEJ and MMEJ pathways of DNA double-strand break repair during embryonic development in zebrafish. Sci Rep 2025; 15:4886. [PMID: 39929954 PMCID: PMC11811205 DOI: 10.1038/s41598-025-88564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Double strand breaks (DSBs) are the most deleterious DNA lesions as they frequently result in mutations when repaired by canonical non homologous end-joining (cNHEJ) and microhomology-mediated end-joining (MMEJ). Here, we investigated the relative importance of cNHEJ and MMEJ pathways during zebrafish embryonic development. We have analyzed the expression of cNHEJ and MMEJ related genes and found that it was dynamic during development and often become increased in specific tissues. We showed that inactivation of nuclear DNA ligase 3 (nLig3) or DNA polymerase theta (Polθ), two key MMEJ factors, did not affect zebrafish development but sensitized embryos to ionizing radiations and that deficiency of Polθ, but not nLig3, profoundly alters the mutation spectrum induced during repair of Cas9-mediated DSBs. By contrast, inactivation of DNA ligase 4, required for cNHEJ, did not seem to sensitize embryos to ionizing radiations nor to affect repair of Cas9-mediated DSBs but resulted in important larval growth defects. Our study underscores the dynamic and context-dependent roles of cNHEJ and MMEJ pathways during zebrafish development, highlighting their differential requirements across developmental stages and in response to genotoxic stress.
Collapse
Affiliation(s)
- Mathieu Carrara
- Physiologie Moléculaire et Adaptation (PhyMA, UMR7221), Muséum national d'Histoire naturelle, CNRS, Paris, France
- Structure and Instability of Genomes Laboratory (StrING UMR7196 - U1154), Muséum national d'Histoire naturelle, CNRS, INSERM, Paris, France
| | - Anne-Laure Gaillard
- Physiologie Moléculaire et Adaptation (PhyMA, UMR7221), Muséum national d'Histoire naturelle, CNRS, Paris, France
| | - Alice Brion
- Structure and Instability of Genomes Laboratory (StrING UMR7196 - U1154), Muséum national d'Histoire naturelle, CNRS, INSERM, Paris, France
| | - Evelyne Duvernois-Berthet
- Physiologie Moléculaire et Adaptation (PhyMA, UMR7221), Muséum national d'Histoire naturelle, CNRS, Paris, France
| | - Carine Giovannangeli
- Structure and Instability of Genomes Laboratory (StrING UMR7196 - U1154), Muséum national d'Histoire naturelle, CNRS, INSERM, Paris, France
| | - Jean-Paul Concordet
- Structure and Instability of Genomes Laboratory (StrING UMR7196 - U1154), Muséum national d'Histoire naturelle, CNRS, INSERM, Paris, France.
| | - Guillaume Pézeron
- Physiologie Moléculaire et Adaptation (PhyMA, UMR7221), Muséum national d'Histoire naturelle, CNRS, Paris, France.
| |
Collapse
|
3
|
D'Elia KP, Hameedy H, Goldblatt D, Frazel P, Kriese M, Zhu Y, Hamling KR, Kawakami K, Liddelow SA, Schoppik D, Dasen JS. Determinants of motor neuron functional subtypes important for locomotor speed. Cell Rep 2023; 42:113049. [PMID: 37676768 PMCID: PMC10600875 DOI: 10.1016/j.celrep.2023.113049] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/12/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Locomotion requires precise control of the strength and speed of muscle contraction and is achieved by recruiting functionally distinct subtypes of motor neurons (MNs). MNs are essential to movement and differentially susceptible in disease, but little is known about how MNs acquire functional subtype-specific features during development. Using single-cell RNA profiling in embryonic and larval zebrafish, we identify novel and conserved molecular signatures for MN functional subtypes and identify genes expressed in both early post-mitotic and mature MNs. Assessing MN development in genetic mutants, we define a molecular program essential for MN functional subtype specification. Two evolutionarily conserved transcription factors, Prdm16 and Mecom, are both functional subtype-specific determinants integral for fast MN development. Loss of prdm16 or mecom causes fast MNs to develop transcriptional profiles and innervation similar to slow MNs. These results reveal the molecular diversity of vertebrate axial MNs and demonstrate that functional subtypes are specified through intrinsic transcriptional codes.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanna Hameedy
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dena Goldblatt
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Paul Frazel
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Mercer Kriese
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yunlu Zhu
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kyla R Hamling
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Shane A Liddelow
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - David Schoppik
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jeremy S Dasen
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Gaillard AL, Mohamad T, Quan FB, de Cian A, Mosimann C, Tostivint H, Pézeron G. Urp1 and Urp2 act redundantly to maintain spine shape in zebrafish larvae. Dev Biol 2023; 496:36-51. [PMID: 36736605 DOI: 10.1016/j.ydbio.2023.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Urp1 and Urp2 are two neuropeptides, members of the Urotensin 2 family, that have been recently involved in the control of body axis morphogenesis in zebrafish. They are produced by a population of sensory spinal neurons, called cerebrospinal fluid contacting neurons (CSF-cNs), under the control of signals relying on the Reissner fiber, an extracellular thread bathing in the CSF. Here, we have investigated further the function of Urp1 and Urp2 (Urp1/2) in body axis formation and maintenance. We showed that urp1;urp2 double mutants develop strong body axis defects during larval growth, revealing the redundancy between the two neuropeptides. These defects were similar to those previously reported in uts2r3 mutants. We observed that this phenotype is not associated with congenital defects in vertebrae formation, but by using specific inhibitors, we found that, at least in the embryo, the action of Urp1/2 signaling depends on myosin II contraction. Finally, we provide evidence that while the Urp1/2 signaling is functioning during larval growth, it is dispensable for embryonic development. Taken together, our results show that Urp1/2 signaling is required in larvae to promote correct vertebral body axis, most likely by regulating muscle tone.
Collapse
Affiliation(s)
- Anne-Laure Gaillard
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France
| | - Teddy Mohamad
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France
| | - Feng B Quan
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France
| | - Anne de Cian
- Structure and Instability of Genomes (String - UMR 7196 - U1154), Muséum National d'Histoire naturelle, CNRS, INSERM, Paris, France
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Hervé Tostivint
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France
| | - Guillaume Pézeron
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France.
| |
Collapse
|
5
|
Bearce EA, Irons ZH, O'Hara-Smith JR, Kuhns CJ, Fisher SI, Crow WE, Grimes DT. Urotensin II-related peptides, Urp1 and Urp2, control zebrafish spine morphology. eLife 2022; 11:e83883. [PMID: 36453722 PMCID: PMC9836392 DOI: 10.7554/elife.83883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The spine provides structure and support to the body, yet how it develops its characteristic morphology as the organism grows is little understood. This is underscored by the commonality of conditions in which the spine curves abnormally such as scoliosis, kyphosis, and lordosis. Understanding the origin of these spinal curves has been challenging in part due to the lack of appropriate animal models. Recently, zebrafish have emerged as promising tools with which to understand the origin of spinal curves. Using zebrafish, we demonstrate that the urotensin II-related peptides (URPs), Urp1 and Urp2, are essential for maintaining spine morphology. Urp1 and Urp2 are 10-amino acid cyclic peptides expressed by neurons lining the central canal of the spinal cord. Upon combined genetic loss of Urp1 and Urp2, adolescent-onset planar curves manifested in the caudal region of the spine. Highly similar curves were caused by mutation of Uts2r3, an URP receptor. Quantitative comparisons revealed that urotensin-associated curves were distinct from other zebrafish spinal curve mutants in curve position and direction. Last, we found that the Reissner fiber, a proteinaceous thread that sits in the central canal and has been implicated in the control of spine morphology, breaks down prior to curve formation in mutants with perturbed cilia motility but was unaffected by loss of Uts2r3. This suggests a Reissner fiber-independent mechanism of curvature in urotensin-deficient mutants. Overall, our results show that Urp1 and Urp2 control zebrafish spine morphology and establish new animal models of spine deformity.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Zoe H Irons
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | | | - Colin J Kuhns
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Sophie I Fisher
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - William E Crow
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|