1
|
Hamilton A, Zhang Q, Gao R, Hill TG, Salehi A, Knudsen JG, Draper MB, Johnson PRV, Rorsman P, Tarasov AI. Nicotinic Signaling Stimulates Glucagon Secretion in Mouse and Human Pancreatic α-Cells. Diabetes 2025; 74:53-64. [PMID: 39475504 DOI: 10.2337/db23-0809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2024] [Indexed: 12/22/2024]
Abstract
Smoking is widely regarded as a risk factor for type 2 diabetes because nicotine contributes to insulin resistance by desensitizing the insulin receptors in muscle, liver, or fat. Little is known, however, about the immediate regulation of islet hormonal output by nicotine, an agonist of ionotropic cholinergic receptors. We investigated this by imaging cytosolic Ca2+ dynamics in mouse and human islets using confocal microscopy and measuring glucagon secretion in response to the alkaloid from isolated mouse islets. Nicotine acutely stimulated cytosolic Ca2+ in glucagon-secreting α-cells but not in insulin-secreting β-cells. The 2.8- ± 0.5-fold (P < 0.05) increase in Ca2+, observed in >70% of α-cells, correlated well with a 2.5- ± 0.3-fold stimulation of glucagon secretion. Nicotine-induced elevation of cytosolic Ca2+ relied on influx from the extracellular compartment rather than release of the cation from intracellular depots. Metabotropic cholinergic signaling, monitored at the level of intracellular diacylglycerol, was limited to 69% of α-cells versus 94% of β-cells. We conclude that parasympathetic regulation of pancreatic islet hormone release uses different signaling pathways in β-cells (metabotropic) and α-cells (metabotropic and ionotropic), resulting in the fine-tuning of acetylcholine-induced glucagon exocytosis. Sustained nicotinic stimulation is, therefore, likely to attenuate insulin sensitivity by increasing glucagon release. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Alexander Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Unit of Molecular Metabolism, Clinical Research Centre, Lund University Diabetes Centre, Lund University and Malmö University Hospital, Malmö, Sweden
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
| | - Albert Salehi
- Unit of Molecular Metabolism, Clinical Research Centre, Lund University Diabetes Centre, Lund University and Malmö University Hospital, Malmö, Sweden
- Metabolic Research Unit, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew B Draper
- School of Biomedical Sciences, Ulster University, Coleraine, U.K
| | - Paul R V Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Oxford Biomedical Research Centre, National Institute for Health Research, Oxford, U.K
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Metabolic Research Unit, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
- School of Biomedical Sciences, Ulster University, Coleraine, U.K
- Oxford Biomedical Research Centre, National Institute for Health Research, Oxford, U.K
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- School of Biomedical Sciences, Ulster University, Coleraine, U.K
| |
Collapse
|
2
|
Ruiz-Otero N, Tessem JS, Banerjee RR. Pancreatic islet adaptation in pregnancy and postpartum. Trends Endocrinol Metab 2024; 35:834-847. [PMID: 38697900 DOI: 10.1016/j.tem.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Pancreatic islets, particularly insulin-producing β-cells, are central regulators of glucose homeostasis capable of responding to a variety of metabolic stressors. Pregnancy is a unique physiological stressor, necessitating the islets to adapt to the complex interplay of maternal and fetal-placental factors influencing the metabolic milieu. In this review we highlight studies defining gestational adaptation mechanisms within maternal islets and emerging studies revealing islet adaptations during the early postpartum and lactation periods. These include adaptations in both β and in 'non-β' islet cells. We also discuss insights into how gestational and postpartum adaptation may inform pregnancy-specific and general mechanisms of islet responses to metabolic stress and contribute to investigation of gestational diabetes.
Collapse
Affiliation(s)
- Nelmari Ruiz-Otero
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84601, USA
| | - Ronadip R Banerjee
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Lafferty RA, Flatt PR, Irwin N. NPYR modulation: Potential for the next major advance in obesity and type 2 diabetes management? Peptides 2024; 179:171256. [PMID: 38825012 DOI: 10.1016/j.peptides.2024.171256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid in vivo degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Peter R Flatt
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
4
|
Sridhar A, Khan D, Babu G, Irwin N, Gault VA, Flatt PR, Moffett CR. Chronic exposure to incretin metabolites GLP-1(9-36) and GIP(3-42) affect islet morphology and beta cell health in high fat fed mice. Peptides 2024; 178:171254. [PMID: 38815655 DOI: 10.1016/j.peptides.2024.171254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to their major circulating metabolites GLP-1(9-36) and GIP(3-42). This study investigates the possible effects of these metabolites, and the equivalent exendin molecule Ex(9-39), on pancreatic islet morphology and constituent alpha and beta cells in high-fat diet (HFD) fed mice. Male Swiss TO-mice (6-8 weeks-old) were maintained on a HFD or normal diet (ND) for 4 months and then received twice-daily subcutaneous injections of GLP-1(9-36), GIP(3-42), Ex(9-39) (25 nmol/kg bw) or saline vehicle (0.9% (w/v) NaCl) over a 60-day period. Metabolic parameters were monitored and excised pancreatic tissues were used for immunohistochemical analysis. Body weight and assessed metabolic indices were not changed by peptide administration. GLP-1(9-36) significantly (p<0.001) increased islet density per mm2 tissue, that was decreased (p<0.05) by HFD. Islet, beta and alpha cell areas were increased (p<0.01) following HFD and subsequently reduced (p<0.01-p<0.001) by GIP(3-42) and Ex(9-39) treatment. While GLP-1(9-36) did not affect islet and beta cell areas in HFD mice, it significantly (p<0.01) decreased alpha cell area. Compared to ND and HFD mice, GIP(3-42) treatment significantly (p<0.05) increased beta cell proliferation. Whilst HFD increased (p<0.001) beta cell apoptosis, this was reduced (p<0.01-p<0.001) by both GLP-1(9-36) and GIP(3-42). These data indicate that the major circulating forms of GLP-1 and GIP, namely GLP-1(9-36) and GIP(3-42) previously considered largely inactive, may directly impact pancreatic morphology, with an important protective effect on beta cell health under conditions of beta cell stress.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - Dawood Khan
- Biomedical Sciences Research Institute, Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Gayathri Babu
- Biomedical Sciences Research Institute, Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Biomedical Sciences Research Institute, Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- Biomedical Sciences Research Institute, Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Charlotte R Moffett
- Biomedical Sciences Research Institute, Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
5
|
Carr ER, Higgins PB, McClenaghan NH, Flatt PR, McCloskey AG. MicroRNA regulation of islet and enteroendocrine peptides: Physiology and therapeutic implications for type 2 diabetes. Peptides 2024; 176:171196. [PMID: 38492669 DOI: 10.1016/j.peptides.2024.171196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The pathogenesis of type 2 diabetes (T2D) is associated with dysregulation of glucoregulatory hormones, including both islet and enteroendocrine peptides. Microribonucleic acids (miRNAs) are short noncoding RNA sequences which post transcriptionally inhibit protein synthesis by binding to complementary messenger RNA (mRNA). Essential for normal cell activities, including proliferation and apoptosis, dysregulation of these noncoding RNA molecules have been linked to several diseases, including diabetes, where alterations in miRNA expression within pancreatic islets have been observed. This may occur as a compensatory mechanism to maintain beta-cell mass/function (e.g., downregulation of miR-7), or conversely, lead to further beta-cell demise and disease progression (e.g., upregulation of miR-187). Thus, targeting miRNAs has potential for novel diagnostic and therapeutic applications in T2D. This is reinforced by the success seen to date with miRNA-based therapeutics for other conditions currently in clinical trials. In this review, differential expression of miRNAs in human islets associated with T2D will be discussed along with further consideration of their effects on the production and secretion of islet and incretin hormones. This analysis further unravels the therapeutic potential of miRNAs and offers insights into novel strategies for T2D management.
Collapse
Affiliation(s)
- E R Carr
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland; Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P B Higgins
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland
| | - N H McClenaghan
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - A G McCloskey
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland.
| |
Collapse
|
6
|
Zhang W, Miura A, Abu Saleh MM, Shimizu K, Mita Y, Tanida R, Hirako S, Shioda S, Gmyr V, Kerr-Conte J, Pattou F, Jin C, Kanai Y, Sasaki K, Minamino N, Sakoda H, Nakazato M. The NERP-4-SNAT2 axis regulates pancreatic β-cell maintenance and function. Nat Commun 2023; 14:8158. [PMID: 38071217 PMCID: PMC10710447 DOI: 10.1038/s41467-023-43976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Insulin secretion from pancreatic β cells is regulated by multiple stimuli, including nutrients, hormones, neuronal inputs, and local signalling. Amino acids modulate insulin secretion via amino acid transporters expressed on β cells. The granin protein VGF has dual roles in β cells: regulating secretory granule formation and functioning as a multiple peptide precursor. A VGF-derived peptide, neuroendocrine regulatory peptide-4 (NERP-4), increases Ca2+ influx in the pancreata of transgenic mice expressing apoaequorin, a Ca2+-induced bioluminescent protein complex. NERP-4 enhances glucose-stimulated insulin secretion from isolated human and mouse islets and β-cell-derived MIN6-K8 cells. NERP-4 administration reverses the impairment of β-cell maintenance and function in db/db mice by enhancing mitochondrial function and reducing metabolic stress. NERP-4 acts on sodium-coupled neutral amino acid transporter 2 (SNAT2), thereby increasing glutamine, alanine, and proline uptake into β cells and stimulating insulin secretion. SNAT2 deletion and inhibition abolish the protective effects of NERP-4 on β-cell maintenance. These findings demonstrate a novel autocrine mechanism of β-cell maintenance and function that is mediated by the peptide-amino acid transporter axis.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Miura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Md Moin Abu Saleh
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland - Bahrain, Busaiteen, Bahrain
| | - Koichiro Shimizu
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Mita
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Ryota Tanida
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Seiji Shioda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| | - Valery Gmyr
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Julie Kerr-Conte
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Francois Pattou
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Peptidomics, Sasaki Foundation, Tokyo, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research, Suita, Japan
| | - Hideyuki Sakoda
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Institute for Protein Research, Osaka University, Osaka, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
7
|
Tanday N, Lafferty RA, Flatt PR, Irwin N. Beneficial metabolic effects of recurrent periods of beta-cell rest and stimulation using stable neuropeptide Y1 and glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab 2022; 24:2353-2363. [PMID: 35848461 PMCID: PMC9804730 DOI: 10.1111/dom.14821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023]
Abstract
AIM To examine whether sequential administration of (d-Arg35 )-sea lamprey peptide tyrosine tyrosine (1-36) (SL-PYY) and the glucagon-like peptide-1 (GLP-1) mimetic, liraglutide, has beneficial effects in diabetes. METHODS SL-PYY is an enzymatically stable neuropeptide Y1 receptor (NPY1R) agonist known to induce pancreatic beta-cell rest and improve overall beta-cell health. We employed SL-PYY and liraglutide to induce appropriate recurrent periods of beta-cell rest and stimulation, to assess therapeutic benefits in high fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. RESULTS Previous studies confirm that, at a dose of 0.25 nmol/kg, liraglutide exerts bioactivity over an 8-12 hour period in mice. Initial pharmacokinetic analysis revealed that 75 nmol/kg SL-PYY yielded a similar plasma drug time profile. When SL-PYY (75 nmol/kg) and liraglutide (0.25 nmol/kg) were administered sequentially at 08:00 AM and 08:00 PM, respectively, to HFF-STZ mice for 28 days, reductions in energy intake, body weight, circulating glucose, insulin and glucagon were noted. Similarly positive, but slightly less striking, effects were also apparent with twice-daily liraglutide-only therapy. The sequential SL-PYY and liraglutide treatment also improved insulin sensitivity and glucose-induced insulin secretory responses, which was not apparent with liraglutide treatment, although benefits on glucose tolerance were mild. Interestingly, combined therapy also elevated pancreatic insulin, decreased pancreatic glucagon and enhanced the plasma insulin/glucagon ratio compared with liraglutide alone. This was not associated with an enhancement of beneficial changes in islet cell areas, proliferation or apoptosis compared with liraglutide alone, but the numbers of centrally stained glucagon-positive islet cells were reduced by sequential combination therapy. CONCLUSION These data show that NPY1R-induced intervals of beta-cell rest, combined with GLP-1R-stimulated periods of beta-cell stimulation, should be further evaluated as an effective treatment option for obesity-driven forms of diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Biomedical Sciences Research InstituteCentre for Diabetes, Ulster UniversityColeraineNorthern Ireland
| | - Ryan A. Lafferty
- Biomedical Sciences Research InstituteCentre for Diabetes, Ulster UniversityColeraineNorthern Ireland
| | - Peter R. Flatt
- Biomedical Sciences Research InstituteCentre for Diabetes, Ulster UniversityColeraineNorthern Ireland
| | - Nigel Irwin
- Biomedical Sciences Research InstituteCentre for Diabetes, Ulster UniversityColeraineNorthern Ireland
| |
Collapse
|