1
|
Yang JY, Baek SE, Yoon JW, Kim HS, Kwon Y, Yeom E. Nesfatin-1 ameliorates pathological abnormalities in Drosophila hTau model of Alzheimer's disease. Biochem Biophys Res Commun 2024; 727:150311. [PMID: 38950494 DOI: 10.1016/j.bbrc.2024.150311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
In human Alzheimer's disease (AD), the aggregation of tau protein is considered a significant hallmark, along with amyloid-beta. The formation of neurofibrillary tangles due to aberrant phosphorylation of tau disrupts microtubule stability, leading to neuronal toxicity, dysfunction, and subsequent cell death. Nesfatin-1 is a neuropeptide primarily known for regulating appetite and energy homeostasis. However, the function of Nesfatin-1 in a neuroprotective role has not been investigated. In this study, we aimed to elucidate the effect of Nesfatin-1 on tau pathology using the Drosophila model system. Our findings demonstrate that Nesfatin-1 effectively mitigates the pathological phenotypes observed in Drosophila human Tau overexpression models. Nesfatin-1 overexpression rescued the neurodegenerative phenotypes in the adult fly's eye and bristle. Additionally, Nesfatin-1 improved locomotive behavior, neuromuscular junction formation, and lifespan in the hTau AD model. Moreover, Nesfatin-1 controls tauopathy by reducing the protein level of hTau. Overall, this research highlights the potential therapeutic applications of Nesfatin-1 in ameliorating the pathological features associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Jae-Yoon Yang
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Si-Eun Baek
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Jong-Won Yoon
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyo-Sung Kim
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Younghwi Kwon
- KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Eunbyul Yeom
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
2
|
Damian-Buda AC, Matei DM, Ciobanu L, Damian-Buda DZ, Pop RM, Buzoianu AD, Bocsan IC. Nesfatin-1: A Novel Diagnostic and Prognostic Biomarker in Digestive Diseases. Biomedicines 2024; 12:1913. [PMID: 39200377 PMCID: PMC11352118 DOI: 10.3390/biomedicines12081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Nesfatin-1, deriving from a precursor protein, NUCB2, is a newly discovered molecule with anti-apoptotic, anti-inflammatory, antioxidant, and anorexigenic effects. It was initially identified in the central nervous system (CNS) and received increasing interest due to its energy-regulating properties. However, research showed that nesfatin-1 is also expressed in peripheral tissues, including the digestive system. The aim of this review is to give a résumé of the present state of knowledge regarding its structure, immunolocalization, and potential implications in diseases with inflammatory components. The main objective was to focus on its clinical importance as a diagnostic biomarker and potential therapeutic molecule in a variety of disorders, among which digestive disorders were of particular interest. Previous studies have shown that nesfatin-1 regulates the balance between pro- and antioxidant agents, which makes nesfatin-1 a promising therapeutic agent. Further in-depth research regarding the underlying mechanisms of action is needed for a better understanding of its effects.
Collapse
Affiliation(s)
- Adriana-Cezara Damian-Buda
- Pharmacology, Toxicology and Clinical Pharmacology Laboratory, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniela Maria Matei
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Lidia Ciobanu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | | | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| |
Collapse
|
3
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Pałasz A, Lipiec-Borowicz A, Suszka-Świtek A, Kistowska J, Horká P, Kaśkosz A, Piwowarczyk-Nowak A, Worthington JJ, Mordecka-Chamera K. Spexin and nesfatin-1-expressing neurons in the male human claustrum. J Chem Neuroanat 2024; 136:102400. [PMID: 38342331 DOI: 10.1016/j.jchemneu.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Neuropeptides are involved in numerous brain activities being responsible for a wide spectrum of higher mental functions. The purpose of this concise, structural and qualitative investigation was to map the possible immunoreactivity of the novel regulatory peptides: spexin (SPX) and nesfatin-1 within the human claustrum. SPX is a newly identified peptide, a natural ligand for the galanin receptors (GALR) 2/3, with no molecular structure similarities to currently known regulatory factors. SPX seems to have multiple physiological functions, with an involvement in reproduction and food-intake regulation recently revealed in animal studies. Nesfatin-1, a second pleiotropic neuropeptide, which is a derivative of the nucleobindin-2 (NUCB-2) protein, is characterized by a wide distribution in the brain. Nesfatin-1 is a substance with a strong anorexigenic effect, playing an important role in the neuronal circuits of the hypothalamus that regulate food intake and energy homeostasis. On the other hand, nesfatin-1 may be involved in several important brain functions such as sleep, reproductive behaviour, cognitive processes, stress responses and anxiety. For the first time we detected and described a population of nesfatin-1 and SPX expressing neurons in the human claustrum using immunohistochemical and fluorescent methods. The study presents the novel identification of SPX and nesfatin-1 immunopositive neurons in the human claustrum and their assemblies show similar patterns of distribution in the whole structure.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Anna Lipiec-Borowicz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Julia Kistowska
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Petra Horká
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 12801 Prague, Czechia
| | - Andrzej Kaśkosz
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland
| | - Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Kinga Mordecka-Chamera
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| |
Collapse
|
5
|
Zhou S, Nao J. Nesfatin-1: A Biomarker and Potential Therapeutic Target in Neurological Disorders. Neurochem Res 2024; 49:38-51. [PMID: 37740893 DOI: 10.1007/s11064-023-04037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Nesfatin-1 is a novel adipocytokine consisting of 82 amino acids with anorexic and anti-hyperglycemic properties. Further studies of nesfatin-1 have shown it to be closely associated with neurological disorders. Changes in nesfatin-1 levels are closely linked to the onset, progression and severity of neurological disorders. Nesfatin-1 may affect the development of neurological disorders and can indicate disease evolution and prognosis, thus informing the choice of treatment options. In addition, regulation of the expression or level of nesfatin-1 can improve the level of neuroinflammation, apoptosis, oxidative damage and other indicators. It is demonstrated that nesfatin-1 is involved in neuroprotection and may be a therapeutic target for neurological disorders. In this paper, we will also discuss the role of nesfatin-1 as a biomarker in neurological diseases and its potential mechanism of action in neurological diseases, providing new ideas for the diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
6
|
Sierawska O, Sawczuk M. Interaction between Selected Adipokines and Musculoskeletal and Cardiovascular Systems: A Review of Current Knowledge. Int J Mol Sci 2023; 24:17287. [PMID: 38139115 PMCID: PMC10743430 DOI: 10.3390/ijms242417287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are substances secreted by adipose tissue that are receiving increasing attention. The approach to adipose tissue has changed in recent years, and it is no longer looked at as just a storage organ but its secretion and how it influences systems in the human body are also looked at. The role of adipokine seems crucial in developing future therapies for pathologies of selected systems. In this study, we look at selected adipokines, leptin, adiponectin, chemerin, resistin, omentin-1, nesfatin, irisin-1, visfatin, apelin, vaspin, heparin-binding EGF-like growth factor (HB-EGF), and TGF-β2, and how they affect systems in the human body related to physical activity such as the musculoskeletal and cardiovascular systems.
Collapse
Affiliation(s)
- Olga Sierawska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-384 Szczecin, Poland
| | - Marek Sawczuk
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
| |
Collapse
|
7
|
Rahmati S, Mohammadi B, Karimi-Mehr Z, Broom DR. Effects of physical activity and exercise on Nucleobindin-2 gene expression and Nesfatin-1 concentration: A rapid review. Cell Biochem Funct 2023; 41:1016-1030. [PMID: 37909689 DOI: 10.1002/cbf.3877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
The aim of this rapid review is to examine the research evidence that presents the effects of physical activity and exercise on Nucleobindin-2 (NUCB2) gene expression and Nesfatin-1 concentration. Five databases (PubMed, Science Direct, Springer, Wiley, and Google Scholar) were searched for eligible studies from the earliest available date to August 2023. In human studies, Nesfatin-1 concentration either remains unchanged or increases after exercise training. It appears that higher exercise intensity and longer duration of training accentuate the increase of blood Nesfatin-1 concentration. The few human studies that have examined the acute response of exercise on Nesfatin-1 concentration from blood draws show conflicting results. There is a severe lack of biopsy studies in humans which warrants attention. All published animal studies have used the mouse model. The majority show that regular exercise training increases tissue NUCB2/Nesfatin-1. In some animal studies, where the effects of exercise on tissue Nesfatin-1 concentration has been seen as significant, there has been no significant effect of exercise on plasma Nesfatin-1 concentration. All animal studies evaluated the effect of endurance training except one which used resistance training. No animal studies have investigated the effects of acute exercise, which warrants investigation. In conclusion, human and animal studies have shown that physical training can increase NUCB2/Nesfatin-1, but research evidence examining the effect of acute exercise is in its infancy. In addition, future comparative studies are needed to compare the effects of different training protocols on NUCB2/Nesfatin-1 in humans and animals.
Collapse
Affiliation(s)
- Saleh Rahmati
- Department of Physical Education, Pardis Branch, Islamic Azad University, Pardis, Iran
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Behnam Mohammadi
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Karimi-Mehr
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - David Robert Broom
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
8
|
Ahn C, Sun S, Ha J, Yang H. Nesfatin-1 regulates steroidogenesis in mouse Leydig cells. Peptides 2023; 166:171036. [PMID: 37269882 DOI: 10.1016/j.peptides.2023.171036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Nesfatin-1 is a polypeptide hormone known to regulate appetite and energy metabolism and is derived from the precursor protein nucleobindin 2 (NUCB2). Recent studies have shown that nesfatin-1 is expressed in many peripheral tissues in mice, including the reproductive organs. However, its function and regulation in the testis remain unknown. In this study, we investigated the expression of Nucb2 mRNA and nesfatin-1 protein in mouse Leydig cells and the Leydig cell line, TM3 cells. We also examined whether Nucb2 mRNA expression is regulated by gonadotropins and whether exogenous nesfatin-1 affects steroidogenesis in primary Leydig cells isolated from the testis and TM3 cells. We found that Nucb2 mRNA and nesfatin-1 protein were present in primary Leydig cells and TM3 cells, and nesfatin-1 binding sites were also found in both cell types. Nucb2 mRNA expression in testis, primary Leydig cells, and TM3 cells was increased after treatment with pregnant mare's serum gonadotropin and human chorionic gonadotropin. After nesfatin-1 treatment, the expression of steroidogenesis-related enzyme genes Cyp17a1 and Hsd3b was upregulated in primary Leydig cells and TM3 cells. Our results suggest that NUCB2/nesfatin-1 expression in mouse Leydig cells may be regulated through the hypothalamic-pituitary-gonadal axis and that nesfatin-1 produced by Leydig cells may locally regulate steroidogenesis in an autocrine manner. This study provides insight into the regulation of NUCB2/nesfatin-1 expression in Leydig cells and the effect of nesfatin-1 on steroidogenesis, which may have implications for male reproductive health.
Collapse
Affiliation(s)
- Chaeyoung Ahn
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea
| | - Sojung Sun
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea
| | - Jinah Ha
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea
| | - Hyunwon Yang
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea.
| |
Collapse
|
9
|
Zheng J, Han J, Wang Y, Tian Z. Role of brain NUCB2/nesfatin-1 in stress and stress-related gastrointestinal disorders. Peptides 2023:171043. [PMID: 37311488 DOI: 10.1016/j.peptides.2023.171043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Since the discovery of NUCB2/nesfatin-1 as a novel anorexigenic factor, the expanding function of this peptide has been elucidated in recent years. Increasing evidence suggests that NUCB2/nesfatin-1 is also involved in the regulation of stress and stress-related gastrointestinal disorders. Therefore, we investigated the relationship between NUCB2/nesfatin-1, stress and stress-related gastrointestinal disorders and summarized the results of these studies. Different stressors and duration of stress activate different NUCB2/nesfatin-1-associated brain regions and have different effects on serum corticosterone levels. Central and peripheral NUCB2/nesfatin-1 mediates stress-related gastrointestinal disorders but appears to be protective against inflammatory bowel disease. NUCB2/nesfatin-1 plays an important role in mediating the brain-gut crosstalk, but precise clarification is still needed to gain more insight into these complex relationships.
Collapse
Affiliation(s)
- Jiayuan Zheng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China
| | - Jing Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China
| | - Zhanzhuang Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Schalla MA, Taché Y, Stengel A. Editorial: Autonomic regulation of enteroendocrine peptides in health and diseases. Peptides 2023:171038. [PMID: 37295652 DOI: 10.1016/j.peptides.2023.171038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Martha A Schalla
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany; Department of Gynecology and Obstetrics, HELIOS Kliniken GmbH, Rottweil, Germany
| | - Yvette Taché
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Digestive Diseases Research Center (DDRC), Center for Neurobiology of Stress and Resilience (CNSR), University of California Los Angeles, Los Angeles, California, USA
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany; Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
11
|
Rosenbaum M. Appetite, Energy Expenditure, and the Regulation of Energy Balance. Gastroenterol Clin North Am 2023; 52:311-322. [PMID: 37197875 DOI: 10.1016/j.gtc.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
At usual weight, energy intake and expenditure are coupled and covary to maintain body weight (energy stores). A change in energy balance, especially weight loss, invokes discoordinated effects on energy intake and output that favor return to previous weight. These regulatory systems reflect physiological changes in systems regulating energy intake and expenditure rather than a lack of resolve. The biological and behavioral physiology of dynamic weight change are distinct from those of attempts at static weight maintenance of an altered body weight. This suggests that optimal therapeutic approaches to losing or gaining vs. sustaining weight changes are different for most individuals.
Collapse
Affiliation(s)
- Michael Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, 6th Floor, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, 6th Floor, New York, NY 10032, USA.
| |
Collapse
|
12
|
Nesfatin-1 in Human Milk and Its Association with Infant Anthropometry. Nutrients 2022; 15:nu15010176. [PMID: 36615833 PMCID: PMC9824050 DOI: 10.3390/nu15010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Breastfed infants have different growth patterns to formula-fed infants and are less likely to develop obesity later in life. Nesfatin-1 is an anorexigenic adipokine that was discovered in human milk more than a decade ago, and its role in infant appetite regulation is not clear. Our aim was to describe nesfatin-1 levels in human milk collected 3-4 months postpartum, associations with infant anthropometry, and factors (maternal pre-pregnancy body mass index (mBMI), high weight gain during pregnancy, milk fat, and energy content) possibly influencing nesfatin-1 levels. We hypothesized that nesfatin-1 levels in mother's milk would differ for infants that were large (high weight-for-age Z-score (WAZ)) or small (low WAZ) at the time of milk sample collection. We used enzyme-linked immunosorbent assay to detect the nesfatin-1 concentration in milk samples from mothers to high WAZ (n = 50) and low WAZ (n = 50) infants. We investigated associations between nesfatin-1 levels and infant anthropometry at 3-4 months of age and growth since birth, using linear regression adjusted for mBMI, birth weight, infant sex, and exclusivity of breastfeeding. We found no difference in nesfatin-1 levels between the two groups and no association with infant anthropometry, even after adjusting for potential confounders. However, high nesfatin-1 levels were correlated with low mBMI. Future research should investigate serum nesfatin-1 level in both mothers, infants and associations with growth in breastfed children.
Collapse
|
13
|
Weibert E, Hofmann T, Elbelt U, Rose M, Stengel A. NUCB2/nesfatin-1 is associated with severity of eating disorder symptoms in female patients with obesity. Psychoneuroendocrinology 2022; 143:105842. [PMID: 35752057 DOI: 10.1016/j.psyneuen.2022.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nesfatin-1 has been described as an anorexigenic peptide. Comprehensive evidence also points towards an involvement of nesfatin-1 in the modulation of emotional pathways with a sex-specific regulation of nesfatin-1 in association with anxiety. Although the implication of nesfatin-1 in the regulation of food intake is well-established in animals, data in humans are lacking. Therefore, we investigated a possible association of circulating NUCB2/nesfatin-1 with eating disorder symptoms in female and male patients displaying a wide range of body weight. METHODS We enrolled 243 inpatients (177 female, 66 male) hospitalized due to anorexia nervosa (n = 66) or obesity (n = 144) or with normal weight and suffering from somatoform, adjustment, depressive or anxiety disorders (n = 33). Plasma samples (NUCB2/nesfatin-1 levels measured by ELISA) and measures of eating disorder symptoms (by EDI-2, range 0-100) were obtained within three days after admission. RESULTS The study population displayed a distinct prevalence of eating disorder symptoms with female patients with anorexia nervosa (+ 77.0%, p < 0.001) and obesity (+ 87.9%, p < 0.001) reported significantly higher EDI-2 scores than normal weight patients of the same sex. Accordingly, males with anorexia nervosa (+ 39.7%, p < 0.05) and obesity (+ 51.7%, p < 0.001) had significantly higher EDI-2 scores than males with normal weight. Within the same BMI group, women displayed significantly higher scores than men (+ 21.4%, p < 0.05 in patients with anorexia nervosa, + 18.8%, p < 0.001 in participants with obesity). We observed a positive correlation between NUCB2/nesfatin-1 levels and EDI-2 total scores in female patients with obesity (r = 0.285, p = 0.015), whereas no associations were found in other subgroups. A positive correlation between NUCB2/nesfatin-1 levels and BMI was only observed in the male study population (r = 0.315, p = 0.018). CONCLUSIONS NUCB2/nesfatin-1 plasma levels were positively associated with EDI-2 total scores in women with obesity, while no association was observable in men. The lacking association of NUCB2/nesfatin-1 and EDI-2 total scores in female patients with anorexia nervosa might be due to already low NUCB2/nesfatin-1 plasma levels. Whether NUCB2/nesfatin-1 is selectively involved in eating behavior in women with obesity will have to be further investigated.
Collapse
Affiliation(s)
- Elena Weibert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Tobias Hofmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Ulf Elbelt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Endokrinologikum Berlin, Berlin, Germany
| | - Matthias Rose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Quantitative Health Sciences, Outcomes Measurement Science, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andreas Stengel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Rakhshan K, Dalouchi F, Sharifiaghdam Z, Safaei A, Jahanshahi F, Azizi Y. Modulation of Apoptosis and Oxidative Stress with Nesfatin-1 in Doxorubicin Induced Cardiotoxicity in Male Rat. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|