1
|
Lu XP, Jiang LL, Li Y, Hou PX, Xu JL, Zhou XY, Wu H, Ma ZQ. Novel Insights into the Control of Sitophilus zeamais in Grain by Chitosan-Nanoparticle-Contained ds SzCOX. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39998841 DOI: 10.1021/acs.jafc.4c12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Sitophilus zeamais is a highly destructive pest of stored grains worldwide. To develop novel RNA insecticides, the double-stranded RNA of S. zeamais cytochrome c oxidase (dsSzCOXs: dsSzCOXI, dsSzCOXII, and dsSzCOXIII) was successfully expressed in the pET28a-BL21(DE3)-RNaseIII- system and remarkably downregulated the expression level of SzCOXs in S. zeamais through injection or feeding methods, leading to high mortalities in both larvae and adults. Under their optimal expression conditions (isopropyl β-d-thiogalactoside, 0.6 mM), the yields of dsSzCOXI (at 28 °C for 4 h), dsSzCOXII (at 37 °C for 6 h), and dsSzCOXIII (at 37 °C for 6 h) were 8.49, 5.80, and 6.04 μg/mL respectively. The chitosan-based gene delivery system composed of dsSzCOXs (CS@dsSzCOXs) was established for the insecticidal effect of S. zeamais adults via mixing wheat seeds, with the mortality reaching 50% on day ten. Consequently, this nanoparticle-mediated gene delivery system is expected to be an effective approach for S. zeamais control.
Collapse
Affiliation(s)
- Xiao-Peng Lu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Lin-Lin Jiang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Pu-Xing Hou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Jia-Lu Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Xiao-Yun Zhou
- Xinjiang Research Center of Engineering and Technology for Crop Chemical Regulation/Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Hua Wu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
- Shaanxi Province Center for Bio-Pesticide Engineering, Yangling 712100, China
| | - Zhi-Qing Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
- Shaanxi Province Center for Bio-Pesticide Engineering, Yangling 712100, China
| |
Collapse
|
2
|
Li X, Ma L, Yang W, Xu K. Knockdown of CYP6SZ3 and CYP6AEL1 genes increases the susceptibility of Lasioderma serricorne to ethyl formate and benzothiazole. Front Physiol 2024; 15:1503953. [PMID: 39633644 PMCID: PMC11615064 DOI: 10.3389/fphys.2024.1503953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Insect cytochrome P450 monooxygenases (CYPs) play crucial roles in the metabolic detoxification of insecticides. Ethyl formate and benzothiazole have recently regained popularity as fumigants due to rising resistance to phosphine in the stored-product pests. However, the mechanisms underlying tolerance to these two fumigants in Lasioderma serricorne, a major global insect pest of stored products, remain poorly understood. In this study, two CYP genes, named CYP6SZ3 and CYP6AEL1, were identified from L. serricorne, belonging to the CYP6 family and containing five conserved domains characteristic of CYP proteins. Spatiotemporal expression analysis revealed that both genes were predominantly expressed in the larval stage and showed the highest expression in the foregut. Upon exposure to ethyl formate and benzothiazole, both genes were upregulated, with significantly increased transcription levels following treatment. RNA interference-mediated silencing of CYP6SZ3 and CYP6AEL1 led to increased susceptibility and significantly higher mortality of L. serricorne when exposed to these fumigants. Homology modeling and molecular docking analyses showed stable binding of these fumigants to CYP6SZ3 and CYP6AEL1 proteins, with binding free energies from -26.88 to -94.68 kcal mol-1. These findings suggest that the induction of CYP6SZ3 and CYP6AEL1 is likely involved in the detoxification of ethyl formate and benzothiazole in L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Kangkang Xu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Guiyang University, Guiyang, China
| |
Collapse
|
3
|
Jiang SD, Wang L, Wang L, Sun J, Wang JJ, Wei DD. Mitochondrial coding genes mediate insecticide tolerance in the oriental fruit fly, Bactrocera dorsalis (Hendel). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105763. [PMID: 38458663 DOI: 10.1016/j.pestbp.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 03/10/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.
Collapse
Affiliation(s)
- Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jun Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
4
|
Ma S, Jia R, Li X, Wang W, Jin L, Zhang X, Yu H, Yang J, Dong L, Zhang L, Dong J. Herbicidal Active Compound Ferulic Acid Ethyl Ester Affects Fatty Acid Synthesis by Targeting the 3-Ketoacyl-Acyl Carrier Protein Synthase I (KAS I). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:276-287. [PMID: 36588523 DOI: 10.1021/acs.jafc.2c07214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring new herbicide targets based on natural product derivatives is an important research aspect for the generation of innovative pesticides. Ferulic acid ethyl ester (FAEE), a natural product derivative from ferulic acid, has significant herbicidal activity mainly by inhibiting the normal growth of weed seedling roots. However, the FAEE target protein underlying its herbicidal activity has not been identified. In this study, we synthesized an FAEE probe to locate its site of action. We discovered that FAEE entry point was via the root tips. Fourteen major binding proteins were identified using Drug affinity responsive target stability (DARTS) combined with LC-MS/MS, which included 3-ketoacyl-acyl carrier protein synthase I (KAS I) and phenylalanine ammonia-lyase I (PAL I). The KAS I and PAL I proteins/genes expression was changed significantly after exposure to FAEE, as evidenced by combined transcriptomic and proteomic analysis. A molecular docking assay indicated that KAS I and FAEE had a strong binding ability. Combined with previous studies on FAEE mechanism of action, and based on our results, we conclude that FAEE targeting KAS I lead to the blockage of the fatty acid synthesis pathway and result in plant death.
Collapse
Affiliation(s)
- Shujie Ma
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Ran Jia
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xin Li
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Wen Wang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Liyu Jin
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xinxin Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Hualong Yu
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Juan Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao 066000, China
| | - Lili Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Lihui Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Jingao Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
5
|
Hou Q, Zhang H, Zhu J, Liu F. Transcriptome Analysis to Identify Responsive Genes under Sublethal Concentration of Bifenazate in the Diamondback Moth, Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Int J Mol Sci 2022; 23:ijms232113173. [PMID: 36361960 PMCID: PMC9656211 DOI: 10.3390/ijms232113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Bifenazate is a novel acaricide that has been widely used to control spider mites. Interestingly, we found bifenazate had a biological activity against the diamondback moth (Plutella xylostella), one of the most economically important pests on crucifer crops around the world. However, the molecular mechanisms underlying the response of P. xylostella to bifenazate treatment are not clear. In this study, we first estimated the LC30 dose of bifenazate for third-instar P. xylostella larvae. Then, in order to identify genes that respond to the treatment of this insecticide, the comparative transcriptome profiles were used to analyze the gene expression changes in P. xylostella larvae after exposure to LC30 of bifenazate. In total, 757 differentially expressed genes (DEGs) between bifenazate-treated and control P. xylostella larvae were identified, in which 526 and 231 genes were up-regulated and down-regulated, respectively. The further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the xenobiotics metabolisms pathway was significantly enriched, with ten detoxifying enzyme genes (four P450s, five glutathione S-transferases (GSTs), and one UDP-Glucuronosyltransferase (UGT)) were up-regulated, and their expression patterns were validated by qRT-PCR as well. Interestingly, the present results showed that 17 cuticular protein (CP) genes were also remarkably up-regulated, including 15 CPR family genes. Additionally, the oxidative phosphorylation pathway was found to be activated with eight mitochondrial genes up-regulated in bifenazate-treated larvae. In contrast, we found some genes that were involved in tyrosine metabolism and purine pathways were down-regulated, indicating these two pathways of bifenazate-exposed larvae were significantly inhibited. In conclusion, the present study would help us to better understand the molecular mechanisms of sublethal doses of bifenazate detoxification and action in P. xylostella.
Collapse
|
6
|
Okulicz M, Hertig I, Król E, Szkudelski T. Effects of Allyl Isothiocyanate on Oxidative and Inflammatory Stress in Type 2 Diabetic Rats. Molecules 2022; 27:molecules27175568. [PMID: 36080332 PMCID: PMC9457932 DOI: 10.3390/molecules27175568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress and inflammation play a crucial role in the pathogenesis and progression of diabetes. Currently, there is a growing need to exploit plant-derived bioactive compounds to support conventional therapies. The purpose of this study was to explore allyl isothiocyanate (AITC) potency in reducing oxidative and inflammatory stress along with its profitable modulation trace element status in pathological conditions such as diabetes. Two weeks of oral AITC treatments (2.5, 5, and 25 mg/kg body weight per day) were evaluated in Wistar rats with diabetes induced by a high-fat diet and streptozotocin. The study included AITC influence on antioxidant factors (SOD, CAT, GST, Nrf2), stress and inflammatory markers (cortisol, CRP, IL-1β, IL-6, TNFα, NF-κB), lipid peroxidation indices (TBARS, -SH groups), and trace element status (Fe, Zn, and Cu) in the detoxification and lymphoid organs. Independently of dose, AITC increased cortisol levels in rat blood serum and decreased total thiol groups (T-SH) and protein-bound thiol groups (PB-SH) collaterally with raised thiobarbituric acid reactive substances (TBARS) in diabetic rat liver. The inflammation and oxidative effects were enhanced by an AITC dose increase. The highest dose of AITC, 25 mg/kg b.w., strongly affected the inflammation process by increasing IL-6, IL-1β, and TNFα in the blood serum, and it upregulated Nrf2 transcription factor with increased SOD, GPx, and GST activities in the liver. AITC showed an equivocal effect on profitable modulation of disturbances in mineral homeostasis in the liver, kidney, and spleen. Our findings revealed that two-week AITC treatment exacerbated oxidative and inflammation status in diabetic rats.
Collapse
Affiliation(s)
- Monika Okulicz
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8487196
| | - Iwona Hertig
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Ewelina Król
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| |
Collapse
|
7
|
Singh S, Diksha, Mahajan E, Sohal SK. Appraisal of growth inhibitory, biochemical and genotoxic effects of Allyl Isothiocyanate on different developmental stages of Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Sci Rep 2022; 12:10363. [PMID: 35725907 PMCID: PMC9209442 DOI: 10.1038/s41598-022-14593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Allyl isothiocyanate (AITC), a glucosinolates' hydrolytic product, was studied for its anti-insect potential against an economically important, destructive tephritid pest, Zeugodacus cucurbitae (Coquillett). The first, second and third instar maggots of the pest were fed on artificial diets amended with varied concentrations of AITC viz. 5 ppm, 25 ppm, 50 ppm, 100 ppm, 150 ppm and 200 ppm with DMSO (0.5%) as control. Results revealed high larval mortality, alteration of larval period, prolongation of pupal and total developmental periods in all instars of the maggots treated with AITC as compared to controls. Percent pupation and percent adult emergence decreased in all larval instars. Growth indices viz. Larval Growth Index (LGI) and Total Growth Index (TGI) were negatively affected. Anti-nutritional/post ingestive toxicity of AITC was also revealed by the decrease in Food Assimilation (FA) and Mean Relative Growth rate (MRGR) values with respect to control. Profiles of PO (Phenol oxidase) and other detoxifying enzymes including SOD (Superoxide dismutases), CAT (Catalases), GST (Glutathione-S-transferases), EST (Esterases), AKP (Alkaline phosphatases) and ACP (Acid phosphatases) were also significantly influenced. The genotoxic effect of AITC was also evaluated by conducting comet assays at LC30 and LC50. Significant DNA damage in hemocytes was reflected by increase in Tail length (μm), Percent Tail DNA, Tail Moment (TM) and Olive Tail Moment (OTM) as compared to controls. The results indicated high potential of AITC as biopesticide for pest management.
Collapse
Affiliation(s)
- Sumit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Diksha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Evani Mahajan
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
8
|
Chen YZ, Li T, Yang J, Li QM, Zhang GC, Zhang J. Transcriptomic analysis of interactions between Lymantria dispar larvae and carvacrol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105012. [PMID: 35082035 DOI: 10.1016/j.pestbp.2021.105012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Due to its biological activity, carvacrol (CAR) is widely used in medicine, agriculture, and forestry. Our previous studies showed that in Lymantria dispar larvae, CAR treatment can induce the production of antifeedants and lead to growth inhibition and death of larvae. However, the effect CAR exerts on RNA levels in L. dispar larvae remains unclear. In this study, the Illumina HiSeq4000 sequencing platform was used to sequence the total RNA of L. dispar larvae. A total of six cDNA libraries (three treatments and three controls) were established and 39,807 genes were generated. Compared with the control group, 296 differentially expressed genes (DEGs) (142 up-regulated and 154 down-regulated) were identified after CAR treatment. GO and KEGG enrichment analyses showed that these DEGs mainly clustered in the metabolism of xenobiotics, carbohydrates, and lipids. Furthermore, 12 DEGs were found to be involved in detoxification, including six cytochrome P450s, two esterases, one glutathione peroxidase, one UDP-glycosyltransferase gene, and two genes encoding heat shock proteins. The expression levels of detoxification genes changed under CAR treatment (especially P450s), which further yielded candidate genes for explorations of the insecticidal mechanism of CAR. The reliability of transcriptome data was verified by qRT-PCR. The enzyme activities of CYP450 and acid phosphatase significantly increased (by 38.52 U/mg·prot and 0.12 μmol/min·mg, respectively) 72 h after CAR treatment. However, the activity of alkaline phosphatase did not change significantly. These changes in enzyme activity corroborated the reliability of the transcriptome data at the protein level. The results of GO enrichment analysis of DEGs indicated that CAR influenced the oxidation-reduction process in L. dispar larvae. Furthermore, CAR can cause oxidative stress in L. dispar larvae, identified through the determination of peroxidase and polyphenol oxidase activities, total antioxidant capacity, and hydrogen peroxide content. This study provides useful insight into the insecticidal mechanism of CAR.
Collapse
Affiliation(s)
- Yun-Ze Chen
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China; School of Biological Sciences, Guizhou Education University, Gaoxin St. 115, Guiyang 550018, PR China
| | - Tao Li
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Jing Yang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China; College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, PR CHina
| | - Qi-Meng Li
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Guo-Cai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China.
| | - Jie Zhang
- College of Life Sciences, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
9
|
Ma S, Ma T, Ren M, Li H, Ma Z. Insecticidal action of the botanical insecticide wilforine on Mythimna separata (Walker) related with the changes of ryanodine receptor expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112025. [PMID: 33578098 DOI: 10.1016/j.ecoenv.2021.112025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The detailed molecular mechanism of wilforine, a novel botanical insecticidal component, remains unclear, except for the knowledge that it affects the calcium signaling pathway. The aim of the current study was to examine the underlying molecular mechanism of wilforine in Mythimna separata (Walker) by transcriptome and RNA interference (RNAi), with chlorantraniliprole as control. RNA sequencing showed that the relative expression of genes related to the calcium signaling pathway and muscle contraction in M. separata treated with wilforine significantly changed and was further validated by qRT-PCR. Interestingly, the expression level of the ryanodine receptor (MsRyR) gene was downregulated by wilforine at relatively high concentrations and long treatment time, contrary to that observed using chlorantraniliprole. Furthermore, a putative MsRyR was cloned using a 16,258-bp contiguous sequence containing a 308-bp 5'-untranslated region and 578-bp 3'-untranslated region by RT-PCR and RACE. The results of the RNAi experiment showed that injection of dsMsRyR significantly reduced MsRyR mRNA levels, and growth and development were inhibited. Importantly, silencing of the MsRyR gene resulted in decreased susceptibility to both wilforine and chlorantraniliprole. Together with the results of our previous studies on toxic symptoms and muscle tissue lesions between wilforine and chlorantraniliprole, we propose that RyR Ca2+ release channel dysfunction is closely related with significant lethal mechanisms of wilforine.
Collapse
Affiliation(s)
- Shujie Ma
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Ting Ma
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Meiru Ren
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Hai Li
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
10
|
Zhang M, Zhang D, Ren J, Pu S, Wu H, Ma Z. Target verification of allyl isothiocyanate on the core subunits of cytochrome c oxidase in Sitophilus zeamais by RNAi. PEST MANAGEMENT SCIENCE 2021; 77:1292-1302. [PMID: 33063911 DOI: 10.1002/ps.6142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Allyl isothiocyanate (AITC) is a volatile organic compound with a potent insecticidal activity to the stored-grain pest Sitophilus zeamais Motschulsky, which severely damages grain storage and container transport worldwide. Our previous study showed that mitochondrial complex IV was the primary target of AITC in adult Sitophilus zeamais. To further verify the targets of AITC, we employed RNA interference (RNAi) by using double-stranded RNA (dsRNA) to knockdown three core subunits of cytochrome c oxidase (COX)-I, -II and -III in 18-day-old larvae prior to their exposure to AITC to detect susceptibility changes. RESULTS The susceptibility of dsRNACOX-I and -II injection treatments to AITC significantly increased at 72 h while the mortality reached up to 85.56% and 67.78%, respectively, and dsRNACOX-I and dsRNACOX-II injection showed the same subcellular structural characteristics showing vacuolization and vague mitochondrial cristae and decrease of COX activity during AITC fumigation treatment, suggesting the potential of COX-I and COX-II as the targets of AITC. High mortality reached up to 75.55%, 71.88% and 82.22%, respectively, and the phenotype of larvae turning from milky white to dark brown in the thorax and death eventually was confirmed after dsRNACOX-I, -II and -III injection. CONCLUSION COX-I and -II were elucidated as the potential targets of AITC and dsRNACOX-I, -II and -III have the potential to be developed into nucleic acid pesticides for their robust lethal effects and are worth pursuing for improving AITC fumigation activity in Sitophilus zeamais control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dan Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingjing Ren
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shi Pu
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hua Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Glucosinolate induces transcriptomic and metabolic reprogramming in Helicoverpa armigera. 3 Biotech 2021; 11:26. [PMID: 33442524 DOI: 10.1007/s13205-020-02596-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Glucosinolates protect plants from herbivory. Lepidopteran insects have developed resistance to glucosinolates which is well studied. However, the molecular effects of glucosinolate intake on insects are unexplored. To elucidate this, we performed transcriptomics and metabolomics of sinigrin-fed Helicoverpa armigera. Transcriptomics exhibits significant dysregulation of 2375 transcripts, of which 1575 are upregulated and 800 downregulated. Gene Ontology analysis of differentially expressed genes reveals that key hydrolases, oxidoreductases, and transferases are majorly affected. The negative impact of sinigrin is significant and localized in the endomembrane system and mitochondria. It also disturbs various biological processes such as regulation of protein metabolism and cytoskeletal organization. Furthermore, H. armigera putative myrosinase-like enzymes may catalyze the breakdown of sinigrin to allyl isothiocyanate (AITC). AITC targets the electron transport chain causing oxidative stress. KEGG pathway enrichment shows significant upregulation of oxidative phosphorylation, glutathione metabolism and amino acid metabolism. Activation of these pathways induces glutathione synthesis for sinigrin detoxification. Differential gene expression indicates upregulation of glutathione S-transferase and succinate dehydrogenase suggesting mitochondrial impact. Transcriptomics data correlated with metabolomics show changes in serine, methionine, ornithine, and other metabolite levels. It corroborates well with the transcript alterations supporting the increased glutathione production. Thus, our data suggest that sinigrin generates oxidative stress in H. armigera and insects alter their metabolic wiring to overcome sinigrin-mediated deleterious effects. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02596-5.
Collapse
|
12
|
Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides. Int J Mol Sci 2017; 18:ijms18112445. [PMID: 29149030 PMCID: PMC5713412 DOI: 10.3390/ijms18112445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/28/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is the most important pest of Chinese chive. Insecticides are used widely and frequently to control B. odoriphaga in China. However, the performance of the insecticides chlorpyrifos and clothianidin in controlling the Chinese chive maggot is quite different. Using next generation sequencing technology, different expression unigenes (DEUs) in B. odoriphaga were detected after treatment with chlorpyrifos and clothianidin for 6 and 48 h in comparison with control. The number of DEUs ranged between 703 and 1161 after insecticide treatment. In these DEUs, 370–863 unigenes can be classified into 41–46 categories of gene ontology (GO), and 354–658 DEUs can be mapped into 987–1623 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expressions of DEUs related to insecticide-metabolism-related genes were analyzed. The cytochrome P450-like unigene group was the largest group in DEUs. Most glutathione S-transferase-like unigenes were down-regulated and most sodium channel-like unigenes were up-regulated after insecticide treatment. Finally, 14 insecticide-metabolism-related unigenes were chosen to confirm the relative expression in each treatment by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). The results of qRT-PCR and RNA Sequencing (RNA-Seq) are fairly well-established. Our results demonstrate that a next-generation sequencing tool facilitates the identification of insecticide-metabolism-related genes and the illustration of the insecticide mechanisms of chlorpyrifos and clothianidin.
Collapse
|