1
|
Qureshi MA, Amir M, Khan RH, Musarrat J, Javed S. Glycation reduces the binding dynamics of aflatoxin B 1 to human serum albumin: a comprehensive spectroscopic and computational investigation. J Biomol Struct Dyn 2023; 41:14797-14811. [PMID: 37021366 DOI: 10.1080/07391102.2023.2194000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/25/2023] [Indexed: 04/07/2023]
Abstract
Aflatoxin B1 (AFB1), a potent mutagen, is synthesized by Aspergillus parasiticus and Aspergillus flavus. Human serum albumin (HSA) is a globular protein with diverse roles. As AFB1 is ingested with food and is transported in the body via blood, it becomes pertinent to comprehend the effect of the binding of this toxin on the structure and conformation of HSA, which may help to get insight into the toxic effect of the exposure of the mycotoxin. In this study, multi-spectroscopic approaches have been used to evaluate the binding efficiency of AFB1 with both the native HSA (nHSA) and the glycated HSA (gHSA). Steady-state fluorescence spectroscopy reveals the static type of fluorescence quenching in the fluorescence emission spectra of nHSA and gHSA in the presence of AFB1. The binding constant (Kb) is calculated to be 6.88 × 104 M-1 for nHSA, while a reduced Kb value of 2.95 × 104 M-1 has been obtained for gHSA. The circular dichroism study confirms the change in the secondary structure of nHSA and gHSA in the presence of AFB1, followed by alterations in the melting temperature (Tm) of nHSA and gHSA. In silico computational findings envisaged the amino acid residues and bonds involved in the binding of nHSA and gHSA with AFB1. The comprehensive study analyzes the binding effectiveness of AFB1 with nHSA and gHSA and shows reduced binding of AFB1 to gHSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Nataraj N, Chen TW, Akilarasan M, Chen SM, Al-Ghamdi AA, Elshikh MS. Se substituted 2D-gC 3N 4 modified disposable screen-printed carbon electrode substrate: A bifunctional nano-catalyst for electrochemical and absorption study of hazardous fungicide. CHEMOSPHERE 2022; 302:134765. [PMID: 35500632 DOI: 10.1016/j.chemosphere.2022.134765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The indispensable usage of pesticides for the control and prevention of pests is probable and includes several types based on the problems in the crops. Among them, fungicides, are one problem-solving agent curing fungal developments. the disproportionate use of fungicides will lead to environmental deterioration and several health issues. The assessment of such fungicides is highly motivated to be detected. Under the class of two-dimensional materials, graphitic carbon nitride (GCN) with high surface area and high electrocatalytic activity was chosen as electrode material. The efficiency of GCN was improved with the subsequent substitution of selenium (Se) into the triazine ring as Se-GCN. The structural and surface analysis was done and the layered structure was proved. The electrochemical detection of CBM showed a lower detection limit at 6 nM with a linear range 0.099 μM-346.9 μM while, the absorption studies showed a LOD of 20 nM with a linear range of 0.099 μM-182.09 μM. The orange juice and vegetable extract samples had good recovery with CBM at Se-GCN modified disposable screen-printed electrode. The developed disposable electrode was more sensitive with 6.45 μAμM-1cm2 sensitivity and highly reactive with CBM. Moreover, the developed sensor will be more effective in sensing applications to avoid the menace generated by several agents.
Collapse
Affiliation(s)
- Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Muthumariappan Akilarasan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Siddiqui MF, Bano B. In-vitro assessment of the binding mechanism of oxyfluorfen (herbicide) with garlic phytocystatin: multi-spectroscopic and isothermal titration calorimetric study. J Biomol Struct Dyn 2019; 37:4120-4131. [DOI: 10.1080/07391102.2018.1544100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Bilqees Bano
- Department of Biochemistry, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
4
|
Siddiqui MF, Khan MS, Husain FM, Bano B. Deciphering the binding of carbendazim (fungicide) with human serum albumin: A multi-spectroscopic and molecular modelling studies. J Biomol Struct Dyn 2018; 37:2230-2241. [DOI: 10.1080/07391102.2018.1481768] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mohd Faizan Siddiqui
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi ArabiaCommunicated by Ramaswamy H. Sarma
| | - Bilqees Bano
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|