1
|
Zhong Y, Tang R, Lin L, Zhao W, Wei S, Zhang F, Uddin MK, Xie M, Chen H. RpedOBP1 plays key roles in aggregation pheromones reception of the Riptortus pedestris. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106073. [PMID: 39277386 DOI: 10.1016/j.pestbp.2024.106073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
Riptortus pedestris (Hemiptera: Alydidae) is a notable soybean pest, with diapause and non-diapause individuals showing different sensitivities to aggregation pheromones. This study aimed to investigate how R. pedestris detects aggregation pheromones through electroantennogram (EAG) and behavioral experiments, transcriptome sequencing and qRT-PCR, as well as competitive fluorescence-binding assay. Results indicated that diapausing females and males of R. pedestris exhibited a heightened EAG response and were more attracted to the aggregation pheromone components compared to their non-diapause counterparts. Transcriptome sequencing and qRT-PCR analyses revealed significantly higher expression of RpedOBP1 in the antennae of diapause females and males compared to non-diapausing R. pedestris. The competitive fluorescence-binding assay demonstrated that RpedOBP1 displayed the strongest binding affinity to E2HE2H, suggesting its crucial role in recognizing the aggregation pheromone. These findings have the potential to inform the development of integrated pest management strategies utilizing behavioral approaches for bean bug control.
Collapse
Affiliation(s)
- Yongzhi Zhong
- Anhui-CABI Joint Laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Lulu Lin
- Anhui-CABI Joint Laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wei Zhao
- Anhui-CABI Joint Laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shuang Wei
- Guangzhou Customs Technology Center, Guangzhou 510632, China
| | | | - Md Kafil Uddin
- Anhui-CABI Joint Laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Entomology Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Minghui Xie
- Anhui-CABI Joint Laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Haoliang Chen
- Anhui-CABI Joint Laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
2
|
Gu N, Chen YW, Ma S, Liu Q, Li JQ, Yang SH, Zhu WW, Li JB, Zhu XY, Li XM, Zhang YN. Chemosensory protein 22 in Riptortus pedestris is involved in the recognition of three soybean volatiles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106101. [PMID: 39277423 DOI: 10.1016/j.pestbp.2024.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
Riptortus pedestris (Hemiptera: Alydidae), a common agricultural pest, is the major causative agent of "soybean staygreen." However, the interactions between chemosensory proteins (CSPs) in R. pedestris and host plant volatiles have yet to be comprehensively studied. In this study, we performed real-time fluorescence quantitative polymerase chain reaction (PCR) to analyze the antennal expression of RpedCSP22 and subsequently analyzed the interactions between 21 soybean volatiles, five aggregation pheromones, and RpedCSP22 protein in vitro using a protein expression system, molecular docking, site-directed mutagenesis, and fluorescence competitive binding experiments. The RpedCSP22 protein showed binding affinity to three soybean volatiles (benzaldehyde, 4-ethylbenzaldehyde, and 1-octene-3-ol), with optimal binding observed under neutral pH conditions, and lost binding ability after site-directed mutagenesis. In subsequent RNA interference (RNAi) studies, gene silencing was more than 90 %, and in silenced insects, electroantennographic responses were reduced by more than 75 % compared to non-silenced insects. Moreover, Y-tube olfactory behavioral assessments revealed that the attraction of R. pedestris to the three soybean volatiles was significantly attenuated. These findings suggest that RpedCSP22 plays an important role in the recognition of host plant volatiles by R. pedestris andprovides a theoretical basis for the development of novel inhibitors targeting pest behavior.
Collapse
Affiliation(s)
- Nan Gu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yu-Wen Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Liu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Qiao Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Shu-Han Yang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Wen Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Suzhou Academy of Agricultural Sciences, Suzhou 234000, China; Suzhou Vocational and Technical College, Suzhou 234000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiao-Ming Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
3
|
Yin N, Shen D, Liang Y, Wang P, Li Y, Liu N. A Female-Biased Chemosensory Protein PxutCSP19 in the Antennae of Papilio xuthus Tuned to Host Volatiles and Insecticides. INSECTS 2024; 15:501. [PMID: 39057234 PMCID: PMC11276849 DOI: 10.3390/insects15070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Chemosensory protein (CSP) genes significantly enriched in the female antennae are potential molecular candidates for mediating female oviposition behaviors. In this study, we presented the interaction mechanisms of a female-antenna-biased PxutCSP19 in Papilio xuthus to 47 host volatiles, four biopesticides and 24 synthetic insecticides. Using a bioinformatics-based homology search, 22 genes orthologous to PxutCSP19 were identified from 22 other Papilio butterflies with high sequence identities to each other (73.20~98.72%). Multiple alignment analyses revealed a particularly extended N-terminus of Papilio CSP19s (an average of 154 residues) compared to insects' typical CSPs (approximately 120 residues). The expression profiles indicated that PxutCSP19 was significantly enriched in the female antennae, with a 31.81-fold difference relative to the male antennae. In ligand-binding assays, PxutCSP19 could strongly bind six host odorants with high affinities, ranging from dissociation constant (Ki) values of 20.44 ± 0.64 μM to 22.71 ± 0.73 μM. Notably, this protein was tuned to a monoterpenoid alcohol, linalool, which generally existed in the Rutaceae plants and elicited electrophysiological and behavioral activities of the swallowtail butterfly. On the other hand, PxutCSP19 was also capable of binding eight insecticides with stronger binding abilities (Ki < 12 μM) compared to host odorants. When an extended N-terminal region of PxutCSP19 was truncated into two different proteins, they did not significantly affect the binding of PxutCSP19 to ligands with high affinities, suggesting that this extended N-terminal sequences were not involved in the specificity of ligand recognition. Altogether, our study sheds light on the putative roles of PxutCSP19 enriched in the female antennae of P. xuthus in the perception of host volatiles and the sequestering of insecticides, and it complements the knowledge of butterfly CSPs in olfaction and insecticide resistance.
Collapse
Affiliation(s)
- Ningna Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Dan Shen
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| | - Yinlan Liang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| | - Pengfei Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| | - Yonghe Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| |
Collapse
|
4
|
Li JB, Liu Q, Ma S, Wang YY, Liu XZ, Wang CW, Wang DJ, Hu ZZ, Gan JW, Zhu XY, Li BP, Yin MZ, Zhang YN. Binding properties of chemosensory protein 4 in Riptortus pedestris to aggregation pheromones. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105874. [PMID: 38685243 DOI: 10.1016/j.pestbp.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.
Collapse
Affiliation(s)
- Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Suzhou Academy of Agricultural Sciences, Suzhou 234000, China; Suzhou Vocational and Technical College, Suzhou 234000, China
| | - Qiang Liu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yue-Ying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Xing-Zhou Liu
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Chao-Wei Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Da-Jiang Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | | | - Jia-Wen Gan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Bao-Ping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mao-Zhu Yin
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
5
|
Zheng R, Xie M, Keyhani NO, Xia Y. An insect chemosensory protein facilitates locust avoidance to fungal pathogens via recognition of fungal volatiles. Int J Biol Macromol 2023; 253:127389. [PMID: 37827395 DOI: 10.1016/j.ijbiomac.2023.127389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Locusts (Locusta migratoria) are one of the most destructive insect pests worldwide. Entomopathogenic fungi can infect and kill locusts, with Metarhizium acridum having evolved as a specialized acridid pathogen. However, locusts have evolved countermeasures to limit or avoid microbial pathogens, although the underlying molecular mechanisms behind these defenses remain obscure. Here, we demonstrate that L. migratoria exhibit avoidance behaviors towards M. acridum contaminated food via recognition of fungal volatiles, with locust perception of the volatile mediated by the LmigCSP60 chemosensory protein. RNAi-knockdown of LmigCSP60 lowered locust M. acridum avoidance behavior and increased infection and mortality. The fungal volatile, 2-phenylethanol (PEA), was identified to participate in locust behavioral avoidance. RNAi-knockdown of LmigCSP60 reduced antennal electrophysiological responses to PEA and impaired locust avoidance to the compound. Purified LmigCSP60 was able to bind a set of fungal volatiles including PEA. Furthermore, reduction of PEA emission by M. acridum via construction of a targeted gene knockout mutant of the alcohol dehydrogenase gene (ΔMaAdh strain) that contributes to PEA production reduced locust avoidance behavior towards the pathogen. These findings identify an olfactory circuit used by locusts to detect and avoid potential microbial pathogens before they are capable of initiating infection and highlight behavioral and olfactory adaptations affecting the co-evolution of host-pathogen interactions.
Collapse
Affiliation(s)
- Renwen Zheng
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, China.
| | - Mushan Xie
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Nemat O Keyhani
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA.
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China.
| |
Collapse
|
6
|
Lun X, Xu X, Zhang Y, Zhang R, Cao Y, Zhang X, Jin M, Zhang Z, Zhao Y. An Antennae-Enriched Odorant-Binding Protein EonuOBP43 Mediate the Behavioral Response of the Tea Green Leafhopper, Empoasca onukii Matsuda to the Host and Nonhost Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20000-20010. [PMID: 38059819 DOI: 10.1021/acs.jafc.3c07144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Olfaction is crucial for Empoasca onukii Matsuda to recognize odors from the host and nonhost plants, and it has been proposed that odorant binding proteins are directly required for odorant discrimination and represent potential targets of interest for pest control. Here, we cloned EonuOBP43 and expressed the recombinant EonuOBP43 protein. Furthermore, competitive fluorescence binding assays with 19 ligands indicated that terpenoids and alkanes showed a relatively higher than for other classes of chemicals. Additionally, ligand docking and site-directed mutagenesis results revealed that seven hydrophobic residues, including Val-86, Met-89, Phe-90, Ile-104, Ile-105, Leu-130, and Val-134, played a key role in the binding of EonuOBP43 to plant volatiles. In olfactometer tests, E. onukii were significantly attracted to α-farnesene and repelled to β-caryophyllene, and dsOBP43 treated adult lost response to α-farnesene and β-caryophyllene. In summary, our results demonstrated that EonuOBP43 may function as a carrier in the process of sensing plant compounds of E. onukii.
Collapse
Affiliation(s)
- Xiaoyue Lun
- Shandong Agricultural University, Tai'an 271018, China
| | - Xiuxiu Xu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Yu Zhang
- Shandong Agricultural University, Tai'an 271018, China
| | - Ruirui Zhang
- Shandong Agricultural University, Tai'an 271018, China
| | - Yan Cao
- Shandong Agricultural University, Tai'an 271018, China
| | | | - Meina Jin
- Shandong Agricultural University, Tai'an 271018, China
| | | | - Yunhe Zhao
- Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
7
|
Han KR, Wang WW, Yang WQ, Li X, Liu TX, Zhang SZ. Characterization of CrufCSP1 and Its Potential Involvement in Host Location by Cotesia ruficrus (Hymenoptera: Braconidae), an Indigenous Parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. INSECTS 2023; 14:920. [PMID: 38132594 PMCID: PMC10744196 DOI: 10.3390/insects14120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Chemosensory proteins (CSPs) are a class of soluble proteins that facilitate the recognition of chemical signals in insects. While CSP genes have been identified in many insect species, studies investigating their function remain limited. Cotesia ruficrus (Hymenoptera: Braconidae) holds promise as an indigenous biological control agent for managing the invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. This study aimed to shed light on the gene expression, ligand binding, and molecular docking of CrufCSP1 in C. ruficrus. A RT-qPCR analysis revealed that the expression of CrufCSP1 was higher in the wings, with male adults exhibiting significantly higher relative expression levels than other developmental stages. A fluorescence competitive binding analysis further demonstrated that CrufCSP1 has a high binding ability with several host-related volatiles, with trans-2-hexenal, octanal, and benzaldehyde showing the strongest affinity to CrufCSP1. A molecular docking analysis indicated that specific amino acid residues (Phe24, Asp25, Thr53, and Lys81) of CrufCSP1 can bind to these specific ligands. Together, these findings suggest that CrufCSP1 may play a crucial role in the process of C. ruficrus locating hosts. This knowledge can contribute to the development of more efficient and eco-friendly strategies for protecting crops and managing pests.
Collapse
Affiliation(s)
- Kai-Ru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Wen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Xian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| |
Collapse
|
8
|
Yin NN, Yao YJ, Liang YL, Wang ZQ, Li YH, Liu NY. Functional characterization of four antenna-biased chemosensory proteins in Dioryctria abietella reveals a broadly tuned olfactory DabiCSP1 and its key residues in ligand-binding. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105678. [PMID: 38072535 DOI: 10.1016/j.pestbp.2023.105678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
The orientation of the oligophagous cone-feeding moth Dioryctria abietella (Lepidoptera: Pyralidae) to host plants primarily relies on olfactory-related proteins, particularly those candidates highly expressed in antennae. Here, through a combination of expression profile, ligand-binding assay, molecular docking and site-directed mutagenesis strategies, we characterized the chemosensory protein (CSP) gene family in D. abietella. Quantitative real-time PCR (qPCR) analyses revealed the detectable expression of all 22 DabiCSPs in the antennae, of which seven genes were significantly enriched in this tissue. In addition, the majority of the genes (19/22 relatives) had the expression in at least one reproductive tissue. In the interactions of four antenna-dominant DabiCSPs and different chemical classes, DabiCSP1 was broadly tuned to 27 plant-derived odors, three man-made insecticides and one herbicide with high affinities (Ki < 6.60 μM). By contrast, three other DabiCSPs (DabiCSP4, CSP6 and CSP17) exhibited a narrow odor binding spectrum, in response to six compounds for each protein. Our mutation analyses combined with molecular docking simulations and binding assays further identified four key residues (Tyr25, Thr26, Ile65 and Val69) in the interactions of DabiCSP1 and ligands, of which binding abilities of this protein to 12, 15, 16 and three compounds were significantly decreased compared to the wildtype protein, respectively. Our study reveals different odor binding spectra of four DabiCSPs enriched in antennae and identifies key residues responsible for the binding of DabiCSP1 and potentially active compounds for the control of this pest.
Collapse
Affiliation(s)
- Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Juan Yao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yin-Lan Liang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zheng-Quan Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yong-He Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
9
|
Guo P, Hao E, Li H, Yang X, Lu P, Qiao H. Expression Pattern and Ligand Binding Characteristics Analysis of Chemosensory Protein SnitCSP2 from Sirex nitobei. INSECTS 2023; 14:583. [PMID: 37504589 PMCID: PMC10380366 DOI: 10.3390/insects14070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
Sirex nitobei is an important wood-boring wasp to conifers native to Asia, causing considerable economic and ecological damage. However, the current control means cannot achieve better efficiency, and it is expected to clarify the molecular mechanism of protein-ligand binding for effective pest control. This study analyzed the expression pattern of CSP2 in S. nitobei (SnitCSP2) and its features of binding to the screened ligands using molecular docking and dynamic simulations. The results showed that SnitCSP2 was significantly expressed in female antennae. Molecular docking and dynamic simulations revealed that SnitCSP2 bound better to the host plant volatile (+)-α-pinene and symbiotic fungal volatiles terpene and (-)-globulol than other target ligands. By the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, the free binding energies of the three complexes were calculated as -44.813 ± 0.189 kJ/mol, -50.446 ± 0.396 kJ/mol, and -56.418 ± 0.368 kJ/mol, and the van der Waals energy was found to contribute significantly to the stability of the complexes. Some key amino acid residues were also identified: VAL13, GLY14, LYS61, MET65, and LYS68 were important for the stable binding of (+)-α-pinene by SnitCSP2, while for terpenes, ILE16, ALA25, TYR26, CYS29, GLU39, THR37, and GLY40 were vital for a stable binding system. We identified three potential ligands and analyzed the interaction patterns of the proteins with them to provide a favorable molecular basis for regulating insect behavioral interactions and developing new pest control strategies.
Collapse
Affiliation(s)
- Pingping Guo
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Han Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xi Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
10
|
Pino J, Godoy R, Venthur H, Larama G, Quiroz A, Mutis A. Identification and ligand binding of a chemosensory protein from sea louse Caligus rogercresseyi (Crustacea: Copepoda). Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110830. [PMID: 36649785 DOI: 10.1016/j.cbpb.2023.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Caligus rogercresseyi is an ectoparasitic copepod that negatively affects the salmon farming industry, causing economic losses. To use phytochemicals as feed additives, or other chemicals that could elicit behavioral responses in C. rogercresseyi, the chemosensory recognition process is crucial. Therefore, to establish how C. rogercresseyi recognizes glucosinolates and their derivates isothiocyanates, a chemosensory protein (CSP) described as specific carrier of these chemicals in sea louse (CrogCSP) was identified in this study. The recombinant CSP and its selectivity against different chemical compounds was tested by fluorescence binding assays. Phylogenetic analysis revealed a close relationship among CrogCSP and other reported CSPs. Our results indicate that phenyl isothiocyanate and isophorone exhibited dissociation constants of 4.17 and 4.28 μM of Ki, respectively, indicating affinity over other chemicals, such as fatty acids and sinigrin. Structural findings suggest a unique binding site capable of accept several types of chemicals, similar to what has been reported for crystallized insect CSPs. Finally, this study lays the foundation for a deeper understanding of CSPs in crustaceans and especially in C. rogercresseyi. Likewise, the identification of chemosensory proteins could serve as the first step towards novel semiochemicals discovery to being applied in the sea louse controlling.
Collapse
Affiliation(s)
- Jorge Pino
- Cargill Innovation Center Colaco, Chile.
| | - Ricardo Godoy
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Chile.
| | - Herbert Venthur
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile.
| | - Giovanni Larama
- Centro de Genómica Nutricional Agroacuícola, CGNA, Temuco, Chile.
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile.
| | - Ana Mutis
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
11
|
Zhu J, Wang F, Zhang Y, Yang Y, Hua D. Odorant-binding Protein 10 From Bradysia odoriphaga (Diptera: Sciaridae) Binds Volatile Host Plant Compounds. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7. [PMID: 36729094 PMCID: PMC9894006 DOI: 10.1093/jisesa/iead004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/18/2023]
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a major insect pest of seven plant families including 30 commercial crops in Asia. The long-term use of chemical pesticides leads to problems such as insect resistance, environmental issues, and food contamination. Against this background, a novel pest control method should be developed. In insects, odorant-binding proteins (OBPs) transport odor molecules, including pheromones and plant volatiles, to olfactory receptors. Here, we expressed and characterized the recombinant B. odoriphaga OBP BodoOBP10, observing that it could bind the sulfur-containing compounds diallyl disulfide and methyl allyl disulfide with Ki values of 8.01 μM and 7.00 μM, respectively. Homology modeling showed that the BodoOBP10 3D structure was similar to that of a typical OBP. Both diallyl disulfide and methyl allyl disulfide bound to the same site on BodoOBP10, mediated by interactions with six hydrophobic residues Met70, Ile75, Thr89, Met90, Leu93, and Leu94, and one aromatic residue, Phe143. Furthermore, silencing BodoOBP10 expression via RNAi significantly reduced the electroantennogram (EAG) response to diallyl disulfide and methyl allyl disulfide. These findings suggest that BodoOBP10 should be involved in the recognition and localization of host plants.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | |
Collapse
|
12
|
Yang Y, Hua D, Zhu J, Wang F, Zhang Y. Chemosensory protein 4 is required for Bradysia odoriphaga to be olfactory attracted to sulfur compounds released from Chinese chives. Front Physiol 2022; 13:989601. [PMID: 36237523 PMCID: PMC9552003 DOI: 10.3389/fphys.2022.989601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a serious pest of Chinese chives cultivated in China. Chemosensory proteins (CSPs) are important components of insect olfactory systems that capture and bind environmental semiochemicals which are then transported to olfactory receptors. Despite their importance, the mechanism of olfaction and related behavioral processes in B. odoriphaga have not been characterized. Here, we found that BodoCSP4 has an important olfactory function. RT-qPCR indicated that BodoCSP4 expression was highest in the heads (antennae removed) of adult males, followed by the antennae of adult males. Competitive binding assays with 33 ligands indicated that BodoCSP4 binds well with methyl allyl disulfide, diallyl disulfide, and n-heptadecane; the corresponding dissolution constants (Ki) were as high as 5.71, 5.71, and 6.85 μM, respectively. 3D-structural and molecular docking indicated that BodoCSP4 has five α-helices and surrounds the ligand with certain hydrophobic residues including Leu60, Leu63, Leu64, Ala67, Val28, Ile30, Ile33, Leu34, and Val86, suggesting these residues help BodoCSP4 bind to ligands. Silencing of BodoCSP4 significantly decreased the attraction of B. odoriphaga males to diallyl disulfide and n-heptadecane but not to methyl allyl disulfide in Y-tube olfaction assays. These results increase our understanding of how BodoCSP4 contributes to host and female localization by B. odoriphaga males.
Collapse
Affiliation(s)
- Yuting Yang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Dengke Hua
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, Hubei, China
| | - Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Youjun Zhang,
| |
Collapse
|
13
|
Cui Z, Liu Y, Wang G, Zhou Q. Identification and functional analysis of a chemosensory protein from Bactrocera minax (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2022; 78:3479-3488. [PMID: 35567397 DOI: 10.1002/ps.6988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Olfaction has an indispensable role in insect behavior, enabling location of suitable host plants and oviposition sites, finding mates and evasion of natural enemies. Chemosensory proteins (CSPs) function to screen external odorants and transport them to olfactory receptor neurons, thereby increasing the sensitivity of the olfactory system. At present, CSP genes have been identified in many insect species, but there are relatively few studies on the function of CSP, especially in Tephritidae. RESULTS In this study, we sequenced and analyzed 12 transcriptomes of Bactrocera minax and identified five CSP genes. The results of polymerase chain reactions with reverse transcription showed that BminCSP3 was highly expressed only in antennae. Results from competitive binding experiments showed that BminCSP3 has good binding ability to citral compared with 23 other volatile organic compounds. The docking model with citral showed hydrogen bond formation with residues (ARG97); however, no hydrogen bonds were formed in the docking of five other ligands (furfuryl alcohol, linalool, cis-3-hexenyl acetate, (R)-(+)-limonene and (+)-carvone). Electroantennogram (EAG) analyses revealed that citral was active in B. minax at the antennal level, and the EAG response value of female adults was significantly higher than that of male adults. Furthermore, the results of behavioral bioassays showed that females were significantly attracted to citral. CONCLUSION Our results suggest that BminCSP3 plays an important role in the recognition of citral by B. minax adults. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongyi Cui
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yipeng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
14
|
Li JB, Yin MZ, Yao WC, Ma S, Dewer Y, Liu XZ, Wang YY, Wang CW, Li BP, Zhu XY. Genome-Wide Analysis of Odorant-Binding Proteins and Chemosensory Proteins in the Bean bug Riptortus pedestris. Front Physiol 2022; 13:949607. [PMID: 35910558 PMCID: PMC9329939 DOI: 10.3389/fphys.2022.949607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Insects have sensitive olfactory systems to interact with environment and respond to the change in host plant conditions. Key genes in the system can be potential targets for developing new and efficient pest behaviour control methods. Riptortus pedestris is an important soybean pest in East Asia and has caused serious damage to the soybean plants in Huang-Huai-Hai region of China. However, the current treatment of pests is dominated by chemical insecticides and lacks efficient sustainable prevention and control technologies. In this study, we identified 49 putative odorant-binding proteins (OBPs) (43 were new genes) and 25 chemosensory proteins (CSPs) (17 were new genes) in R. pedestris genome. These OBP and CSP genes are clustered in highly conserved groups from other hemipteran species in phylogenetic trees. Most RpedOBPs displayed antennal-biased expression. Among the 49 RpedOBPs, 33 were significantly highly expressed in the antennae, including three male-biased and nine female-biased. While many RpedCSPs were detected both in the antennae and in non-antennal tissues, only 11 RpedCSPs displayed antennal-biased expression, in which four RpedCSPs were male-biased and five RpedCSPs were female-biased. Some OBP and CSP genes showed sex-biased expression profiles. Our results not only provide a foundation for future exploration of the functions of RpedOBPs and RpedCSPs but also aid in developing environmentally friendly insecticides in the future.
Collapse
Affiliation(s)
- Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Sai Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Xing-Zhou Liu
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Yue-Ying Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Chao-Wei Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Bao-Ping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Bao-Ping Li, ; Xiu-Yun Zhu,
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
- *Correspondence: Bao-Ping Li, ; Xiu-Yun Zhu,
| |
Collapse
|
15
|
Li J, Zhang L. Electroantennographic activity of 21 aliphatic compounds that bind well to a locust odorant-binding protein. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21911. [PMID: 35599375 DOI: 10.1002/arch.21911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Odorants that bind well to odorant-binding proteins (OBPs) often trigger olfactory responses and have important biological significance. The locust Locusta migratoria (Meyen) (Orthoptera: Acrididae) is a serious agricultural pest. Twenty-one saturated aliphatic compounds with carbon-oxygen bonds and straight chains of 10-17 carbon atoms bind well to an L. migratoria OBP. In this study, olfactory activities of these aliphatic compounds on L. migratoria adult males were tested by electroantennography (EAG) and comparatively analyzed. Four alcohols (undecanol, dodecanol, tridecanol, and tetradecanol), two ketones (2-dodecanone and 2-tridecanone), and two esters (ethyl octanoate and ethyl nonanoate) triggered strong EAG responses, and there was no significant difference between them. The results suggest that the eight compounds are more likely to have important biological significance than the other compounds. Moreover, we found that there is not necessarily a positive correlation between the olfactory activity of odorants and their binding ability with OBP. The study contributes to understanding the odorants with biological significance for L. migratoria and the molecular mechanism of the locust's olfaction.
Collapse
Affiliation(s)
- Jia Li
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Long Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
16
|
Marchant A, Mougel F, Jacquin-Joly E, Almeida CE, Blanchet D, Bérenger JM, da Rosa JA, Harry M. Chemosensory Gene Expression for Two Closely Relative Species Rhodnius robustus and R. prolixus (Hemiptera, Reduviidade, Triatominae) Vectors of Chagas Disease. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.725504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two closely related species, Rhodnius prolixus and Rhodnius robustus, are the vectors of Trypanosoma cruzi, which is the causative agent of Chagas disease, but clearly exhibit clear-cut differences in their ecological behavior. R. prolixus is considered as a domiciliated species, whereas R. robustus only sporadically visits human houses in Amazonia. We performed a chemosensory gene expression study via RNA-sequencing (RNA-seq) for the two species and also included a laboratory introgressed R. robustus strain. We built an assembled transcriptome for each sample and for both sexes and compiled all in a reference transcriptome for a differential gene expression study. Because the genes specifically expressed in one condition and not expressed in another may also reflect differences in the adaptation of organisms, a comparative study of the presence/absence of transcripts was also performed for the chemosensory transcripts, namely chemosensory proteins (CSPs), odorant-binding proteins (OBPs), odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs), as well as takeout (TO) transcripts because TO proteins have been proposed to be associated with chemosensory perception in both olfactory and taste systems. In this study, 12 novel TO transcripts from the R. prolixus genome were annotated. Among the 199 transcripts, out of interest, annotated in this study, 93% were conserved between R. prolixus and the sylvatic R. robustus. Moreover, 10 transcripts out of interest were specifically expressed in one sex and absent in another. Three chemosensory transcripts were found to be expressed only in the reared R. prolixus (CSP19, OBP9, and OR89) and only one in sylvatic R. robustus (OR22). A large set of transcripts were found to be differentially expressed (DE) between males and females (1,630), with a majority of them (83%) overexpressed in males. Between environmental conditions, 8,596 transcripts were DE, with most (67%) overexpressed in the sylvatic R. robustus samples, including 17 chemosensory transcripts (4 CSPs, 1 OBP, 5 ORs, 1 GR, 4 IR, and 2 TO), but 4 genes (OBP19, OR13, OR40, and OR79) were overexpressed in the reared samples.
Collapse
|
17
|
Pan Y, Zhang X, Wang Z, Qi L, Zhang X, Zhang J, Xi J. Identification and analysis of chemosensory genes encoding odorant-binding proteins, chemosensory proteins and sensory neuron membrane proteins in the antennae of Lissorhoptrus oryzophilus. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 112:1-11. [PMID: 34588009 DOI: 10.1017/s0007485321000857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive pest that causes damage to rice crops worldwide. The olfactory system is critical for host or mate location by weevils, but only limited information about the molecular mechanism of olfaction-related behaviour has been reported in this insect. In this study, we conducted SMRT-seq transcriptome analysis and obtained 54,378 transcripts, 38,706 of which were annotated. Based on these annotations, we identified 40 candidate chemosensory genes, including 31 odorant-binding proteins (OBPs), six chemosensory proteins (CSPs) and three sensory neuron membrane proteins (SNMPs). Phylogenetic analysis showed that LoryOBPs, LoryCSPs and LorySNMPs were distributed in various clades. The results of tissue expression patterns indicated that LoryOBPs were highly abundant in the antennae, whereas LoryCSPs were highly abundant not only in the antennae but also in the abdomen, head and wings. Our findings substantially expand the gene database of L. oryzophilus and may serve as a basis for identifying novel targets to disrupt key olfactory genes, potentially providing an eco-friendly strategy to control this pest in the future.
Collapse
Affiliation(s)
- Yu Pan
- College of Plant Science, Jilin University, Changchun130062, PR China
| | - Xinxin Zhang
- College of Plant Science, Jilin University, Changchun130062, PR China
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhun Wang
- Changchun Customs Technology Center, Changchun, China
| | - Lizhong Qi
- College of Plant Science, Jilin University, Changchun130062, PR China
| | - Xinsheng Zhang
- College of Plant Science, Jilin University, Changchun130062, PR China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun130062, PR China
| |
Collapse
|
18
|
Li LL, Xu JW, Yao WC, Yang HH, Dewer Y, Zhang F, Zhu XY, Zhang YN. Chemosensory genes in the head of Spodoptera litura larvae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:454-463. [PMID: 33632348 DOI: 10.1017/s0007485321000109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes-SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242-were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.
Collapse
Affiliation(s)
- Lu-Lu Li
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Wei-Chen Yao
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Hui-Hui Yang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618Giza, Egypt
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan250014, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| |
Collapse
|
19
|
Liu XQ, Jiang HB, Fan JY, Liu TY, Meng LW, Liu Y, Yu HZ, Dou W, Wang JJ. An odorant-binding protein of Asian citrus psyllid, Diaphorina citri, participates in the response of host plant volatiles. PEST MANAGEMENT SCIENCE 2021; 77:3068-3079. [PMID: 33686750 DOI: 10.1002/ps.6352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Odorant-binding proteins (OBPs) in insects contribute to the sensitivity of the olfactory system and connect external odorants to olfactory receptor neurons. Determination of the chemosensory functions in Diaphorina citri, a vector of the citrus Huanglongbing pathogen, may help in developing a potential target for pest management. RESULTS Diaphorina citri showed dose-dependent electroantennogram recording (EAG) responses to 12 host plant volatiles. A two-choice behavioral trap experiment showed that four compounds (methyl salicylate, linalool, citral and R-(+)-limonene) that elicited high EAG responses also had significant attraction to adults. The expression profiles induced by these compounds were detected in nine OBP genes, DcitOBP1-9. DcitOBP3, DcitOBP6 and DcitOBP7 commonly showed significant upregulation or downregulation compared with the control. Microscale thermophoresis (MST) showed that the recombinant protein DcitOBP7 had high in vitro binding affinities (Kd < 10 μm) to methyl salicylate, linalool and R-(+)-limonene, and moderate binding affinity to citral with a Kd value of 15.95 μm. Furthermore, RNA interference (RNAi)-suppressed messenger RNA (mRNA) expression of DcitOBP7 resulted in a significant reduction in EAG activity and in adult D. citri behavioral responses to tested volatiles and the preferred host, Murraya paniculata. The hydrophilic residue Arg107 of DcitOBP7 may have a key role in binding odorants via formation of hydrogen bonds. CONCLUSION These results show that DcitOBP7 plays an important role in the olfactory response. This finding may provide new insight into the functions of OBP families in D. citri and aid in the development of safe strategies for managing D. citri populations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Yao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Yuan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai-Zhong Yu
- Laboratory of Pest and Disease Control, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Wang R, Yang Y, Jing Y, Segar ST, Zhang Y, Wang G, Chen J, Liu QF, Chen S, Chen Y, Cruaud A, Ding YY, Dunn DW, Gao Q, Gilmartin PM, Jiang K, Kjellberg F, Li HQ, Li YY, Liu JQ, Liu M, Machado CA, Ming R, Rasplus JY, Tong X, Wen P, Yang HM, Yang JJ, Yin Y, Zhang XT, Zhang YY, Yu H, Yue Z, Compton SG, Chen XY. Molecular mechanisms of mutualistic and antagonistic interactions in a plant-pollinator association. Nat Ecol Evol 2021; 5:974-986. [PMID: 34002050 DOI: 10.1038/s41559-021-01469-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Many insects metamorphose from antagonistic larvae into mutualistic adult pollinators, with reciprocal adaptation leading to specialized insect-plant associations. It remains unknown how such interactions are established at molecular level. Here we assemble high-quality genomes of a fig species, Ficus pumila var. pumila, and its specific pollinating wasp, Wiebesia pumilae. We combine multi-omics with validation experiments to reveal molecular mechanisms underlying this specialized interaction. In the plant, we identify the specific compound attracting pollinators and validate the function of several key genes regulating its biosynthesis. In the pollinator, we find a highly reduced number of odorant-binding protein genes and an odorant-binding protein mainly binding the attractant. During antagonistic interaction, we find similar chemical profiles and turnovers throughout the development of galled ovules and seeds, and a significant contraction of detoxification-related gene families in the pollinator. Our study identifies some key genes bridging coevolved mutualists, establishing expectations for more diffuse insect-pollinator systems.
Collapse
Affiliation(s)
- Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yang Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yi Jing
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, UK
| | - Yu Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jin Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | | | - Shan Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | | | - Yuan-Yuan Ding
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Derek W Dunn
- College of Life Sciences, Northwest University, Xi'an, China
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Philip M Gilmartin
- Department of Biological and Marine Science, University of Hull, Hull, UK
| | - Kai Jiang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Finn Kjellberg
- CEFE, CNRS, University of Montpellier, Paul Valéry University Montpellier, EPHE, IRD, Montpellier, France
| | - Hong-Qing Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan-Yuan Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jian-Quan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Min Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Xin Tong
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ping Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | | | - Jing-Jun Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ye Yin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xing-Tan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. .,School of Life Sciences, Qufu Normal University, Qufu, China.
| | - Zhen Yue
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.
| | | | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China. .,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
21
|
Fu S, Li F, Yan X, Hao C. Expression Profiles and Binding Properties of the Chemosensory Protein PxylCSP11 from the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5924359. [PMID: 33057681 PMCID: PMC7583271 DOI: 10.1093/jisesa/ieaa107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 05/08/2023]
Abstract
The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) is one of the most destructive pests to cruciferous plants worldwide. The oligophagous moth primarily utilizes its host volatiles for foraging and oviposition. Chemosensory proteins (CSPs) are soluble carrier proteins with low molecular weight, which recognize and transport various semiochemicals in insect chemoreception. At present, there is limited information on the recognition of host volatiles by CSPs of P. xylostella. Here, we investigated expression patterns and binding characteristics of PxylCSP11 in P. xylostella. The open reading frame of PxylCSP11 was 369-bp encoding 122 amino acids. PxylCSP11 possessed four conserved cysteines, which was consistent with the typical characteristic of CSPs. PxylCSP11 was highly expressed in antennae, and the expression level of PxylCSP11 in male antennae was higher than that in female antennae. Fluorescence competitive binding assays showed that PxylCSP11 had strong binding abilities to several ligands, including volatiles of cruciferous plants, and (Z)-11-hexadecenyl acetate (Z11-16:Ac), a major sex pheromone of P. xylostella. Our results suggest that PxylCSP11 may play an important role in host recognition and spouse location in P. xylostella.
Collapse
Affiliation(s)
- Shuhui Fu
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Fangyuan Li
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xizhong Yan
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Chi Hao
- College of Agriculture, Shanxi Agricultural University, Taigu, China
- Corresponding author, e-mail:
| |
Collapse
|
22
|
Zhang H, Chen JL, Lin JH, Lin JT, Wu ZZ. Odorant-binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid, Diaphorina citri. PEST MANAGEMENT SCIENCE 2020; 76:2609-2618. [PMID: 32083388 DOI: 10.1002/ps.5799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are two families of small water-soluble proteins involved in odor detection and subsequent signal transmission. Determination of their binding mechanisms and specificity towards different odorants is important for developing OBPs/CSPs as targets in pest control management. RESULTS We re-annotated genes encoding putative OBPs and CSPs in the Asian citrus psyllid (Diaphorina citri) draft genome using various bioinformatic tools. Genes encoding nine OBPs (seven Classic and two Plus-C) and 12 CSPs were identified, consistent with our previous transcriptomic results. Tissue-specific and developmental expression analyses suggested that genes encoding six OBPs and four CSPs were predominantly expressed in antennae, and displayed various expression patterns in different development stages, suggesting potential involvement in olfactory perception. Competitive fluorescence binding assays with 13 candidate ligands, including known host plant volatiles, sex pheromone components and repellents, showed that DcitOBP3 could bind to various odorants, whereas DcitOBP6, 8 and 9 bound specifically to host plant terpenoids. DcitCSP1 and 12 could also bind to certain terpenoids with high binding specificity. CONCLUSION OBP- and CSP-encoding genes were systematically identified by annotating the draft D. citri genome and those potentially involved in odorant detection and signal transmission were identified by analyzing their tissue-expression profiles and odorant-binding affinities, particularly to the peripheral molecular perception of host plant terpenoids. The identified genes may provide potential targets for efficient pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- He Zhang
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jun-Long Chen
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jia-Hao Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jin-Tian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Zhong-Zhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
He Y, Wang K, Zeng Y, Guo Z, Zhang Y, Wu Q, Wang S. Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics 2020; 112:2291-2301. [DOI: 10.1016/j.ygeno.2019.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023]
|
24
|
Qu MQ, Cui Y, Zou Y, Wu ZZ, Lin JT. Identification and expression analysis of odorant binding proteins and chemosensory proteins from dissected antennae and mouthparts of the rice bug Leptocorisa acuta. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100631. [PMID: 31706978 DOI: 10.1016/j.cbd.2019.100631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The rice bug, Leptocorisa acuta (Tunberg) (Hemiptera: Alydidae), is a notorious pest in Asia, and it is significantly attracted by the volatiles derived from host plants. However, it remains unknown how L. acuta recognizes host volatile compounds at the molecular level. Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are thought to be responsible for the initial biochemical recognition during olfactory perception. Here, we followed the RNA Sequencing (RNA-Seq) approach to identify candidate genes encoding OBPs and CSPs from dissected antennae and mouthparts of L. acuta. In total, 26 unigenes were identified coding for OBPs (22 Classic OBPs and four Plus-C OBPs), and 17 unigenes coding for CSPs. Real-time quantitative PCR (RT-qPCR) revealed that 11 OBPs (LacuOBP1, 5, 6, 7, 9, 11, 13, 14, 17, 20 and 23) and nine CSPs (LacuCSP2, 3, 4, 5, 6, 8, 9, 10 and 12) were predominantly expressed in antennae, indicating that they might be essential for detection of general odorants and pheromones. Among these antennae-predominantly expressed genes, LacuOBP11 and LacuOBP13 showed male-biased expression and therefore may play crucial roles in the detection of sex pheromones. Seven LacuOBPs (LacuOBP4, 8, 10, 12, 21, 25 and 26) and two CSPs (LacuCSP7 and LacuOBP11) were predominantly expressed in mouthparts, suggesting that these genes might be involved in taste perception. Our work provides a starting point to facilitate functional study of these OBPs and CSPs in L. acuta at the molecular level in the future.
Collapse
Affiliation(s)
- Meng-Qiu Qu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Yang Cui
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Yan Zou
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Zhong-Zhen Wu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Jin-Tian Lin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China.
| |
Collapse
|
25
|
Xu JW, Zhu XY, Chao QJ, Zhang YJ, Yang YX, Wang RR, Zhang Y, Xie MZ, Ge YT, Wu XL, Zhang F, Zhang YN, Ji L, Xu L. Chemosensory Gene Families in the Oligophagous Pear Pest Cacopsylla chinensis (Hemiptera: Psyllidae). INSECTS 2019; 10:insects10060175. [PMID: 31212973 PMCID: PMC6628306 DOI: 10.3390/insects10060175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/28/2023]
Abstract
Chemosensory systems play an important role in insect behavior, and some key associated genes have potential as novel targets for pest control. Cacopsylla chinensis is an oligophagous pest and has become one of the main pests of pear trees, but little is known about the molecular-level means by which it locates its hosts. In this study, we assembled the head transcriptome of C. chinensis using Illumina sequencing, and 63,052 Unigenes were identified. A total of 36 candidate chemosensory genes were identified, including five different families: 12 odorant binding proteins (OBPs), 11 chemosensory proteins (CSPs), 7 odorant receptors (ORs), 4 ionotropic receptors (IRs), and 2 gustatory receptors (GRs). The number of chemosensory gene families is consistent with that found in other Hemipteran species, indicating that our approach successfully obtained the chemosensory genes of C. chinensis. The tissue expression of all genes using quantitative real-time PCR (qRT-PCR) found that some genes displayed male head, female head, or nymph-biased specific/expression. Our results enrich the gene inventory of C. chinensis and provide valuable resources for the analysis of the functions of some key genes. This will help in developing molecular targets for disrupting feeding behavior in C. chinensis.
Collapse
Affiliation(s)
- Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Qiu-Jie Chao
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yong-Jie Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yu-Xia Yang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ran-Ran Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yu Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Meng-Zhen Xie
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Ting Ge
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xin-Lai Wu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250000, China.
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Lei Ji
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Lu Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|