1
|
Mokhfi FZ, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Vallamkonda B, Balakrishnan A, Challa M, Singh J, Prasad PD, Ali SS, Ahmad I, Doukani K, Emran TB. Alkaloid-based modulators of the PI3K/Akt/mTOR pathway for cancer therapy: Understandings from pharmacological point of view. Chem Biol Interact 2024; 402:111218. [PMID: 39209016 DOI: 10.1016/j.cbi.2024.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This review aims to summarize the role of alkaloids as potential modulators of the PI3K/Akt/mTOR (PAMT) pathway in cancer therapy. The PAMT pathway plays a critical role in cell growth, survival, and metabolism, and its dysregulation contributes to cancer hallmarks. In healthy cells, this pathway is tightly controlled. However, this pathway is frequently dysregulated in cancers and becomes abnormally active. This can happen due to mutations in genes within the pathway itself or due to other factors. This chronic overactivity promotes cancer hallmarks such as uncontrolled cell division, resistance to cell death, and increased blood vessel formation to nourish the tumor. As a result, the PAMT pathway is a crucial therapeutic target for cancer. Researchers are developing drugs that specifically target different components of this pathway, aiming to turn it off and slow cancer progression. Alkaloids, a class of naturally occurring nitrogen-containing molecules found in plants, have emerged as potential therapeutic agents. These alkaloids can target different points within the PAMT pathway, inhibiting its activity and potentially resulting in cancer cell death or suppression of tumor growth. Research is ongoing to explore the role of various alkaloids in cancer treatment. Berberine reduces mTOR activity and increases apoptosis by targeting the PAMT pathway, inhibiting cancer cell proliferation. Lycorine inhibits Akt phosphorylation and mTOR activation, increasing pro-apoptotic protein production and decreasing cell viability. In glioblastoma models, harmine suppresses mTORC1. This review focuses on alkaloids such as evodiamine, hirsuteine, chaetocochin J, indole-3-carbinol, noscapine, berberine, piperlongumine, and so on, which have shown promise in targeting the PAMT pathway. Clinical studies evaluating alkaloids as part of cancer treatment are underway, and their potential impact on patient outcomes is being investigated. In summary, alkaloids represent a promising avenue for targeting the dysregulated PAMT pathway in cancer, and further research is warranted.
Collapse
Affiliation(s)
- Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | | | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Anitha Balakrishnan
- Department of Pharmaceutics, GRT Institute of Pharmaceutical Education and Research, Tiruttani, Tamil Nadu, India
| | - Manjula Challa
- Department of Pharmaceutics, Vasavi Institute of Pharmaceutical Sciences, Vasavi Nagar, Peddapalli Village, Sidhout Mandal Kadapa District, Andhra Pradesh, India
| | - Jyoti Singh
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - P Dharani Prasad
- Depertment of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Department of Biology, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine and Legorreta Cancer Center Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA; Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
2
|
Wang W, Su Y, Qi R, Li H, Jiang H, Li F, Li B, Sun H. Indoxacarb triggers autophagy and apoptosis through ROS accumulation mediated by oxidative phosphorylation in the midgut of Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105812. [PMID: 38582584 DOI: 10.1016/j.pestbp.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 04/08/2024]
Abstract
Indoxacarb has been widely utilized in agricultural pest management, posing a significant ecological threat to Bombyx mori, a non-target economic insect. In the present study, short-term exposure to low concentration of indoxacarb significantly suppressed the oxidative phosphorylation pathway, and resulted in an accumulation of reactive oxygen species (ROS) in the midgut of B. mori. While, the ATP content exhibited a declining trend but there was no significant change. Moreover, indoxacarb also significantly altered the transcription levels of six autophagy-related genes, and the transcription levels of ATG2, ATG8 and ATG9 were significantly up-regulated by 2.56-, 1.90-, and 3.36-fold, respectively. The protein levels of ATG8-I and ATG8-II and MDC-stained frozen sections further suggested an increase in autophagy. Furthermore, the protein level and enzyme activity of CASP4 showed a significant increase in accordance with the transcription levels of apoptosis-related genes, indicating the activation of the apoptotic signaling pathway. Meanwhile, the induction of apoptosis signals in the midgut cells triggered by indoxacarb was confirmed through TUNEL staining. These findings suggest that indoxacarb can promote the accumulation of ROS by inhibiting the oxidative phosphorylation pathway, thereby inducing autophagy and apoptosis in the midgut cells of B. mori.
Collapse
Affiliation(s)
- Wanwan Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yue Su
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Ruinan Qi
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hao Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hongrui Jiang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, School of Chemistry and Bioengineering, Hechi University, Yizhou, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, School of Chemistry and Bioengineering, Hechi University, Yizhou, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Haina Sun
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, School of Chemistry and Bioengineering, Hechi University, Yizhou, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
3
|
Cui G, Jiang Z, Zhong G. Functional assessment of lysosomal Rab7 and RILP with RNA interference and overexpression in Spodoptera frugiperda Sf9 cell lines. STAR Protoc 2023; 4:102646. [PMID: 37851568 PMCID: PMC10598039 DOI: 10.1016/j.xpro.2023.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
The interaction manner and biological function of Rab7 and its effector, Rab-interacting lysosomal protein (RILP), remain unclear in invertebrates. We provide a protocol for detecting the effects of Rab7 and RILP terminals on lysosome and autophagy in Spodoptera frugiperda Sf9 cells with overexpression and RNA interference. We describe steps for overexpressing plasmids, generating long double-stranded RNA, and transfecting them into Sf9 cells. We then detail procedures for cell immunofluorescence imaging with harmine treatment and fluorescence analysis. For complete details on the use and execution of this protocol, please refer to Cui et al. (2023).1.
Collapse
Affiliation(s)
- Gaofeng Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Zhiyan Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Cui G, Jiang Z, Chen Y, Li Y, Ai S, Sun R, Yi X, Zhong G. Evolutional insights into the interaction between Rab7 and RILP in lysosome motility. iScience 2023; 26:107040. [PMID: 37534141 PMCID: PMC10391735 DOI: 10.1016/j.isci.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 12/12/2022] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Lysosome motility is critical for the cellular function. However, Rab7-related transport elements showed genetic differences between vertebrates and invertebrates, making the mechanism of lysosomal motility mysterious. We suggested that Rab7 interacted with RILP as a feature of highly evolved organisms since they could interact with each other in Spodoptera frugiperda but not in Drosophila melanogaster. The N-terminus of Sf-RILP was identified to be necessary for their interaction, and Glu61 was supposed to be the key point for the stability of the interaction. A GC-rich domain on the C-terminal parts of Sf-RILP hampered the expression of Sf-RILP and its interaction with Sf-Rab7. Although the corresponding vital amino acids in the mammalian model at the C-terminus of Sf-RILP turned to be neutral, the C-terminus would also help with the homologous interactions between RILP fragments in insects. The significantly different interactions in invertebrates shed light on the biodiversity and complexity of lysosomal motility.
Collapse
Affiliation(s)
- Gaofeng Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Zhiyan Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yun Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shupei Ai
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ranran Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Zani CP, Zani AP, Thomazini CM, Retamiro KM, de Oliveira AR, Gonçalves DL, Sarragiotto MH, Garcia FP, de Oliveira Silva S, Nakamura CV, Ueda-Nakamura T. β-Carboline-α-aminophosphonate Derivative: A Promising Antitumor Agent for Breast Cancer Treatment. Molecules 2023; 28:molecules28093949. [PMID: 37175359 PMCID: PMC10179861 DOI: 10.3390/molecules28093949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of cancer mortality among women worldwide. Considering the limitations of the current treatments available, we analyzed the in vitro cytotoxic potential of ((4-Fluoro-phenyl)-{2-[(1-phenyl-9H-β-carboline-3-carbonyl)-amino]-ethylamino}-methyl)-phosphonic acid dibutyl ester (BCP-1) in breast cancer cells (MCF-7 and MDA-MB-231) and in a non-tumor breast cell line (MCF-10A). BCP-1 has an α-aminophosphonate unit linked to the β-carboline nucleus, and the literature indicates that compounds of these classes have high biological potential. In the present study, the mechanism of action of BCP-1 was investigated through methods of spectrofluorimetry, flow cytometry, and protein expression analysis. It was found that BCP-1 inhibited the proliferation of both cancer cell lines. Furthermore, it induced oxidative stress and cell cycle arrest in G2/M. Upregulation of apoptosis-related proteins such as Bax, cytochrome C, and caspases, as well as a decrease in the anti-apoptotic protein Bcl-2, indicated potential induction of apoptosis in the MDA-MB-231 cells. While in MCF-7 cells, BCP-1 activated the autophagic death pathway, which was demonstrated by an increase in autophagic vacuoles and acidic organelles, in addition to increased expression of LC3I/LC3II and reduced SQSTM1/p62 expression. Further, BCP-1 demonstrated antimetastatic potential by reducing MMP-9 expression and cell migration in both breast cancer cell lines. In conclusion, BCP-1 is a promising candidate for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Caroline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Aline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Cristiane Melissa Thomazini
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Karina Miyuki Retamiro
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Débora Laís Gonçalves
- Department of Chemistry, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Tania Ueda-Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| |
Collapse
|
6
|
Yang G, Xie H, Wang C, Zhang C, Yu L, Zhang L, Liu X, Xu R, Song Z, Liu R, Ueda M. Design, synthesis, and discovery of Eudistomin Y derivatives as lysosome-targeted antiproliferation agents. Eur J Med Chem 2023; 250:115193. [PMID: 36774698 DOI: 10.1016/j.ejmech.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Eudistomin Y is a novel class of β-carbolines of marine origin with potential antiproliferation activity against MDA-MB-231 cells (triple-negative breast carcinoma). However, the subcellular target or the detailed mechanism against cancer cell proliferation has not yet been identified. In this study, based on its special structure, a novel series of Eudistomin Y fluorescent derivatives were designed and synthesized by enhancing the electron-donor effect of N-9 to endow it with fluorescent properties through N-alkylation. The structure-activity relationships against the proliferation of cancer cells were also analyzed. A quarter of Eudistomin Y derivatives showed much higher potency against cancer cell proliferation than the original Eudistomin Y1. Fluorescent derivative H1k with robust antiproliferative activity could arrest MDA-MB-231 cells in the G2-M phase. The subcellular localization studies of the probes, including H1k, and Eudistomin Y1 were performed in MDA-MB-231 cells, and the co-localization and competitive inhibition assays revealed their lysosome-specific localization. Moreover, H1k could dose-dependently increase the autophagy signal and downregulate the expression of cyclin-dependent kinase (CDK1) and cyclin B1 which principally regulated the G2-M transition. Furthermore, the specific autophagy inhibitor 3-methyladenine significantly inhibited the H1k-triggered antiproliferation of cancer cells and the downregulation of CDK1 and cyclin B1. Overall, the lysosome is identified as the subcellular target of Eudistomin Y for the first time, and derivative H1k showed robust antiproliferative activity against MDA-MB-231 cells by decreasing Cyclin B1-CDK1 complex via a lysosome-dependent pathway.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| | - Hao Xie
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Conghui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Luyu Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xin Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruoxuan Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Rongxia Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
7
|
He X, Lu L, Huang P, Yu B, Peng L, Zou L, Ren Y. Insect Cell-Based Models: Cell Line Establishment and Application in Insecticide Screening and Toxicology Research. INSECTS 2023; 14:104. [PMID: 36835673 PMCID: PMC9965340 DOI: 10.3390/insects14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
During the past decades, research on insect cell culture has grown tremendously. Thousands of lines have been established from different species of insect orders, originating from several tissue sources. These cell lines have often been employed in insect science research. In particular, they have played important roles in pest management, where they have been used as tools to evaluate the activity and explore the toxic mechanisms of insecticide candidate compounds. This review intends to first briefly summarize the progression of insect cell line establishment. Then, several recent studies based on insect cell lines coupled with advanced technologies are introduced. These investigations revealed that insect cell lines can be exploited as novel models with unique advantages such as increased efficiency and reduced cost compared with traditional insecticide research. Most notably, the insect cell line-based models provide a global and in-depth perspective to study the toxicology mechanisms of insecticides. However, challenges and limitations still exist, especially in the connection between in vitro activity and in vivo effectiveness. Despite all this, recent advances have suggested that insect cell line-based models promote the progress and sensible application of insecticides, which benefits pest management.
Collapse
|
8
|
Mao T, Ye W, Dai M, Bian D, Zhu Q, Feng P, Ren Y, Li F, Li B. Mechanism of autophagy induced by low concentrations of chlorantraniliprole in silk gland, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105223. [PMID: 36464330 DOI: 10.1016/j.pestbp.2022.105223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/17/2023]
Abstract
Chlorantraniliprole (CAP) is widely used in the control of agricultural pests, and its residues can affect the formation of silkworm (Bombyx. mori) cocoon easily. To accurately evaluate the toxicity of CAP to silkworms and clarify the mechanism of its effect on silk gland function, we proposed a novel toxicity evaluation method based on the body weight changes after CAP exposure. We also analyzed the Ca2+-related ATPase activity, characterized energy metabolism and transcriptional changes about the autophagy key genes on the downstream signaling pathways. The results showed that after a low concentration of CAP exposed for 96 h, there were CAP residues in the silk glands of B. mori, the activities of Ca2+-ATPase and Ca2+-Mg2+-ATPase decreased significantly (P ≤ 0.01), and the activation of AMPK-related genes AMPK-α and AMPK-β were up-regulated by 6.39 ± 0.02-fold and 12.33 ± 1.06-fold, respectively, reaching a significant level (P ≤ 0.01)). In addition, the autophagy-related genes Atg1, Atg6, Atg5, Atg7, and Atg8 downstream AMPK were significantly up-regulated at 96 h (P ≤ 0.05). The results of immunohistochemistry and protein expression assay for autophagy marker Atg8 further confirmed the occurrence of autophagy. Overall, our results indicate that CAP exposure leads to autophagy in the silk gland of B. mori and affects their physiological functions, which provides guidance for the evaluation of toxicity of low concentration environmental CAP residues to insects.
Collapse
Affiliation(s)
- Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wentao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Dandan Bian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
9
|
Xu J, Ao YL, Huang C, Song X, Zhang G, Cui W, Wang Y, Zhang XQ, Zhang Z. Harmol promotes α-synuclein degradation and improves motor impairment in Parkinson's models via regulating autophagy-lysosome pathway. NPJ Parkinsons Dis 2022; 8:100. [PMID: 35933473 PMCID: PMC9357076 DOI: 10.1038/s41531-022-00361-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
The abnormal accumulation of α-synuclein (α-syn) is a crucial factor for the onset and pathogenesis of Parkinson's disease (PD), and the autophagy-lysosome pathway (ALP) contributes to α-syn turnover. AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) regulate autophagy by initiating the macroautophagy cascade and promoting lysosomal biogenesis via increased transcription factor EB (TFEB) activity. Hence, activation of AMPK-mTOR-TFEB axis-mediated autophagy might promote α-syn clearance in PD. Harmol is a β-carboline alkaloid that has been extensively studied in a variety of diseases but rarely in PD models. In this study, we aimed to evaluate the effect and underlying mechanism of harmol in PD models in vitro and in vivo. We show that harmol reduces α-syn via ALP in a dose- and time-dependent manner in cell model that overexpressed human A53T mutant α-syn. We also demonstrate that harmol promotes the translocation of TFEB into the nucleus and accompanies the restoration of autophagic flux and lysosomal biogenesis. Importantly, harmol improves motor impairment and down-regulates α-syn levels in the substantia nigra and prefrontal cortex in the α-syn transgenic mice model. Further studies revealed that harmol might activate ALP through AMPK-mTOR-TFEB to promote α-syn clearance. These in vitro and in vivo improvements demonstrate that harmol activates the AMPK-mTOR-TFEB mediated ALP pathway, resulting in reduced α-syn, and suggesting the potential benefit of harmol in the treatment of PD.
Collapse
Affiliation(s)
- Jie Xu
- Guangdong Provincial Engineering Research Center for Modernization of TCM, Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yun-Lin Ao
- Guangdong Provincial Engineering Research Center for Modernization of TCM, Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Chunhui Huang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiubao Song
- Department of Rehabilitation, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Guiliang Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Qi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| | - Zaijun Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| |
Collapse
|
10
|
Cui G, Yuan H, He W, Deng Y, Sun R, Zhong G. Synergistic effects of botanical curcumin-induced programmed cell death on the management of Spodoptera litura Fabricius with avermectin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113097. [PMID: 34942422 DOI: 10.1016/j.ecoenv.2021.113097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Chemical pesticides and adjuvants have caused many negative effects. Botanical compounds provide solutions for the development of environment friendly pesticides and the management of increasing pest resistance. Curcumin, a natural polyphenol, showed synergistic effects on avermectin upon the destructive agricultural pest, Spodoptera litura. However, the botanical synergist and its relevant mechanisms remain unclear. In the article, curcumin significantly enhanced the growth inhibition and midgut structural damage of avermectin on the larvae of S. litura, and the synergistic effects were confirmed with pot experiments. There were only a few influences on the gene expression of avermectin targets, while apoptotic and autophagic related genes and proteins were accumulated in the avermectin/curcumin mixed regent (0.013/0.0013 μg/mL) treated group. Moreover, the potential mechanism was explored with an in vitro model, insect Spodoptera frugiperda Sf9 cell line. Morphology observation featured the damage on cells and Hoechst33258 staining revealed the fragments of DNA after treating with the avermectin/curcumin mixed regent (10/1 μg/mL). Dansylcadaverine and LysoTracker staining, as well as the gene expressions, supposed that curcumin exhibited autophagy inducing effects and the mixed regent possessed a higher ability to induce apoptosis and autophagy. All these results suggested that the synergistic effects of curcumin on the pest management of avermectin potentially mainly derived from the enhancement of programed cell death. It provides new sights for the application of natural compounds in integrated pest management and enriches examples of synergistic mechanisms.
Collapse
Affiliation(s)
- Gaofeng Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Haiqi Yuan
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; Develop Department, BrightMart CropScience, Foshan 528522, China.
| | - Wei He
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Yukun Deng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Ranran Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Alomar ML, Yañuk JG, Angel SO, Gonzalez MM, Cabrerizo FM. In vitro Effect of Harmine Alkaloid and Its N-Methyl Derivatives Against Toxoplasma gondii. Front Microbiol 2021; 12:716534. [PMID: 34421876 PMCID: PMC8375385 DOI: 10.3389/fmicb.2021.716534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Toxoplasmosis is one of the most prevalent and neglected zoonotic global diseases caused by Toxoplasma gondii. The current pharmacological treatments show clinical limitations, and therefore, the search for new drugs is an urgent need in order to eradicate this infection. Due to their intrinsic biological activities, β-carboline (βC) alkaloids might represent a good alternative that deserves further investigations. In this context, the in vitro anti-T. gondii activity of three βCs, harmine (1), 2-methyl-harminium (2), and 9-methyl-harmine (3), was evaluated herein. Briefly, the three alkaloids exerted direct effects on the parasite invasion and/or replication capability. Replication rates of intracellular treated tachyzoites were also affected in a dose-dependent manner, at noncytotoxic concentrations for host cells. Additionally, cell cycle analysis revealed that both methyl-derivatives 2 and 3 induce parasite arrest in S/M phases. Compound 3 showed the highest irreversible parasite growth inhibition, with a half maximal inhibitory concentration (IC50) value of 1.8 ± 0.2 μM and a selectivity index (SI) of 17.2 at 4 days post infection. Due to high replication rates, tachyzoites are frequently subjected to DNA double-strand breaks (DSBs). This highly toxic lesion triggers a series of DNA damage response reactions, starting with a kinase cascade that phosphorylates a large number of substrates, including the histone H2A.X to lead the early DSB marker γH2A.X. Western blot studies showed that basal expression of γH2A.X was reduced in the presence of 3. Interestingly, the typical increase in γH2A.X levels produced by camptothecin (CPT), a drug that generates DSB, was not observed when CPT was co-administered with 3. These findings suggest that 3 might disrupt Toxoplasma DNA damage response.
Collapse
Affiliation(s)
- Maria L Alomar
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Juan G Yañuk
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, UNSAM - CONICET, Chascomús, Argentina
| | - M Micaela Gonzalez
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Franco M Cabrerizo
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
12
|
Sun Z, Xue L, Li Y, Cui G, Sun R, Hu M, Zhong G. Rotenone-induced necrosis in insect cells via the cytoplasmic membrane damage and mitochondrial dysfunction. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104801. [PMID: 33771250 DOI: 10.1016/j.pestbp.2021.104801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/25/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Rotenone, a selective inhibitor of mitochondrial complex I, has been extensively studied on kinds of neuron and neuroblast in Parkinson's disease. However, little is known about the potential mechanism of this promising botanical insecticide upon insect cells. In the article, cell proliferation of two Lepidoptera cell lines, Spodoptera litura SL-1 cells and Spodoptera frugiperda Sf9 cells, were all inhibited by rotenone in a time- and dose-dependent manner. Typical necrotic characteristics of cell morphology and ultrastructure, such as plasma membrane collapses and organelle lyses, were all observed by transmission electron microscope and scanning electron microscope. Moreover, irregular DNA degradation was also detected by DNA gel electrophoresis and Hoechst 33258 staining, while the typical apoptotic feature, DNA ladder, hadn't been observed. Flow cytometric analysis showed that rotenone-induced cell death of Sf9 and SL-1 cells accompanied with the plasma membrane potential depolarization and mitochondrial membrane potential reduction. Furthermore, the activity of Na+-K+-ATPase was detected in our study. In conclusion, rotenone could cause necrosis but not apoptosis in insect cells through a mitochondrial- and plasmic membrane-dependent pattern, which shed a light on the rotenone-induced cytotoxicity on insects.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Li Xue
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510642, China
| | - Yun Li
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Meiying Hu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
A review on β-carboline alkaloids and their distribution in foodstuffs: A class of potential functional components or not? Food Chem 2021; 348:129067. [PMID: 33548760 DOI: 10.1016/j.foodchem.2021.129067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Pharmacologically active β-carboline alkaloids (βCs) such as harman, norharman and some others are naturally present in plants and occur in many foodstuffs. They have a lot of pharmacological properties, including antitumor, antioxidant, anti-inflammatory and antimicrobial effects, and possess the potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. Dietary intake is proven to be an important source of βCs. Therefore, it is important to know the amounts of βCs that can be gotten from daily diets. This review summarizes the pharmacological activities, toxicology and formation of βCs, and gives collective information on contents of βCs in different foodstuffs.
Collapse
|
14
|
Pharmacological effects of harmine and its derivatives: a review. Arch Pharm Res 2020; 43:1259-1275. [PMID: 33206346 DOI: 10.1007/s12272-020-01283-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Harmine is isolated from the seeds of the medicinal plant, Peganum harmala L., and has been used for thousands of years in the Middle East and China. Harmine has many pharmacological activities including anti-inflammatory, neuroprotective, antidiabetic, and antitumor activities. Moreover, harmine exhibits insecticidal, antiviral, and antibacterial effects. Harmine derivatives exhibit pharmacological effects similar to those of harmine, but with better antitumor activity and low neurotoxicity. Many studies have been conducted on the pharmacological activities of harmine and harmine derivatives. This article reviews the pharmacological effects and associated mechanisms of harmine. In addition, the structure-activity relationship of harmine derivatives has been summarized.
Collapse
|
15
|
Cui G, Yuan H, Jiang Z, Zhang J, Sun Z, Zhong G. Natural harmine negatively regulates the developmental signaling network of Drosophila melanogaster (Drosophilidae: Diptera) in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110134. [PMID: 31901541 DOI: 10.1016/j.ecoenv.2019.110134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The widely distributed β-carboline alkaloids exhibit promising psychopharmacological and biochemical effects. Harmine, a natural β-carboline, can inhibit insect growth and development with unclear mechanisms. In this study, harmine (at 0-200 mg/L) showed a dose-dependent inhibitory effect on the pupal weight, length, height, pupation rate and eclosion rate of fruit flies Drosophila melanogaster, which was similar to the inhibition induced by the well-known botanical insect growth regulator azadirachtin. Moreover, the expression levels of major regulators from the developmental signaling network were down-regulated during the pupal stage except Numb, Fringe, Yorkie and Pten. The Notch, Wnt, Hedgehog and TGF-β pathways mainly played vital roles in coping with harmine exposure in pupae stage, while the Hippo, Hedgehog and TGF-β elements were involved in the sex differences. Notch, Hippo, Hedgehog, Dpp and Armadillo were proved to be suppressed in the developmental inhibition with fly mutants, while Numb and Punt were increased by harmine. In conclusion, harmine significantly inhibited the development of Drosophila by negatively affecting their developmental signaling network during different stages. Our results establish a preliminary understanding of the developmental signaling network subjected to botanical component-induced growth inhibition and lay the groundwork for further application.
Collapse
Affiliation(s)
- Gaofeng Cui
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Haiqi Yuan
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhiyan Jiang
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Jing Zhang
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhipeng Sun
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Cui G, Sun R, Veeran S, Shu B, Yuan H, Zhong G. Combined transcriptomic and proteomic analysis of harmine on Spodoptera frugiperda Sf9 cells to reveal the potential resistance mechanism. J Proteomics 2020; 211:103573. [DOI: 10.1016/j.jprot.2019.103573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/08/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022]
|