1
|
Etcheverry L, Spaccesi FG, Cappelletti NE, Lavarías SML. Basal levels of biochemical biomarkers in the freshwater prawn Palaemon argentinus and their alterations due to the exposure of both insecticides cypermethrin and spirotetramat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174958. [PMID: 39067605 DOI: 10.1016/j.scitotenv.2024.174958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The aim of this study was to evaluate the sensitivity of the prawn Palaemon argentinus to the pyrethroid cypermethrin (CYP) and the tetramic acid spirotetramat (STM). These treatments were compared with prawns collected at a reference site to define their basal physiological state. Initially, physicochemical parameters and several pollutants at the selected site were analyzed. The LC50-96 h was determined in adult prawns. Then, prawns were exposed for 96 h to sublethal concentrations of CYP (0.0005 μg/l) and STM (0.44 mg/l) to evaluate the effects on some biochemical endpoints. A treatment combining both pesticides was also added at 5 % of these values. Controls with and without solvent (acetone) were included. The LC50-96 h values were 0.005 μg/l and 4.43 mg/l for CYP and STM, respectively. Moreover, some biomarkers linked to oxidative and energy metabolism were analyzed in the hepatopancreas and muscle of both essayed prawns and those at the basal state. The STM caused a significant decrease in total protein content (32 %) in contrast to the increase of protein carbonyl content (71 %) (p < 0.05). Also, glutathione S-transferase (52 %) and catalase (61 %) activities in the hepatopancreas of exposed prawns were higher compared to both the control and state basal groups (p < 0.05). In muscle, only a significant decrease in the lactate content (69 %) was caused by STM (p < 0.05). In addition, CYP caused a significant increase in the lactate dehydrogenase activity (110 %) in muscle and triacylglycerol content (73 %) in the hepatopancreas (p < 0.05). The integrated biomarker index (IBRv2) analysis showed that STM caused greater damage than CYP. Besides, the combined treatment showed an antagonistic interaction between both insecticides. The differential response of biomarkers to both CYP and STM exposure with respect to their basal levels shows a high sensitivity of P. argentinus demonstrating its potential role as a bioindicator organism.
Collapse
Affiliation(s)
- Leda Etcheverry
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP)- Asoc. CIC, Buenos Aires, Argentina; Facultad de Cs. Exactas, UNLP, Buenos Aires, Argentina
| | - Fernando G Spaccesi
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP)- Asoc. CIC, Buenos Aires, Argentina; Facultad de Cs. Naturales y Museo, UNLP, Buenos Aires, Argentina
| | - Natalia E Cappelletti
- CONICET-Departamento de Ambiente y Turismo, Universidad Nacional de Avellaneda, Buenos Aires, Argentina
| | - Sabrina M L Lavarías
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP)- Asoc. CIC, Buenos Aires, Argentina; Facultad de Cs. Médicas, UNLP, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Rosli MAF, Syed Jaafar SN, Azizan KA, Yaakop S, Aizat WM. Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PeerJ 2024; 12:e17843. [PMID: 39247549 PMCID: PMC11380842 DOI: 10.7717/peerj.17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/10/2024] [Indexed: 09/10/2024] Open
Abstract
Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.
Collapse
Affiliation(s)
| | - Sharifah Nabihah Syed Jaafar
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Xu Q, Feng H, Li Z, Shao X. Acetyl-CoA Carboxylase Proteolysis-Targeting Chimeras: Conceptual Design and Application as Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18809-18815. [PMID: 39145990 DOI: 10.1021/acs.jafc.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Novel approaches for pest control are essential to ensure a sufficient food supply for the growing global population. The development of new insecticides must meet rigorous regulatory requirements for safety and address the resistance issues of existing insecticides. Proteolysis-targeting chimeras (PROTACs), originally developed for human diseases, show promise in agriculture. They offer innovative insecticides tailored to overcome resistance, opening avenues for agricultural applications. In this study, we developed small-molecule degraders by incorporating pomalidomide as an E3 ligand. These degraders were linked to a ligand (spirotetratmat enol) targeting the ACC protein through a flexible chain, aiming to achieve the efficient control of insects. Compounds 9a-9d were designed, synthesized, and evaluated for biological activities and mechanisms. Among them, 9b exhibited superior potency against Aphis craccivora (LC50 = 107.8 μg mL-1) compared to others and effectively degraded ACC proteins through the ubiquitin-proteasome system. These findings highlight the potential of utilizing PROTAC-based approaches in the development of insecticides for efficient pest control.
Collapse
Affiliation(s)
- Qi Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Pei X, Bai T, Luo Y, Zhang Z, Li S, Fan Y, Liu TX. Acetyl coenzyme A carboxylase modulates lipogenesis and sugar homeostasis in Blattella germanica. INSECT SCIENCE 2024; 31:387-404. [PMID: 37486126 DOI: 10.1111/1744-7917.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.
Collapse
Affiliation(s)
- Xiaojin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Tiantian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Zhanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Yongliang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Bass C, Nauen R. The molecular mechanisms of insecticide resistance in aphid crop pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103937. [PMID: 37023831 DOI: 10.1016/j.ibmb.2023.103937] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 05/05/2023]
Abstract
Aphids are a group of hemipteran insects that include some of the world's most economically important agricultural pests. The control of pest aphids has relied heavily on the use of chemical insecticides, however, the evolution of resistance poses a serious threat to their sustainable control. Over 1000 cases of resistance have now been documented for aphids involving a remarkable diversity of mechanisms that, individually or in combination, allow the toxic effect of insecticides to be avoided or overcome. In addition to its applied importance as a growing threat to human food security, insecticide resistance in aphids also offers an exceptional opportunity to study evolution under strong selection and gain insight into the genetic variation fuelling rapid adaptation. In this review we summarise the biochemical and molecular mechanisms underlying resistance in the most economically important aphid pests worldwide and the insights study of this topic has provided on the genomic architecture of adaptive traits.
Collapse
Affiliation(s)
- Chris Bass
- Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
6
|
Singh KS, Cordeiro EMG, Troczka BJ, Pym A, Mackisack J, Mathers TC, Duarte A, Legeai F, Robin S, Bielza P, Burrack HJ, Charaabi K, Denholm I, Figueroa CC, ffrench-Constant RH, Jander G, Margaritopoulos JT, Mazzoni E, Nauen R, Ramírez CC, Ren G, Stepanyan I, Umina PA, Voronova NV, Vontas J, Williamson MS, Wilson ACC, Xi-Wu G, Youn YN, Zimmer CT, Simon JC, Hayward A, Bass C. Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae. Commun Biol 2021; 4:847. [PMID: 34234279 PMCID: PMC8263593 DOI: 10.1038/s42003-021-02373-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
The aphid Myzus persicae is a destructive agricultural pest that displays an exceptional ability to develop resistance to both natural and synthetic insecticides. To investigate the evolution of resistance in this species we generated a chromosome-scale genome assembly and living panel of >110 fully sequenced globally sampled clonal lines. Our analyses reveal a remarkable diversity of resistance mutations segregating in global populations of M. persicae. We show that the emergence and spread of these mechanisms is influenced by host-plant associations, uncovering the widespread co-option of a host-plant adaptation that also offers resistance against synthetic insecticides. We identify both the repeated evolution of independent resistance mutations at the same locus, and multiple instances of the evolution of novel resistance mechanisms against key insecticides. Our findings provide fundamental insights into the genomic responses of global insect populations to strong selective forces, and hold practical relevance for the control of pests and parasites.
Collapse
Affiliation(s)
- Kumar Saurabh Singh
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, Cornwall UK
| | - Erick M. G. Cordeiro
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz,”, Universidade de São Paulo, Piracicaba, Brazil
| | - Bartlomiej J. Troczka
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, Cornwall UK
| | - Adam Pym
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, Cornwall UK
| | - Joanna Mackisack
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, Cornwall UK
| | - Thomas C. Mathers
- grid.14830.3e0000 0001 2175 7246Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Ana Duarte
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, Cornwall UK
| | | | | | - Pablo Bielza
- grid.218430.c0000 0001 2153 2602Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Hannah J. Burrack
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Kamel Charaabi
- Laboratory of Biotechnology and Nuclear Technologies, National Center of Nuclear Sciences and Technologies, Biotechpole of Sidi Thabet, Sidi Thabet, Ariana Tunisia
| | - Ian Denholm
- grid.5846.f0000 0001 2161 9644Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, UK
| | - Christian C. Figueroa
- grid.10999.380000 0001 0036 2536Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Richard H. ffrench-Constant
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, Cornwall UK
| | - Georg Jander
- grid.5386.8000000041936877XBoyce Thompson Institute, Ithaca, NY USA
| | - John T. Margaritopoulos
- Department of Plant Protection at Volos, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization ‘DEMETER’, Volos, Greece
| | - Emanuele Mazzoni
- grid.8142.f0000 0001 0941 3192Department of Sustainable Crop Production, Section Sustainable Crop and Food Protection, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Ralf Nauen
- grid.420044.60000 0004 0374 4101Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Claudio C. Ramírez
- grid.10999.380000 0001 0036 2536Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Guangwei Ren
- grid.410727.70000 0001 0526 1937Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ilona Stepanyan
- grid.418094.00000 0001 1146 7878Scientific Center of Zoology and Hydroecology, National Academy of Science, Republic of Armenia, Yerevan, Armenia
| | - Paul A. Umina
- Cesar, Parkville, Victoria Australia ,grid.1008.90000 0001 2179 088XSchool of BioSciences, The University of Melbourne, Parkville, Victoria Australia
| | - Nina V. Voronova
- grid.17678.3f0000 0001 1092 255XThe Department of General Ecology and Methods of Biology Teaching, Belarusian State University, Minsk, Republic of Belarus
| | - John Vontas
- grid.4834.b0000 0004 0635 685XInstitute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Crete, Greece ,grid.10985.350000 0001 0794 1186Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Martin S. Williamson
- grid.418374.d0000 0001 2227 9389Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Alex C. C. Wilson
- grid.26790.3a0000 0004 1936 8606Department of Biology, University of Miami, Coral Gables, FL USA
| | - Gao Xi-Wu
- grid.22935.3f0000 0004 0530 8290Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Young-Nam Youn
- grid.254230.20000 0001 0722 6377Department of Applied Biology, College of Agricultural and Life Science, Chungnam National University, Daejeon, Korea
| | - Christoph T. Zimmer
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, Cornwall UK ,grid.420222.40000 0001 0669 0426Present Address: Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | | | - Alex Hayward
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, Cornwall UK
| | - Chris Bass
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, Cornwall UK
| |
Collapse
|
7
|
Nauen R, Van Leeuwen T. Preface to the special issue: Recent trends in insecticide mode of action and resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104635. [PMID: 32711769 DOI: 10.1016/j.pestbp.2020.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Germany.
| | | |
Collapse
|
8
|
Lueke B, Douris V, Hopkinson JE, Maiwald F, Hertlein G, Papapostolou KM, Bielza P, Tsagkarakou A, Van Leeuwen T, Bass C, Vontas J, Nauen R. Identification and functional characterization of a novel acetyl-CoA carboxylase mutation associated with ketoenol resistance in Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104583. [PMID: 32448413 DOI: 10.1016/j.pestbp.2020.104583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Insecticides of the tetronic/tetramic acid family (cyclic ketoenols) are widely used to control sucking pests such as whiteflies, aphids and mites. They act as inhibitors of acetyl-CoA carboxylase (ACC), a key enzyme for lipid biosynthesis across taxa. While it is well documented that plant ACCs targeted by herbicides have developed resistance associated with mutations at the carboxyltransferase (CT) domain, resistance to ketoenols in invertebrate pests has been previously associated either with metabolic resistance or with non-validated candidate mutations in different ACC domains. A recent study revealed high levels of spiromesifen and spirotetramat resistance in Spanish field populations of the whitefly Bemisia tabaci that was not thought to be associated with metabolic resistance. We confirm the presence of high resistance levels (up to >640-fold) against ketoenol insecticides in both Spanish and Australian B. tabaci strains of the MED and MEAM1 species, respectively. RNAseq analysis revealed the presence of an ACC variant bearing a mutation that results in an amino acid substitution, A2083V, in a highly conserved region of the CT domain. F1 progeny resulting from reciprocal crosses between susceptible and resistant lines are almost fully resistant, suggesting an autosomal dominant mode of inheritance. In order to functionally investigate the contribution of this mutation and other candidate mutations previously reported in resistance phenotypes, we used CRISPR/Cas9 to generate genome modified Drosophila lines. Toxicity bioassays using multiple transgenic fly lines confirmed that A2083V causes high levels of resistance to commercial ketoenols. We therefore developed a pyrosequencing-based diagnostic assay to map the spread of the resistance alleles in field-collected samples from Spain. Our screening confirmed the presence of target-site resistance in numerous field-populations collected in Sevilla, Murcia and Almeria. This emphasizes the importance of implementing appropriate resistance management strategies to prevent or slow the spread of resistance through global whitefly populations.
Collapse
Affiliation(s)
- Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece
| | - Jamie E Hopkinson
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Kyriaki-Maria Papapostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, 70013 Heraklion, Greece
| | - Pablo Bielza
- Department of Agricultural Engineering, Cartagena Polytechnical University, 30203 Cartagena, Spain
| | - Anastasia Tsagkarakou
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DEMETER", 70013 Heraklion, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Chris Bass
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany.
| |
Collapse
|