1
|
Zhang X, Li S, Luo Z, Cai X, Bian L, Xiu C, Fu N, Liu N, Zhang Z, Li Z. Transcriptome Profiling of Euproctis pseudoconspersa Reveals Candidate Olfactory Genes for Type III Sex Pheromone Detection. Int J Mol Sci 2025; 26:1405. [PMID: 40003873 PMCID: PMC11855508 DOI: 10.3390/ijms26041405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The tea tussock moth (Euproctis pseudoconspersa) is a common tea plantation pest with Type III sex pheromone components (SPCs). However, the olfactory genes involved in the perception of Type III SPCs remain unknown. To identify the olfactory genes involved in E. pseudoconspersa olfactory perception, we sequenced the transcriptomes of different tissues from male and female moths. We identified 27 chemosensory proteins, 39 odorant-binding proteins (OBPs), 28 ionotropic receptors (IRs), and 67 odorant receptors (ORs). Phylogenetic and antennal abundance analyses showed that EpseOR12, EpseOR13, EpseOR15, EpseOR16, and EpseOR18 belonged to the pheromone receptor clades of Type II moths, with predominant expression in male antennae. Besides these EpseORs, EpseOR14 and EpseOR32 were two of the most abundant EpseORs in male antennae, where they were predominantly expressed. Four pheromone-binding proteins (PBPs) were identified, with higher expression in male antennae. EpseORs and EpsePBPs may be involved in Type III SPC detection. Additionally, a few EpseOBPs, EpseIRs, and EpseORs were predominantly expressed in either male or female antennae. These genes may play important roles in olfaction and may be involved in detecting host plant volatiles and pheromones. These results provide a foundation for further exploration of the molecular mechanisms of E. pseudoconspersa olfaction.
Collapse
Affiliation(s)
- Xiangzhi Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (X.Z.)
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271000, China
| | - Shunsi Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (X.Z.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zongxiu Luo
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (X.Z.)
| | - Xiaoming Cai
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (X.Z.)
| | - Lei Bian
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (X.Z.)
| | - Chunli Xiu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (X.Z.)
| | - Nanxia Fu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (X.Z.)
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271000, China
| | - Zhaoqun Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (X.Z.)
| |
Collapse
|
2
|
Wang Z, Hao W, Wang H, Deng P, Li T, Wang C, Zhao J, Chen C, Ji W, Liu X. Genome-Wide Comparative Analysis of the Cytochrome P450 Monooxygenase Family in 19 Aphid Species and Their Expression Analysis in 4 Cereal Crop Aphids. Int J Mol Sci 2024; 25:6668. [PMID: 38928374 PMCID: PMC11203792 DOI: 10.3390/ijms25126668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cytochrome P450 monooxygenases (CYP450s) play a variety of physiological roles, including pesticide resistance, plant allelochemical detoxification, and hormone metabolism catalysis. However, limited information is available on the classification and expression profiles of the CYP450 gene family in aphid species. This is the first study to identify the cytochrome P450 gene family in 19 aphid species at the whole genome level. A total of 1100 CYP450 genes were identified in 19 aphid species. Three hundred CYP450 genes belonged to six cereal crop aphid species, which were further classified into four subfamilies according to the phylogenetic relationship. The conserved motifs, exon-intron structures, and genomic organization of the same subfamilies were similar. Predictions of subcellular localization revealed that the endoplasmic reticulum harbored the majority of CYP450 proteins. In Sitobion avenae and Rhopalosiphum maidis, the increase in the CYP450 gene was primarily caused by segmental duplication events. However, only tandem duplication occurred in the CYP450 gene family of Diuraphis noxia, Rhopalosiphum padi, Schizaphis graminum, and Sitobion miscanthi. Synteny analysis found three continuous colinear CYP450 gene pairs among six cereal crop aphid species. Furthermore, we obtained the expression profiles of four cereal crop aphids, including R. padi, D. noxia, S. graminum, and S. avenae. Differential expression analysis provided growth stage specificity genes, tissue specificity genes, organ specificity genes and some detoxification metabolic genes among these four cereal crop aphids. Meanwhile, their expression patterns were showed. The related functions and pathways of CYP450s were revealed by GO and KEGG enrichment analysis. Above all, we picked the differentially expressed CYP450 genes from all of the differentially expressed genes (DEGs). These differentially expressed CYP450 genes provided some new potential candidates for aphid control and management. This work establishes the foundation for further investigations into the regulatory functions of the CYP450 gene family in aphid species and beyond.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
| | - Weixi Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang 712100, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang 712100, China; (Z.W.); (W.H.); (H.W.); (P.D.); (T.L.); (C.W.); (J.Z.); (C.C.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang 712100, China
| |
Collapse
|
3
|
Hao E, Yang X, Ma M, Lu P, Qiao H. Investigating SnocCSP4 expression and key compound interactions with SnocOBP4 in Sirex noctilio Fabricius (Hymenoptera: Siricidae). Int J Biol Macromol 2023; 247:125827. [PMID: 37453637 DOI: 10.1016/j.ijbiomac.2023.125827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Sirex noctilio, a significant pest impacting Pinus sylvestris var. mongolica, presents control difficulties due to its wood-boring behavior, paucity of natural antagonists, and wide-ranging habitats. Our research aims to elucidate the functionality and operational mechanisms of chemosensory proteins 4 (SnocCSP4), providing strategic insights for pest management and fostering further exploration in CSPs. Techniques such as qPCR, fluorescence binding affinity assays, molecular docking, and dynamic simulations were utilized to investigate the tissue-specific distribution, ligand binding capacities, and mechanistic underpinnings of SnocCSP4. The findings revealed a high abundance of SnocCSP4 in male genitalia, significant sexual dimorphism in its expression, and high binding affinities to (-)-Globulol and 10-Oxodecanoic acid. Subsequent analysis identified hydrophobic cavities formed by non-polar amino acids (VAL, LEU, ILE, LYS) and the critical role of polar amino acids (ALA 46, GLU 45, THR 75) in maintaining system stability. These insights suggest the primary role of SnocCSP4 in binding or transporting these volatiles and indicate that modifying key amino acids could inform the design of more effective pest control measures.
Collapse
Affiliation(s)
- Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xi Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mei Ma
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
4
|
Guo P, Hao E, Li H, Yang X, Lu P, Qiao H. Expression Pattern and Ligand Binding Characteristics Analysis of Chemosensory Protein SnitCSP2 from Sirex nitobei. INSECTS 2023; 14:583. [PMID: 37504589 PMCID: PMC10380366 DOI: 10.3390/insects14070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
Sirex nitobei is an important wood-boring wasp to conifers native to Asia, causing considerable economic and ecological damage. However, the current control means cannot achieve better efficiency, and it is expected to clarify the molecular mechanism of protein-ligand binding for effective pest control. This study analyzed the expression pattern of CSP2 in S. nitobei (SnitCSP2) and its features of binding to the screened ligands using molecular docking and dynamic simulations. The results showed that SnitCSP2 was significantly expressed in female antennae. Molecular docking and dynamic simulations revealed that SnitCSP2 bound better to the host plant volatile (+)-α-pinene and symbiotic fungal volatiles terpene and (-)-globulol than other target ligands. By the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, the free binding energies of the three complexes were calculated as -44.813 ± 0.189 kJ/mol, -50.446 ± 0.396 kJ/mol, and -56.418 ± 0.368 kJ/mol, and the van der Waals energy was found to contribute significantly to the stability of the complexes. Some key amino acid residues were also identified: VAL13, GLY14, LYS61, MET65, and LYS68 were important for the stable binding of (+)-α-pinene by SnitCSP2, while for terpenes, ILE16, ALA25, TYR26, CYS29, GLU39, THR37, and GLY40 were vital for a stable binding system. We identified three potential ligands and analyzed the interaction patterns of the proteins with them to provide a favorable molecular basis for regulating insect behavioral interactions and developing new pest control strategies.
Collapse
Affiliation(s)
- Pingping Guo
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Han Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xi Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
5
|
Yuan TT, Luo ZJ, Luo ZX, Cai XM, Bian L, Xiu CL, Fu NX, Chen ZM, Zhang LW, Li ZQ. Olfactory Gene Families in Scopula subpunctaria and Candidates for Type-II Sex Pheromone Detection. Int J Mol Sci 2022; 23:ijms232415775. [PMID: 36555416 PMCID: PMC9779464 DOI: 10.3390/ijms232415775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Scopula subpunctaria, an abundant pest in tea gardens, produce type-II sex pheromone components, which are critical for its communicative and reproductive abilities; however, genes encoding the proteins involved in the detection of type-II sex pheromone components have rarely been documented in moths. In the present study, we sequenced the transcriptomes of the male and female S. subpunctaria antennae. A total of 150 candidate olfaction genes, comprising 58 odorant receptors (SsubORs), 26 ionotropic receptors (SsubIRs), 24 chemosensory proteins (SsubCSPs), 40 odorant-binding proteins (SsubOBPs), and 2 sensory neuron membrane proteins (SsubSNMPs) were identified in S. subpunctaria. Phylogenetic analysis, qPCR, and mRNA abundance analysis results suggested that SsubOR46 may be the Orco (non-traditional odorant receptor, a subfamily of ORs) of S. subpunctaria. SsubOR9, SsubOR53, and SsubOR55 belonged to the pheromone receptor (PR) clades which have a higher expression in male antennae. Interestingly, SsubOR44 was uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP25, SsubOBP27, and SsubOBP28 were clustered into the moth pheromone-binding protein (PBP) sub-family, and they were uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP19, a member of the GOBP2 group, was the most abundant OBP in the antennae. These findings indicate that these olfactory genes, comprising five candidate PRs, three candidate PBPs, and one candidate GOBP2, may be involved in type II sex pheromone detection. As well as these genes, most of the remaining SsubORs, and all of the SsubIRs, showed a considerably higher expression in the female antennae than in the male antennae. Many of these, including SsubOR40, SsubOR42, SsubOR43, and SsubIR26, were more abundant in female antennae. These olfactory and ionotropic receptors may be related to the detection of host plant volatiles. The results of this present study provide a basis for exploring the olfaction mechanisms in S. subpunctaria, with a focus on the genes involved in type II sex pheromones. The evolutionary analyses in our study provide new insights into the differentiation and evolution of lepidopteran PRs.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Zi-Jun Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zong-Xiu Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Xiao-Ming Cai
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Lei Bian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Chun-Li Xiu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Nan-Xia Fu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zong-Mao Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (L.-W.Z.); (Z.-Q.L.)
| | - Zhao-Qun Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
- Correspondence: (L.-W.Z.); (Z.-Q.L.)
| |
Collapse
|
6
|
Fan Y, Zhang C, Qin Y, Yin X, Dong X, Desneux N, Zhou H. Monitoring the Methyl Eugenol Response and Non-Responsiveness Mechanisms in Oriental Fruit Fly Bactrocera dorsalis in China. INSECTS 2022; 13:1004. [PMID: 36354828 PMCID: PMC9695349 DOI: 10.3390/insects13111004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Bactrocera dorsalis is a notorious polyphagous pest in China, and its management strategies largely depend on methyl eugenol (ME), which has been widely used as an attractant to monitor and eradicate B. dorsalis populations for seven decades. However, the non-responsiveness levels in field B. dorsalis populations to ME is unknown. In this study, we monitored the response to ME in field populations from the four most heavily infested provinces in China, and the results showed that the populations had lower sensitivity to ME relative to GZS susceptible strain. The percent responsiveness of the lowest sensitivity population was 5.88-, 3.47-, and 1.47-fold lower relative to the susceptible strain at doses of 1, 10, and 100 µL of ME, respectively. Gene expression analysis and inhibitor assays further revealed that odorant binding protein (BdorOBP2, BdorOBP83b) and the P450 enzyme system may be associated with the lower response to ME. To our knowledge, this work is the first to report that the P450 enzyme system confers a lower responsiveness to lure insects. These findings provided valuable insights for exploiting ME non-responsiveness to protect sterile males from ME-based control strategies and the use of lures combined with insecticides.
Collapse
Affiliation(s)
- Yinjun Fan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Changzhen Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Qin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinhui Yin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyi Dong
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|