1
|
Tian J, Bai D, He S, Li Z, Bai L, Pan L. Overexpression of cytochrome P450 CYP71AF43 contributing resistance to fenoxaprop-P-ethyl in Alopecurus myosuroides from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106355. [PMID: 40082045 DOI: 10.1016/j.pestbp.2025.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Black-grass (Alopecurus myosuroides), one of the most economically destructive herbicide-resistant weeds in Europe, is rapidly expanding in winter wheat regions of China. In recent years, the recommended application rate of fenoxaprop-P-ethyl in the field has failed to effectively control Alopecurus myosuroides populations, thereby threatening wheat yields at risk. In this study, we collected a suspected herbicide-resistant population (R-HB) of Alopecurus myosuroides from a wheat field in Hebei Province and confirmed its resistance to fenoxaprop-P-ethyl, with a resistance index of 26.73-fold. Sensitivity analyses of other ACCase-inhibiting herbicides revealed cross-resistance in the R-HB population to clethodim and pinoxaden. Molecular analysis indicated that the resistance phenotype in this population was not due to alterations in the target site. Pretreatment with the cytochrome P450 (P450) inhibitor malathion partially reversed fenoxaprop-P-ethyl resistance in the R-HB population. RNA-seq and RT-qPCR validation revealed the constitutive overexpression of the P450 gene CYP71AF43 in the R-HB population. Molecular docking predictions suggest that the CYP71AF43 protein may have metabolic activity toward fenoxaprop-P-ethyl. In genetically modified yeast, overexpression of AmCYP71AF43 was found to enhance tolerance to fenoxaprop-P-ethyl, but not to clethodim and pinoxaden. Additionally, rice calli overexpressing the AmCYP71AF43 gene exhibited resistance to fenoxaprop-P-ethyl, but not to clethodim or pinoxaden. Collectively, the increased expression of CYP71AF43 may enhance P450-mediated metabolism, conferring resistance to fenoxaprop-P-ethyl in the R-HB population. This is the first report of this mechanism in Alopecurus myosuroides. This discovery provides a novel perspective for the in-depth analysis of resistance mechanisms in weeds against the ACCase-inhibiting herbicide fenoxaprop-P-ethyl.
Collapse
Affiliation(s)
- Junhui Tian
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Dingyi Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Sifen He
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zongfang Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Bernier D, Barber DM, Bojack G, Bollenbach-Wahl B, Churchman L, Döller U, Fahrenhorst-Jones T, Freigang J, Gatzweiler E, Hartfiel C, Hilmi C, Huet Y, Laber B, Lange G, Lee S, Lempereur V, Mosrin M, Müller T, Payne CM, Peters O, Posa L, Rees S, Reingruber AM, Rey J, Tiebes J, Tilmant K, Frackenpohl J. Aminoisothiazolamides, a new class of potent inhibitors of lysyl-tRNA synthetase. PEST MANAGEMENT SCIENCE 2025. [PMID: 40087844 DOI: 10.1002/ps.8759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Owing to the economic relevance of resistance evolution against herbicides, new chemical entities addressing unprecedented molecular targets are urgently needed to develop future sustainable weed control solutions. As part of our discovery research, the new class of aminoisothiazolamides was investigated. RESULTS Aminoisothiazolamide 3-amino-4-chloro-N-(cyclohexylmethyl)isothiazole-5-carboxamide 1a and several of its derivatives displayed potent herbicidal and fungicidal in vivo activity in initial glasshouse tests. Lysyl-tRNA synthetase 1 (KRS1) was identified as the putative target for 1a and was validated as a key contributor to the biochemical mode-of-action of aminoisothiazolamides. Thermal stability shift analysis with KRS1 from Arabidopsis thaliana (AtKRS1) revealed that 1a specifically increased the thermostability of this enzyme, proving the KRS1 enzyme as the aminoisothiazolamide target. It turned out that the inhibition of AtKRS1 and HsKRS was strongly correlated, as was the inhibition of AtKRS1 and the herbicidal activity of the aminoisothiazolamides. Hence, in vivo acute toxicity tests were initiated at a very early project stage complementing the enzyme tests. CONCLUSION The observed toxicological effects paired with the anticipated likelihood to overcome this problem, owing to the highly conserved active sites in different species, finally resulted in the conclusion to stop the further exploration of the otherwise promising class of herbicidal aminoisothiazolamides. Thus, we opted to discard several further herbicidal lead structures before the start of in-depth investigations when sequence analyses suggested similar levels of conservation between the respective binding pockets in plants and mammalians. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David Bernier
- Research & Development, Disease Control, Division Crop Science, Bayer SAS, Lyon, France
| | - David M Barber
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Guido Bojack
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Luke Churchman
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Uwe Döller
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Tyler Fahrenhorst-Jones
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jörg Freigang
- Research & Development, Hit Discovery - Structural Biology, Division Crop Science, Bayer AG, Monheim, Germany
| | - Elmar Gatzweiler
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Claudia Hartfiel
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Caroline Hilmi
- Early Toxicology, Division Crop Science, Bayer SAS, Sophia Antipolis, France
| | - Yoann Huet
- Research & Development, Disease Control, Division Crop Science, Bayer SAS, Lyon, France
| | - Bernd Laber
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Gudrun Lange
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Stephanie Lee
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Virginie Lempereur
- Research & Development, Disease Control, Division Crop Science, Bayer SAS, Lyon, France
| | - Marc Mosrin
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Thomas Müller
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - China M Payne
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Olaf Peters
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Luka Posa
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Shaun Rees
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Anna M Reingruber
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jullien Rey
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jörg Tiebes
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Karen Tilmant
- Early Toxicology, Division Crop Science, Bayer SAS, Sophia Antipolis, France
| | - Jens Frackenpohl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Depetris MB, Muñiz Padilla E, Ayala F, Tuesca D, Breccia G. Resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides in Lolium multiflorum Lam. populations of Argentina. PEST MANAGEMENT SCIENCE 2024; 80:6600-6606. [PMID: 39221960 DOI: 10.1002/ps.8399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Italian ryegrass (Lolium multiflorum Lam.) is one of the most troublesome grass weeds in Argentina. The extensive and repetitive use of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides has induced resistance in this weed species. The objectives of this study were to quantify the resistance levels to ACCase-inhibiting herbicides in two resistant populations and to identify the target-site mutations associated with their resistance. RESULTS Two resistant Italian ryegrass populations, Roldán and H2, were studied. Roldán was a suspected haloxyfop-resistant population, located in a wheat field from Santa Fe province with a history of ACCase-inhibiting herbicide use. The H2 population was obtained from the susceptible Hernandarias population (H0) after two cycles of selection with the herbicide quizalofop-ethyl. Whole-plant dose-response assays revealed that the resistant populations exhibited a high resistance to haloxyfop, with resistance factors (RF) exceeding 97-fold. Additionally, both populations showed a moderate resistance to pinoxaden (RF > 7), while maintaining susceptibility to clethodim. Partial chloroplastic ACCase sequences revealed isoleucine-to-asparagine substitution at position 2041 (Ile-2041-Asn) in both resistant populations. CONCLUSION This work provides a better understanding of cross-resistance to ACCase-inhibiting herbicides in L. multiflorum populations and represents the first report of the target-site mutation Ile-2041-Asn conferring resistance in populations from Argentina. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mara B Depetris
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR, UNR, CONICET), Zavalla, Argentina
| | - Esteban Muñiz Padilla
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Oro Verde, Argentina
| | - Fabián Ayala
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - Daniel Tuesca
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Gabriela Breccia
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR, UNR, CONICET), Zavalla, Argentina
| |
Collapse
|
4
|
Han Y, Sun Y, Ma H, Wang R, Lan Y, Gao H, Huang Z. Target-site and non-target-site based resistance to clodinafop-propargyl in wild oats (Avena fatua L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105650. [PMID: 38072525 DOI: 10.1016/j.pestbp.2023.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
Wild oat (Avena fatua L.) is a common and problematic weed in wheat fields in China. In recent years, farmers found it increasingly difficult to control A. fatua using acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. The purpose of this study was to identify the molecular basis of clodinafop-propargyl resistance in A. fatua. In comparison to the S1496 population, whole dose response studies revealed that the R1623 and R1625 populations were 71.71- and 67.76-fold resistant to clodinafop-propargyl, respectively. The two resistant A. fatua populations displayed high resistance to fenoxaprop-p-ethyl (APP) and low resistance to clethodim (CHD) and pinoxaden (PPZ), but they were still sensitive to the ALS inhibitors mesosulfuron-methyl and pyroxsulam. An Ile-2041-Asn mutation was identified in both resistant individual plants. The copy number and relative expression of the ACCase gene in the resistant population were not significantly different from those in the S1496 population. Under the application of 2160 g ai ha -1 of clodinafop-propargyl, the fresh weight of the R1623 population was reduced to 74.9%; however, pretreatment with the application of the cytochrome P450 inhibitor malathion and the GST inhibitor NBD-Cl reduced the fresh weight to 50.91% and 47.16%, respectively, which proved the presence of metabolic resistance. This is the first report of an Ile-2041-Asn mutation and probable metabolic resistance in A. fatua, resulting in resistance to clodinafop-propargyl.
Collapse
Affiliation(s)
- Yujun Han
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Ying Sun
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Ma
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Ruolin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuning Lan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Urumqi 830091, China.
| | - Zhaofeng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Alnafta N, Beffa R, Bojack G, Bollenbach-Wahl B, Brant NZ, Dörnbrack C, Dorn N, Freigang J, Gatzweiler E, Getachew R, Hartfiel C, Heinemann I, Helmke H, Hohmann S, Jakobi H, Lange G, Lümmen P, Willms L, Frackenpohl J. Designing New Protoporphyrinogen Oxidase-Inhibitors Carrying Potential Side Chain Isosteres to Enhance Crop Safety and Spectrum of Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18270-18284. [PMID: 37269295 DOI: 10.1021/acs.jafc.3c01420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are several methods to control weeds, which impose particular challenges for farmers in all parts of the world, although applying small molecular compounds still remains the most efficient technology to date. However, plants can evolve to become resistant toward active ingredients which is also the case for protoporphyrinogen oxidase (PPO) inhibitors, a class of highly effective herbicides in use for more than 50 years. Hence, it is essential to continuously discover and develop new herbicidal PPO inhibitors with enhanced intrinsic activity, an improved resistance profile, enhanced crop safety, favorable physicochemical properties, and a clean toxicological profile. By modifying structural key features from known PPO inhibitors such as tiafenacil, inspired by isostere and mix&match concepts in combination with modeling investigations based on a wild-type Amaranthus crystal structure, we have found new promising lead structures showing strong activity in vitro and in vivo against several notorious dicotyledon and monocotyledon weeds with emerging resistance (e.g., Amaranthus palmeri, Amaranthus tuberculatus, Lolium rigidum, and Alopecurus myosuroides). While several phenyl uracils carrying an isoxazoline motif in their thio-linked side chain showed promising resistance-breaking potential against different Amaranthus species, introducing a thioacrylamide side chain afforded outstanding efficacy against resistant grass weeds.
Collapse
Affiliation(s)
- Neanne Alnafta
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Roland Beffa
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Guido Bojack
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Nicola Z Brant
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Christine Dörnbrack
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Nicole Dorn
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jörg Freigang
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Elmar Gatzweiler
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rahel Getachew
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Claudia Hartfiel
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ines Heinemann
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Sabine Hohmann
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Harald Jakobi
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Gudrun Lange
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Peter Lümmen
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Lothar Willms
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jens Frackenpohl
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Guan Y, Cao S, Zou Y, Liu L, Yang C, Ji M. Enhanced metabolic ability enabled wild panicgrass (Panicum miliaceum L. var. ruderale kit.) resistance to ALS inhibitor herbicide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105510. [PMID: 37532326 DOI: 10.1016/j.pestbp.2023.105510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023]
Abstract
Wild panicgrass (Panicum miliaceum L. var. ruderale kit.) is an annual grass weed that primarily occurs in maize fields. Nicosulfuron is a widely used selective herbicide that effectively controls gramineous weeds in maize fields. However, owing to its long-term and extensive application, the control of P. miliaceum has been substantially reduced. The objective of this study was to determine the resistance pattern to ALS inhibitors in P. miliaceum and investigate the underlying resistance mechanisms. These are important for guiding the prevention and eradication of resistant weeds. Whole plant bioassays showed P. miliaceum had evolved high levels of resistance to nicosulfuron and multiple resistance to atrazine and mesotrione. The ALS gene sequence results indicated the absence of mutations in the resistant population. Additionally, there was no significant difference found in the inhibition rate of the ALS enzyme activity (I50) between the resistant and sensitive populations. Following the application of malathion the resistant P. miliaceum population became more sensitive to nicosulfuron. At 96 h after application of nicosulfuron, glutathione-S-transferase activity in the resistant population was significantly higher than that in the susceptible population. The study reveals that the main cause of resistance to ALS inhibitor herbicide in P. miliaceum is likely increased metabolism of herbicides. These findings may assist in devising effective strategies for preventing and eliminating resistant P. miliaceum.
Collapse
Affiliation(s)
- Yidi Guan
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Shihan Cao
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Yize Zou
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Liru Liu
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Changbi Yang
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| |
Collapse
|