1
|
Ciapała K, Pawlik K, Ciechanowska A, Makuch W, Mika J. Astaxanthin has a beneficial influence on pain-related symptoms and opioid-induced hyperalgesia in mice with diabetic neuropathy-evidence from behavioral studies. Pharmacol Rep 2024; 76:1346-1362. [PMID: 39528765 PMCID: PMC11582234 DOI: 10.1007/s43440-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The treatment of painful diabetic neuropathy is still a clinical problem. The aim of this study was to determine whether astaxanthin, a substance that inhibits mitogen-activated protein kinases, activates nuclear factor erythroid 2-related factor 2 and influences N-methyl-D-aspartate receptor, affects nociceptive transmission in mice with diabetic neuropathy. METHODS The studies were performed on streptozotocin-induced mouse diabetic neuropathic pain model. Single intrathecal and intraperitoneal administrations of astaxanthin at various doses were conducted in both males and females. Additionally, repeated twice-daily treatment with astaxanthin (25 mg/kg) and morphine (30 mg/kg) were performed. Hypersensitivity was evaluated with von Frey and cold plate tests. RESULTS This behavioral study provides the first evidence that in a mouse model of diabetic neuropathy, single injections of astaxanthin similarly reduce tactile and thermal hypersensitivity in both male and female mice, regardless of the route of administration. Moreover, repeated administration of astaxanthin slightly delays the development of morphine tolerance and significantly suppresses the occurrence of opioid-induced hyperalgesia, although it does not affect blood glucose levels, body weight, or motor coordination. Surprisingly, astaxanthin administered repeatedly produces a better analgesic effect when administered alone than in combination with morphine, and its potency becomes even more pronounced over time. CONCLUSIONS These behavioral results provide a basis for further evaluation of the potential use of astaxanthin in the clinical treatment of diabetic neuropathy and suggest that the multidirectional action of this substance may have positive effects on relieving neuropathic pain in diabetes.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
2
|
Ikemoto H, Adachi N, Okumo T, Chuluunbat O, Hisamitsu T, Sunagawa M. Duration of the preemptive analgesic effects of low- and high-frequency transcutaneous electrical nerve stimulation in rats with acute inflammatory pain. Kaohsiung J Med Sci 2024; 40:456-466. [PMID: 38446546 DOI: 10.1002/kjm2.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Transcutaneous electrical nerve stimulation (TENS) activates various pathways to induce antinociceptive effects, based on the frequencies used. This study evaluates the preemptive analgesic effects and their duration of low- (LT: 4 Hz) and high-frequency TENS (HT: 100 Hz) using a rat model of acute inflammatory pain. Acute inflammation was induced by injecting 1% formalin into the hind paws of rats. LT or HT was applied for 30 min before formalin injection. Pain-related behaviors, such as licking, flinching, and lifting, were recorded for 60 min postinjection. Immunohistochemistry was used to assess the number of phosphorylated extracellular signal-regulated kinase (pERK)- and c-fos-positive cells in the spinal cord. Naloxone, a μ-opioid receptors (MORs) antagonist, and naltrindole, a δ-opioid receptors (DORs) antagonist, were administered before TENS application. Pain behavior duration and pERK- and c-fos-positive cell expression were then measured. LT and HT pretreatment significantly reduced both pain behaviors and the number of pERK- and c-fos-positive cells postformalin injection. Naloxone and naltrindole partially reversed the effects of LT and HT, respectively. Notably, HT's analgesic effect lasted up to 120 min whereas that of LT persisted for 90 min. LT and HT effectively exerted their preemptive analgesic effects on acute inflammatory pain by inhibiting pERK and c-fos expression in the spinal cord. HT presented a longer-lasting effect compared to LT. MOR and DOR activation may contribute to LT and HT's analgesic mechanisms, respectively.
Collapse
Affiliation(s)
- Hideshi Ikemoto
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Naoki Adachi
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Takayuki Okumo
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Oyunchimeg Chuluunbat
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Hisamitsu
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Masataka Sunagawa
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Lu YY, Tsai HP, Tsai TH, Miao HC, Zhang ZH, Wu CH. RTA-408 Regulates p-NF-κB/TSLP/STAT5 Signaling to Ameliorate Nociceptive Hypersensitivity in Chronic Constriction Injury Rats. Mol Neurobiol 2024; 61:1714-1725. [PMID: 37773082 DOI: 10.1007/s12035-023-03660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsiao-Chien Miao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei, 050700, People's Republic of China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
5
|
Ávila-Gálvez MÁ, Marques D, Figueira I, Cankar K, Bosch D, Brito MA, Dos Santos CN. Costunolide and parthenolide: Novel blood-brain barrier permeable sesquiterpene lactones to improve barrier tightness. Biomed Pharmacother 2023; 167:115413. [PMID: 37683593 DOI: 10.1016/j.biopha.2023.115413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Sesquiterpene lactones - such as those found in chicory - are considered promising bioactive compounds. These small molecules have shown several health benefits for various diseases, including brain disorders. However, it is unknown whether these compounds can cross the blood-brain barrier (BBB), and which could be the effects on brain microvascular endothelial cells. We show that six sesquiterpene lactones evaluated in an in vitro model of the BBB have different capacities to be transported through the barrier. Costunolide presented more than 20 % of transport while lactucin, 11β-13-dihydrolactucin, 11β-13-dihydrolactucopicrin, and parthenolide presented between 10 % and 20 %, whilst almost no transport was detected for lactucopicrin. Furthermore, costunolide and parthenolide reduced P-gp ABC transporter expression alongside an increase in caveolin-1, the main protein of caveolae. Remarkably, these two compounds improved barrier tightness by increasing the expression of both tight and adherens junctions. These findings open a new avenue to explore costunolide and parthenolide as promising compounds for brain therapies.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal; iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Daniela Marques
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Katarina Cankar
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Dirk Bosch
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal; iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
6
|
Ciapała K, Rojewska E, Pawlik K, Ciechanowska A, Mika J. Analgesic Effects of Fisetin, Peimine, Astaxanthin, Artemisinin, Bardoxolone Methyl and 740 Y-P and Their Influence on Opioid Analgesia in a Mouse Model of Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24109000. [PMID: 37240346 DOI: 10.3390/ijms24109000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Treatment of neuropathic pain remains a challenge for modern medicine due to the insufficiently understood molecular mechanisms of its development and maintenance. One of the most important cascades that modulate the nociceptive response is the family of mitogen-activated protein (MAP) kinases and phosphatidylinositol-3-kinase (PI3K), as well as nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this study was to determine the effect of nonselective modulators of MAP kinases-fisetin (ERK1/2 and NFκB inhibitor, PI3K activator), peimine (MAPK inhibitor), astaxanthin (MAPK inhibitor, Nrf2 activator) and artemisinin (MAPK inhibitor, NFκB activator), as well as bardoxolone methyl (selective activator of Nrf2) and 740 Y-P (selective activator of PI3K)-in mice with peripheral neuropathy and to compare their antinociceptive potency and examine their effect on analgesia induced by opioids. The study was performed using albino Swiss male mice that were exposed to chronic constriction injury of the sciatic nerve (CCI model). Tactile and thermal hypersensitivity was measured using von Frey and cold plate tests, respectively. Single doses of substances were administered intrathecally on day 7 after CCI. Among the tested substances, fisetin, peimine, and astaxanthin effectively diminished tactile and thermal hypersensitivity in mice after CCI, while artemisinin did not exhibit analgesic potency in this model of neuropathic pain. Additionally, both of the activators tested, bardoxolone methyl and 740 Y-P, also showed analgesic effects after intrathecal administration in mice exposed to CCI. In the case of astaxanthin and bardoxolone methyl, an increase in analgesia after combined administration with morphine, buprenorphine, and/or oxycodone was observed. Fisetin and peimine induced a similar effect on tactile hypersensitivity, where analgesia was enhanced after administration of morphine or oxycodone. In the case of 740 Y-P, the effects of combined administration with each opioid were observed only in the case of thermal hypersensitivity. The results of our research clearly indicate that substances that inhibit all three MAPKs provide pain relief and improve opioid effectiveness, especially if they additionally block NF-κB, such as peimine, inhibit NF-κB and activate PI3K, such as fisetin, or activate Nrf2, such as astaxanthin. In light of our research, Nrf2 activation appears to be particularly beneficial. The abovementioned substances bring promising results, and further research on them will broaden our knowledge regarding the mechanisms of neuropathy and perhaps contribute to the development of more effective therapy in the future.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| |
Collapse
|
7
|
Zhu S, Sun P, Bennett S, Charlesworth O, Tan R, Peng X, Gu Q, Kujan O, Xu J. The therapeutic effect and mechanism of parthenolide in skeletal disease, cancers, and cytokine storm. Front Pharmacol 2023; 14:1111218. [PMID: 37033622 PMCID: PMC10080395 DOI: 10.3389/fphar.2023.1111218] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1β, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1β, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Ping Sun
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Oscar Charlesworth
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
8
|
Cuitavi J, Torres-Pérez JV, Lorente JD, Campos-Jurado Y, Andrés-Herrera P, Polache A, Agustín-Pavón C, Hipólito L. Crosstalk between Mu-Opioid receptors and neuroinflammation: Consequences for drug addiction and pain. Neurosci Biobehav Rev 2023; 145:105011. [PMID: 36565942 DOI: 10.1016/j.neubiorev.2022.105011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Mu-Opioid Receptors (MORs) are well-known for participating in analgesia, sedation, drug addiction, and other physiological functions. Although MORs have been related to neuroinflammation their biological mechanism remains unclear. It is suggested that MORs work alongside Toll-Like Receptors to enhance the release of pro-inflammatory mediators and cytokines during pathological conditions. Some cytokines, including TNF-α, IL-1β and IL-6, have been postulated to regulate MORs levels by both avoiding MOR recycling and enhancing its production. In addition, Neurokinin-1 Receptor, also affected during neuroinflammation, could be regulating MOR trafficking. Therefore, inflammation in the central nervous system seems to be associated with altered/increased MORs expression, which might regulate harmful processes, such as drug addiction and pain. Here, we provide a critical evaluation on MORs' role during neuroinflammation and its implication for these conditions. Understanding MORs' functioning, their regulation and implications on drug addiction and pain may help elucidate their potential therapeutic use against these pathological conditions and associated disorders.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain.
| | - Jose Vicente Torres-Pérez
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Jesús David Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Paula Andrés-Herrera
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Carmen Agustín-Pavón
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain.
| |
Collapse
|
9
|
Pharmacological Evidence of the Important Roles of CCR1 and CCR3 and Their Endogenous Ligands CCL2/7/8 in Hypersensitivity Based on a Murine Model of Neuropathic Pain. Cells 2022; 12:cells12010098. [PMID: 36611891 PMCID: PMC9818689 DOI: 10.3390/cells12010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain treatment remains a challenging issue because the therapies currently used in the clinic are not sufficiently effective. Moreover, the mechanism of neuropathy is still not entirely understood; however, much evidence indicates that chemokines are important factors in the initial and late phases of neuropathic pain. To date, the roles of CCR1, CCR3 and their endogenous ligands have not been extensively studied; therefore, they have become the subject of our research. In the present comprehensive behavioral and biochemical study, we detected significant time-dependent and long-lasting increases in the mRNA levels of CCR1 and/or CCR3 ligands, such as CCL2/3/4/5/6/7/8/9, in the murine spinal cord after chronic constriction injury of the sciatic nerve, and these increases were accompanied by changes in the levels of microglial/macrophage, astrocyte and neutrophil cell markers. ELISA results suggested that endogenous ligands of CCR1 and CCR3 are involved in the development (CCL2/3/5/7/8/9) and persistence (CCL2/7/8) of neuropathic pain. Moreover, intrathecal injection of CCL2/3/5/7/8/9 confirmed their possible strong influence on mechanical and thermal hypersensitivity development. Importantly, inhibition of CCL2/7/8 production and CCR1 and CCR3 blockade by selective/dual antagonists effectively reduced neuropathic pain-like behavior. The obtained data suggest that CCL2/7/8/CCR1 and CCL7/8/CCR3 signaling are important in the modulation of neuropathic pain in mice and that these chemokines and their receptors may be interesting targets for future investigations.
Collapse
|
10
|
Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC Chemokine Receptor 4 (CCR4) as a Possible New Target for Therapy. Int J Mol Sci 2022; 23:ijms232415638. [PMID: 36555280 PMCID: PMC9779674 DOI: 10.3390/ijms232415638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Mika
- Correspondence: or ; Tel.: +48-12-6623-298; Fax: +48-12-6374-500
| |
Collapse
|
11
|
Fullerton EF, Karom MC, Streicher JM, Young LJ, Murphy AZ. Age-Induced Changes in µ-Opioid Receptor Signaling in the Midbrain Periaqueductal Gray of Male and Female Rats. J Neurosci 2022; 42:6232-6242. [PMID: 35790399 PMCID: PMC9374133 DOI: 10.1523/jneurosci.0355-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. The present study investigated the impact of advanced age and biological sex on opioid signaling in the ventrolateral periaqueductal gray (vlPAG) in the presence of chronic inflammatory pain. Assays measuring µ-opioid receptor (MOR) radioligand binding, GTPγS binding, receptor phosphorylation, cAMP inhibition, and regulator of G-protein signaling (RGS) protein expression were performed on vlPAG tissue from adult (2-3 months) and aged (16-18 months) male and female rats. Persistent inflammatory pain was induced by intraplantar injection of complete Freund's adjuvant (CFA). Adult males exhibited the highest MOR binding potential (BP) and highest G-protein activation (activation efficiency ratio) in comparison to aged males and females (adult and aged). No impact of advanced age or sex on MOR phosphorylation state was observed. DAMGO-induced cAMP inhibition was highest in the vlPAG of adult males compared with aged males and females (adult and aged). vlPAG levels of RGS4 and RGS9-2, critical for terminating G-protein signaling, were assessed using RNAscope. Adult rats (both males and females) exhibited lower levels of vlPAG RGS4 and RGS9-2 mRNA expression compared with aged males and females. The observed age-related reductions in vlPAG MOR BP, G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in RGS4 and RGS9-2 vlPAG expression, provide potential mechanisms whereby the potency of opioids is decreased in the aged population.SIGNIFICANCE STATEMENT Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. In the present study, we observed age-related reductions in ventrolateral periaqueductal gray (vlPAG) µ-opioid receptor (MOR) binding potential (BP), G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in regulator of G-protein signaling (RGS)4 and RGS9-2 vlPAG expression, providing potential mechanisms whereby the potency of opioids is decreased in the aged population. These coordinated decreases in opioid receptor signaling may explain the previously reported reduced potency of opioids to produce pain relief in females and aged rats.
Collapse
Affiliation(s)
- Evan F Fullerton
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Mary C Karom
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
12
|
Sabina S, Panico A, Mincarone P, Leo CG, Garbarino S, Grassi T, Bagordo F, De Donno A, Scoditti E, Tumolo MR. Expression and Biological Functions of miRNAs in Chronic Pain: A Review on Human Studies. Int J Mol Sci 2022; 23:ijms23116016. [PMID: 35682695 PMCID: PMC9181121 DOI: 10.3390/ijms23116016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic pain is a major public health problem and an economic burden worldwide. However, its underlying pathological mechanisms remain unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate gene expression and serve key roles in physiological and pathological processes. This review aims to synthesize the human studies examining miRNA expression in the pathogenesis of chronic primary pain and chronic secondary pain. Additionally, to understand the potential pathophysiological impact of miRNAs in these conditions, an in silico analysis was performed to reveal the target genes and pathways involved in primary and secondary pain and their differential regulation in the different types of chronic pain. The findings, methodological issues and challenges of miRNA research in the pathophysiology of chronic pain are discussed. The available evidence suggests the potential role of miRNA in disease pathogenesis and possibly the pain process, eventually enabling this role to be exploited for pain monitoring and management.
Collapse
Affiliation(s)
- Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Pierpaolo Mincarone
- Institute for Research on Population and Social Policies, National Research Council, c/o ex Osp. Di Summa, Piazza Di Summa, 72100 Brindisi, Italy;
| | - Carlo Giacomo Leo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via Edoardo Orabona, 70126 Bari, Italy;
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Correspondence: ; Tel.: +39-(08)-3229-8860
| | - Maria Rosaria Tumolo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| |
Collapse
|
13
|
Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR. Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. J Med Chem 2021; 64:6523-6548. [PMID: 33956427 DOI: 10.1021/acs.jmedchem.1c00028] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Takato Hiranita
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Lance R McMahon
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
14
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
15
|
Santos Passos FR, Pereira EWM, Heimfarth L, Monteiro BS, Barbosa Gomes de Carvalho YM, Siqueira-Lima PS, Melo Coutinho HD, Antunes de Souza Araújo A, Guedes da Silva Almeida JR, Barreto RSS, Picot L, Quintans-Júnior LJ, Quintans JSS. Role of peripheral and central sensitization in the anti-hyperalgesic effect of hecogenin acetate, an acetylated sapogenin, complexed with β-cyclodextrin: Involvement of NFκB and p38 MAPK pathways. Neuropharmacology 2021; 186:108395. [PMID: 33516738 DOI: 10.1016/j.neuropharm.2020.108395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain develops due to injury to the somatosensory system, affecting the patient's quality of life. In view of the ineffectiveness of the current pharmacotherapy, substances obtained from natural products (NPs) are a promising alternative. One NP that has been discussed in the literature is hecogenin acetate (HA), a steroidal sapogenin with anti-inflammatory and antinociceptive activity. However, HA has low water solubility, which affects its bioavailability. Thus, the objective of this study was to evaluate the anti-hyperalgesic activity of pure and complexed hecogenin acetate (HA/βCD) in an animal model of chronic neuropathic and inflammatory pain. The inclusion complex was prepared at a molar ratio of 1:2 (HA:βCD) by the lyophilization method. For the induction of chronic inflammatory pain, the mice received an intraplantar injection of CFA (complete Freund's adjuvant), and were evaluated for mechanical hyperalgesia and for the levels of myeloperoxidase (MPO) in the skin of the paw after eight days of treatment. HA and HA/βCD reduced mechanical hyperalgesia in relation to the vehicle group until the fourth and fifth hours, respectively, in the acute evaluation, with a superior effect of the complexed form over the pure form in the second and third hour after treatment (p < 0.001). In the chronic evaluation, HA and HA/βCD reduced hyperalgesia in relation to the vehicle in the eight days of treatment (p < 0.001). Both pure (p < 0.01) and complexed (p < 0.001) forms reduced myeloperoxidase activity in the skin of the animals' paw. Groups of animals subjected to the same pharmacological protocol were submitted to the partial sciatic nerve ligation (PSNL) model and evaluated for mechanical and thermal hyperalgesia, and cold allodynia. HA and HA/βCD reduced mechanical hyperalgesia until the fourth and sixth hours, respectively, and both reduced hyperalgesia in relation to the vehicle in the chronic evaluation (p < 0.001). HA and HA/βCD also reduced thermal hyperalgesia and cold allodynia (p < 0.05 and p < 0.001, respectively). The analysis of the spinal cord of these animals showed a decrease in the levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6 and a reduction in the phosphorylation of NFκB and p38MAPK, as well as a decrease in microglioses compared to the vehicle group. In addition, HA/βCD reduced the nociception induced by intraplantar injection of agonist TRPA1 (p < 0.01) and TRPM8 (p < 0.05). Treatment for eight days with HA and HA/βCD showed no signs of gastric or liver damage. HA and HA/βCD were, therefore, shown to have antinociceptive effects in chronic pain models. Based on our exploration of the mechanisms of the action of HA, these effects are likely to be related to inhibited leukocyte migration, interaction with the TRPA1 and TRPM8 receptors, reduced pro-inflammatory cytokines levels, microglial expression and suppression of NF-κB p65 and p38 MAPK pathway signaling. Therefore, HA/βCD has great potential for use in the treatment of chronic pain.
Collapse
Affiliation(s)
- Fabiolla Rocha Santos Passos
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Erik W M Pereira
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Luana Heimfarth
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Brenda S Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Yasmim Maria Barbosa Gomes de Carvalho
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | - Rosana S S Barreto
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Laurent Picot
- La Rochelle Université, UMRi CNRS 7266 LIENSs, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil.
| |
Collapse
|
16
|
Kwiatkowski K, Pawlik K, Ciapała K, Piotrowska A, Makuch W, Mika J. Bidirectional Action of Cenicriviroc, a CCR2/CCR5 Antagonist, Results in Alleviation of Pain-Related Behaviors and Potentiation of Opioid Analgesia in Rats With Peripheral Neuropathy. Front Immunol 2021; 11:615327. [PMID: 33408720 PMCID: PMC7779470 DOI: 10.3389/fimmu.2020.615327] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
Clinical management of neuropathic pain is unsatisfactory, mainly due to its resistance to the effects of available analgesics, including opioids. Converging evidence indicates the functional interactions between chemokine and opioid receptors and their influence on nociceptive processes. Recent studies highlight that the CC chemokine receptors type 2 (CCR2) and 5 (CCR5) seem to be of particular interest. Therefore, in this study, we investigated the effects of the dual CCR2/CCR5 antagonist, cenicriviroc, on pain-related behaviors, neuroimmune processes, and the efficacy of opioids in rats after chronic constriction injury (CCI) of the sciatic nerve. To define the mechanisms of action of cenicriviroc, we studied changes in the activation/influx of glial and immune cells and, simultaneously, the expression level of CCR2, CCR5, and important pronociceptive cytokines in the spinal cord and dorsal root ganglia (DRG). We demonstrated that repeated intrathecal injections of cenicriviroc, in a dose-dependent manner, alleviated hypersensitivity to mechanical and thermal stimuli in rats after sciatic nerve injury, as measured by von Frey and cold plate tests. Behavioral effects were associated with the beneficial impact of cenicriviroc on the activation/influx level of C1q/IBA-1-positive cells in the spinal cord and/or DRG and GFAP-positive cells in DRG. In parallel, administration of cenicriviroc decreased the expression of CCR2 in the spinal cord and CCR5 in DRG. Concomitantly, we observed that the level of important pronociceptive factors (e.g., IL-1beta, IL-6, IL-18, and CCL3) were increased in the lumbar spinal cord and/or DRG 7 days following injury, and cenicriviroc was able to prevent these changes. Additionally, repeated administration of this dual CCR2/CCR5 antagonist enhanced the analgesic effects of morphine and buprenorphine in neuropathic rats, which can be associated with the ability of cenicriviroc to prevent nerve injury-induced downregulation of all opioid receptors at the DRG level. Overall, our results suggest that pharmacological modulation based on the simultaneous blockade of CCR2 and CCR5 may serve as an innovative strategy for the treatment of neuropathic pain, as well as in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
17
|
Borgonetti V, Governa P, Biagi M, Pellati F, Galeotti N. Zingiber officinale Roscoe rhizome extract alleviates neuropathic pain by inhibiting neuroinflammation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153307. [PMID: 32846405 DOI: 10.1016/j.phymed.2020.153307] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Current therapies for neuropathic pain are generally symptomatic and possess several side effects, limiting their prolonged usage. HYPOTHESIS/PURPOSE Thus, it is urgent to develop novel and safe candidates for the management of this chronical condition. For this purpose, we investigated the analgesic effect of a standardized extract from Zingiber officinale Roscoe rhizomes (ZOE) obtained by CO2 supercritical extraction, in a mice model of peripheral neuropathy. We also explored the mechanism of action of ZOE and its main constituents using an in vitro model of neuroinflammation. METHODS Peripheral mono-neuropathy was induced in mice, by spared nerve injury (SNI). The analgesic effect of ZOE after oral administration was assessed by measuring mechanical and thermal allodynia in SNI mice. The mechanism of action of ZOE and its main constituents were investigated using spinal cords samples and in an in vitro model of neuroinflammation by ELISA, western blotting and immunofluorescence techniques. RESULTS Oral administration of ZOE 200 mg kg-1 ameliorated mechanical and thermal allodynia in SNI mice, with a rapid and a long-lasting effect. ZOE did not alter locomotor activity. In BV2 cells and spinal cord samples, ZOE, 6-gingerol and 6-shogaol reduced pERK levels, whereas ZOE and terpene fraction reduced HDAC1 protein levels, inhibited NF-κB signalling activation and decreased IL-1β, TNF-α and IL-6 release. ZOE and each tested constituent had a positive effect on inflammation-impaired SH-SY5Y cell viability. CONCLUSIONS The oral administration of ZOE attenuated SNI-induced neuropathic pain symptoms by reducing spinal neuroinflammation, suggesting ZOE as a novel and interesting candidate for the management of neuropathic pain.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Strada Laterina 8, 53100 Siena, Italy
| | - Federica Pellati
- Department of Life Science, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy,.
| |
Collapse
|
18
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
19
|
Miao J, Zhou X, Ji T, Chen G. NF-κB p65-dependent transcriptional regulation of histone deacetylase 2 contributes to the chronic constriction injury-induced neuropathic pain via the microRNA-183/TXNIP/NLRP3 axis. J Neuroinflammation 2020; 17:225. [PMID: 32723328 PMCID: PMC7389436 DOI: 10.1186/s12974-020-01901-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/15/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Neuropathic pain is related to the sustained activation of neuroglial cells and the production of proinflammatory cytokines in the spinal dorsal horn. However, the clinical efficacy of currently available treatments is very limited. The transcription factor nuclear factor κB (NF-κB) is a ubiquitously expressed protein family and considered to be crucial in autoimmunity. Thus, our study aimed to examine the influence of NF-κB p65 in chronic constriction injury (CCI)-induced neuropathic pain as well as its underlying mechanism. METHODS A rat model of neuropathic pain was established by CCI induction followed by isolation of microglial cells. The binding of NF-κB p65 to HDAC2, of miR-183 to TXNIP, and of TXNIP to NLRP3 was investigated. Expression of miR-183, NF-κB p65, HDAC2, TXNIP, and NLRP3 was determined with their functions in CCI rats and microglial cells analyzed by gain- and loss-of-function experiments. RESULTS NF-κB p65 and HDAC2 were upregulated while miR-183 was downregulated in the dorsal horn of the CCI rat spinal cord. NF-κB p65 was bound to the HDAC2 promoter and then increased its expression. HDAC2 reduced miR-183 expression by deacetylation of histone H4. Additionally, miR-183 negatively regulated TXNIP. Mechanistically, NF-κB p65 downregulated the miR-183 expression via the upregulation of HDAC2 and further induced inflammatory response by activating the TXNIP-NLRP3 inflammasome axis, thus aggravating the neuropathic pain in CCI rats and microglial cells. CONCLUSION These results revealed a novel transcriptional mechanism of interplay between NF-κB and HDAC2 focusing on neuropathic pain via the miR-183/TXNIP/NLRP3 axis.
Collapse
Affiliation(s)
- Jiamin Miao
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun East Road, Jianggan District, Hangzhou, 310012, Zhejiang Province, China.
| | - Xuelong Zhou
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, 02115, USA
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun East Road, Jianggan District, Hangzhou, 310012, Zhejiang Province, China.
| |
Collapse
|
20
|
Bogacka J, Ciapała K, Pawlik K, Kwiatkowski K, Dobrogowski J, Przeklasa-Muszynska A, Mika J. CCR4 Antagonist (C021) Administration Diminishes Hypersensitivity and Enhances the Analgesic Potency of Morphine and Buprenorphine in a Mouse Model of Neuropathic Pain. Front Immunol 2020; 11:1241. [PMID: 32760393 PMCID: PMC7372009 DOI: 10.3389/fimmu.2020.01241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is a chronic condition that remains a major clinical problem owing to high resistance to available therapy. Recent studies have indicated that chemokine signaling pathways are crucial in the development of painful neuropathy; however, the involvement of CC chemokine receptor 4 (CCR4) has not been fully elucidated thus far. Therefore, the aim of our research was to investigate the role of CCR4 in the development of tactile and thermal hypersensitivity, the effectiveness of morphine/buprenorphine, and opioid-induced tolerance in mice exposed to chronic constriction injury (CCI) of the sciatic nerve. The results of our research demonstrated that a single intrathecal or intraperitoneal administration of C021, a CCR4 antagonist, dose dependently diminished neuropathic pain-related behaviors in CCI-exposed mice. After sciatic nerve injury, the spinal expression of CCL17 and CCL22 remained unchanged in contrast to that of CCL2, which was significantly upregulated until day 14 after CCI. Importantly, our results provide evidence that in naive mice, CCL2 may evoke pain-related behaviors through CCR4 because its pronociceptive effects are diminished by C021. In CCI-exposed mice, the pharmacological blockade of CCR4 enhanced the analgesic properties of morphine/buprenorphine and delayed the development of morphine-induced tolerance, which was associated with the silencing of IBA-1 activation in cells and decrease in CCL2 production. The obtained data suggest that the pharmacological blockade of CCR4 may be a new potential therapeutic target for neuropathic pain polytherapy.
Collapse
Affiliation(s)
- Joanna Bogacka
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Klaudia Kwiatkowski
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Przeklasa-Muszynska
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
21
|
β-Arrestin 2 and ERK1/2 Are Important Mediators Engaged in Close Cooperation between TRPV1 and µ-Opioid Receptors in the Plasma Membrane. Int J Mol Sci 2020; 21:ijms21134626. [PMID: 32610605 PMCID: PMC7370190 DOI: 10.3390/ijms21134626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
The interactions between TRPV1 and µ-opioid receptors (MOR) have recently attracted much attention because these two receptors play important roles in pain pathways and can apparently modulate each other’s functioning. However, the knowledge about signaling interactions and crosstalk between these two receptors is still limited. In this study, we investigated the mutual interactions between MOR and TRPV1 shortly after their activation in HEK293 cells expressing these two receptors. After activation of one receptor we observed significant changes in the other receptor’s lateral mobility and vice versa. However, the changes in receptor movement within the plasma membrane were not connected with activation of the other receptor. We also observed that plasma membrane β-arrestin 2 levels were altered after treatment with agonists of both these receptors. Knockdown of β-arrestin 2 blocked all changes in the lateral mobility of both receptors. Furthermore, we found that β-arrestin 2 can play an important role in modulating the effectiveness of ERK1/2 phosphorylation after activation of MOR in the presence of TRPV1. These data suggest that β-arrestin 2 and ERK1/2 are important mediators between these two receptors and their signaling pathways. Collectively, MOR and TRPV1 can mutually affect each other’s behavior and β-arrestin 2 apparently plays a key role in the bidirectional crosstalk between these two receptors in the plasma membrane.
Collapse
|
22
|
Duron DI, Lei W, Barker NK, Stine C, Mishra S, Blagg BSJ, Langlais PR, Streicher JM. Inhibition of Hsp90 in the spinal cord enhances the antinociceptive effects of morphine by activating an ERK-RSK pathway. Sci Signal 2020; 13:13/630/eaaz1854. [PMID: 32371496 DOI: 10.1126/scisignal.aaz1854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Morphine and other opioids are commonly used to treat pain despite their numerous adverse side effects. Modulating μ-opioid receptor (MOR) signaling is one way to potentially improve opioid therapy. In mice, the chaperone protein Hsp90 mediates MOR signaling within the brain. Here, we found that inhibiting Hsp90 specifically in the spinal cord enhanced the antinociceptive effects of morphine in mice. Intrathecal, but not systemic, administration of the Hsp90 inhibitors 17-AAG or KU-32 amplified the effects of morphine in suppressing sensitivity to both thermal and mechanical stimuli in mice. Hsp90 inhibition enabled opioid-induced phosphorylation of the kinase ERK and increased abundance of the kinase RSK in the dorsal horns of the spinal cord, which are heavily populated with primary afferent sensory neurons. The additive effects of Hsp90 inhibition were abolished upon intrathecal inhibition of ERK, RSK, or protein synthesis. This mechanism downstream of MOR, localized to the spinal cord and repressed by Hsp90, may potentially be used to enhance the efficacy and presumably decrease the side effects of opioid therapy.
Collapse
Affiliation(s)
- David I Duron
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Natalie K Barker
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Carrie Stine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Sanket Mishra
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
23
|
Xu B, Zhang M, Shi X, Zhang R, Chen D, Chen Y, Wang Z, Qiu Y, Zhang T, Xu K, Zhang X, Liedtke W, Wang R, Fang Q. The multifunctional peptide DN-9 produced peripherally acting antinociception in inflammatory and neuropathic pain via μ- and κ-opioid receptors. Br J Pharmacol 2019; 177:93-109. [PMID: 31444977 DOI: 10.1111/bph.14848] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Considerable effort has recently been directed at developing multifunctional opioid drugs to minimize the unwanted side effects of opioid analgesics. We have developed a novel multifunctional opioid agonist, DN-9. Here, we studied the analgesic profiles and related side effects of peripheral DN-9 in various pain models. EXPERIMENTAL APPROACH Antinociceptive effects of DN-9 were assessed in nociceptive, inflammatory, and neuropathic pain. Whole-cell patch-clamp and calcium imaging assays were used to evaluate the inhibitory effects of DN-9 to calcium current and high-K+ -induced intracellular calcium ([Ca2+ ]i ) on dorsal root ganglion (DRG) neurons respectively. Side effects of DN-9 were evaluated in antinociceptive tolerance, abuse, gastrointestinal transit, and rotarod tests. KEY RESULTS DN-9, given subcutaneously, dose-dependently produced antinociception via peripheral opioid receptors in different pain models without sex difference. In addition, DN-9 exhibited more potent ability than morphine to inhibit calcium current and high-K+ -induced [Ca2+ ]i in DRG neurons. Repeated treatment with DN-9 produced equivalent antinociception for 8 days in multiple pain models, and DN-9 also maintained potent analgesia in morphine-tolerant mice. Furthermore, chronic DN-9 administration had no apparent effect on the microglial activation of spinal cord. After subcutaneous injection, DN-9 exhibited less abuse potential than morphine, as was gastroparesis and effects on motor coordination. CONCLUSIONS AND IMPLICATIONS DN-9 produces potent analgesia with minimal side effects, which strengthen the candidacy of peripherally acting opioids with multifunctional agonistic properties to enter human studies to alleviate the current highly problematic misuse of classic opioids on a large scale.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yong Chen
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Zilong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wolfgang Liedtke
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Liu JC, Xue DF, Wang XQ, Ai DB, Qin PJ. MiR-101 relates to chronic peripheral neuropathic pain through targeting KPNB1 and regulating NF-κB signaling. Kaohsiung J Med Sci 2019; 35:139-145. [PMID: 30887716 DOI: 10.1002/kjm2.12025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidences indicates that chronic neuropathic pain is a kind of neuro-immune disorder with enhanced activation of the immune system. Although the prevalence is very high, neuropathic pain remains extremely difficult to cure. miRNAs are a group of short nonprotein coding RNAs, regulating target genes expression via targeting 3'-untranslated region. More and more research indicates that altered miRNAs expression profile relates to the pathogenesis of neuropathic pain. In this study, we firstly detected the expression of six candidate miRNAs in the plasma samples from 23 patients with neuropathic pain and 10 healthy controls. Subsequently, the level of miR-132 and miR-101 was detected in the sural nerve biopsies. We found miR-101 level was significantly repressed in both the plasma samples and sural nerve biopsies from neuropathic pain patients. Predicted by bioinformatics tools and confirmed by dual luciferase assay and immunoblotting, we identified that KPNB1 is a direct target of miR-101. The negative correlation between miR-101 and KPNB1 was also confirmed in the sural nerve biopsies, and miR-101 reduction relates to the activation of NF-κB signaling in vivo and in vitro which contributes to the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Jun-Chao Liu
- Department of Anesthesia and Surgery, Qingdao Municipal Hospital, Qingdao Clinical Anesthesia Research Center, Qingdao clinical pain research center, Qingdao, Puerto Rico, China
| | - Dong-Fang Xue
- Department of Anesthesia and Surgery, Qingdao Municipal Hospital, Qingdao Clinical Anesthesia Research Center, Qingdao clinical pain research center, Qingdao, Puerto Rico, China
| | - Xiao-Qian Wang
- Department of Surgery, Qingdao University Affiliated Hospital, Qingdao, Puerto Rico, China
| | - Deng-Bin Ai
- Department of Anesthesia and Surgery, Qingdao Municipal Hospital, Qingdao Clinical Anesthesia Research Center, Qingdao clinical pain research center, Qingdao, Puerto Rico, China
| | - Pei-Juan Qin
- Department of Anesthesia and Surgery, Qingdao Municipal Hospital, Qingdao Clinical Anesthesia Research Center, Qingdao clinical pain research center, Qingdao, Puerto Rico, China
| |
Collapse
|
25
|
Yu S, Zhang Y, Zhao X, Chang Z, Wei Y, Sun Y, Jiang D, Jiang X, Tao J. Cholecystokinin type B receptor-mediated inhibition of A-type K + channels enhances sensory neuronal excitability through the phosphatidylinositol 3-kinase and c-Src-dependent JNK pathway. Cell Commun Signal 2019; 17:68. [PMID: 31215470 PMCID: PMC6582535 DOI: 10.1186/s12964-019-0385-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cholecystokinin (CCK) is implicated in the regulation of nociceptive sensitivity of primary afferent neurons. Nevertheless, the underlying cellular and molecular mechanisms remain unknown. Methods Using patch clamp recording, western blot analysis, immunofluorescent labelling, enzyme-linked immunosorbent assays, adenovirus-mediated shRNA knockdown and animal behaviour tests, we studied the effects of CCK-8 on the sensory neuronal excitability and peripheral pain sensitivity mediated by A-type K+ channels. Results CCK-8 reversibly and concentration-dependently decreased A-type K+ channel (IA) in small-sized dorsal root ganglion (DRG) neurons through the activation of CCK type B receptor (CCK-BR), while the sustained delayed rectifier K+ current was unaffected. The intracellular subunit of CCK-BR coimmunoprecipitated with Gαo. Blocking G-protein signaling with pertussis toxin or by the intracellular application of anti-Gβ antibody reversed the inhibitory effects of CCK-8. Antagonism of phosphatidylinositol 3-kinase (PI3K) but not of its common downstream target Akts abolished the CCK-BR-mediated IA response. CCK-8 application significantly activated JNK mitogen-activated protein kinase. Antagonism of either JNK or c-Src prevented the CCK-BR-mediated IA decrease, whereas c-Src inhibition attenuated the CCK-8-induced p-JNK activation. Application of CCK-8 enhanced the action potential firing rate of DRG neurons and elicited mechanical and thermal pain hypersensitivity in mice. These effects were mediated by CCK-BR and were occluded by IA blockade. Conclusion Our findings indicate that CCK-8 attenuated IA through CCK-BR that is coupled to the Gβγ-dependent PI3K and c-Src-mediated JNK pathways, thereby enhancing the sensory neuronal excitability in DRG neurons and peripheral pain sensitivity in mice.
Collapse
Affiliation(s)
- Shumin Yu
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Yuan Zhang
- Department of Geriatrics and Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Xianyang Zhao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Zhigang Chang
- Department of Intensive Care Unit, Beijing Hospital Ministry of Health, Beijing, 100730, People's Republic of China
| | - Yuan Wei
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Yufang Sun
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Dongsheng Jiang
- Comprehensive Pneumology Center, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Xinghong Jiang
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Jin Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
26
|
Sun L, Xu Q, Zhang W, Jiao C, Wu H, Chen X. The involvement of spinal annexin A10/NF-κB/MMP-9 pathway in the development of neuropathic pain in rats. BMC Neurosci 2019; 20:28. [PMID: 31208343 PMCID: PMC6580616 DOI: 10.1186/s12868-019-0513-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neuropathic pain (NP) is a prevalent disease, which badly impairs the life quality of patients. The underlying mechanism of NP is still not fully understood. It has been reported that spinal Annexin A10 (ANXA10) contributes to NP. This study aims at exploring the underlying mechanisms of spinal ANXA10 in regulating NP in rats. Methods Spinal nerve ligation (SNL) was adopted to establish a NP model in rats. After SNL, paw withdrawal threshold and paw withdrawal latency were recorded to measure pain behaviors, RT-PCR was used to check the change of the expression of spinal ANXA10 mRNA, western blot analysis was used to detect the change of the protein level of ANXA10, nuclear factor kappa B (NF-κB), and maisrix metalloproteinase-9 (MMP-9) in the spinal cord. The levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukine-1β (IL-1β), and interleukine-6 (IL-6), were explored by ELISA kits. The effects of both knockdown of spinal ANXA10 and inhibition of NF-κB on pain behaviors and the expression of MMP-9 and proinflammatory cytokines were investigated. Results Our present findings highlighted that SNL caused pain hypersensitivity and increased the expression of spinal ANXA10/pNF-κB, TNF-α, IL-1β, and IL-6 both in the early and late phase of NP in rats, while spinal MMP-9 was only slightly increased in the early phase of NP. Knockdown of ANXA10 at the spinal cord level suppressed the SNL-induced hyperalgesia and blocked the activation of NF-κB, TNF-α and IL-1β both in the early and late phase of NP. Spinal ANXA10 knockdown could prevent the upregulation of spinal MMP-9 in the early phase and inhibit IL-6 expression in the late phase of SNL-induced NP. Conclusions In conclusion, spinal ANXA10/NF-κB/MMP-9 pathway, along with the activation of proinflammatory cytokines, was involved in the SNL-induced NP. MMP-9 may act as the downstream target of ANXA10/NF-κB pathway in the development rather than the maintenance of NP.
Collapse
Affiliation(s)
- LiHong Sun
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Qi Xu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - WenXin Zhang
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - CuiCui Jiao
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - XinZhong Chen
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
27
|
Nishiwada T, Kawaraguchi Y, Uemura K, Kawaguchi M. Morphine inhibits cell viability and growth via suppression of vascular endothelial growth factor in human oral cancer HSC-3 cells. J Anesth 2019; 33:408-415. [PMID: 31049688 DOI: 10.1007/s00540-019-02645-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/23/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE Although many oral cancer patients require opioids, the effects of morphine and related drugs on oral cancer progression have not been well established. Thus, we examined the effects of morphine exposure on the viability of human oral squamous carcinoma HSC-3 cells and aimed to identify the underlying mechanism. METHODS We exposed HSC-3 cells to the various concentrations of morphine (0, 0.1, 1, 10, 100, or 1000 μmol/L) for 48 h and, subsequently, evaluated cell viability using the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and cytotoxicity using the lactate dehydrogenase (LDH) assay. To explore the effects of morphine on cell proliferation further, colony formation assay and cell cycle analysis were performed. Additionally, the intracellular expression of nuclear factor kappa B (NF-κB) was analyzed using flow cytometry, and vascular endothelial growth factor (VEGF)-A was evaluated using human VEGF assay. RESULTS Morphine exposure reduced cell viability and enhanced cytotoxicity in HSC-3 cells in a concentration-dependent manner. The number of colonies in the morphine-treated groups was significantly lower than that in the control group. Consistent with these results, morphine exposure significantly reduced the concentration of VEGF in the cell culture medium in a concentration-dependent manner. However, our data show that morphine at clinical concentrations (0.1-10 μmol/L) does not affect cell cycle and apoptosis. CONCLUSIONS Our results suggest that in human oral cancer HSC-3 cells, morphine exposure inhibits cell viability and growth via suppression of VEGF in clinical conditions.
Collapse
Affiliation(s)
- Tadashi Nishiwada
- Department of Anesthesiology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan.
| | - Yoshitaka Kawaraguchi
- Department of Anesthesiology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Keiko Uemura
- Department of Anesthesiology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Masahiko Kawaguchi
- Department of Anesthesiology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| |
Collapse
|
28
|
Zhang Y, Jiang D, Li H, Sun Y, Jiang X, Gong S, Qian Z, Tao J. Melanocortin type 4 receptor-mediated inhibition of A-type K + current enhances sensory neuronal excitability and mechanical pain sensitivity in rats. J Biol Chem 2019; 294:5496-5507. [PMID: 30745360 DOI: 10.1074/jbc.ra118.006894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/07/2019] [Indexed: 12/28/2022] Open
Abstract
α-Melanocyte-stimulating hormone (α-MSH) has been shown to be involved in nociception, but the underlying molecular mechanisms remain largely unknown. In this study, we report that α-MSH suppresses the transient outward A-type K+ current (I A) in trigeminal ganglion (TG) neurons and thereby modulates neuronal excitability and peripheral pain sensitivity in rats. Exposing small-diameter TG neurons to α-MSH concentration-dependently decreased I A This α-MSH-induced I A decrease was dependent on the melanocortin type 4 receptor (MC4R) and associated with a hyperpolarizing shift in the voltage dependence of A-type K+ channel inactivation. Chemical inhibition of phosphatidylinositol 3-kinase (PI3K) with wortmannin or of class I PI3Ks with the selective inhibitor CH5132799 prevented the MC4R-mediated I A response. Blocking Gi/o-protein signaling with pertussis toxin or by dialysis of TG neurons with the Gβγ-blocking synthetic peptide QEHA abolished the α-MSH-mediated decrease in I A Further, α-MSH increased the expression levels of phospho-p38 mitogen-activated protein kinase, and pharmacological or genetic inhibition of p38α abrogated the α-MSH-induced I A response. Additionally, α-MSH significantly increased the action potential firing rate of TG neurons and increased the sensitivity of rats to mechanical stimuli applied to the buccal pad area, and both effects were abrogated by I A blockade. Taken together, our findings suggest that α-MSH suppresses I A by activating MC4R, which is coupled sequentially to the Gβγ complex of the Gi/o-protein and downstream class I PI3K-dependent p38α signaling, thereby increasing TG neuronal excitability and mechanical pain sensitivity in rats.
Collapse
Affiliation(s)
- Yuan Zhang
- From the Department of Geriatrics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,the Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China
| | - Dongsheng Jiang
- the Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China.,the Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich 81377, Germany, and
| | - Hua Li
- the National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai 201203, China
| | - Yufang Sun
- the Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China
| | - Xinghong Jiang
- the Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China
| | - Shan Gong
- the Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China
| | - Zhiyuan Qian
- From the Department of Geriatrics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China,
| | - Jin Tao
- the Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China, .,the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
| |
Collapse
|
29
|
Feng FB, Qiu HY. Neuroprotective effect of tanshinone IIA against neuropathic pain in diabetic rats through the Nrf2/ARE and NF-κB signaling pathways. Kaohsiung J Med Sci 2018; 34:428-437. [DOI: 10.1016/j.kjms.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/11/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022] Open
|
30
|
Levo-corydalmine alleviates vincristine-induced neuropathic pain in mice by inhibiting an NF-kappa B-dependent CXCL1/CXCR2 signaling pathway. Neuropharmacology 2018. [DOI: 10.1016/j.neuropharm.2018.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Ligustilide attenuates hyperalgesia in an inflammatory pain rat model: involvement of spinal ERK/MAPK pathway and proinflammatory cytokines. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Starnowska J, Costante R, Guillemyn K, Popiolek-Barczyk K, Chung NN, Lemieux C, Keresztes A, Van Duppen J, Mollica A, Streicher J, Vanden Broeck J, Schiller PW, Tourwé D, Mika J, Ballet S, Przewlocka B. Analgesic Properties of Opioid/NK1 Multitarget Ligands with Distinct in Vitro Profiles in Naive and Chronic Constriction Injury Mice. ACS Chem Neurosci 2017; 8:2315-2324. [PMID: 28699350 DOI: 10.1021/acschemneuro.7b00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The lower efficacy of opioids in neuropathic pain may be due to the increased activity of pronociceptive systems such as substance P. We present evidence to support this hypothesis in this work from the spinal cord in a neuropathic pain model in mice. Biochemical analysis confirmed the elevated mRNA and protein level of pronociceptive substance P, the major endogenous ligand of the neurokinin-1 (NK1) receptor, in the lumbar spinal cord of chronic constriction injury (CCI)-mice. To improve opioid efficacy in neuropathic pain, novel compounds containing opioid agonist and neurokinin 1 (NK1) receptor antagonist pharmacophores were designed. Structure-activity studies were performed on opioid agonist/NK1 receptor antagonist hybrid peptides by modification of the C-terminal amide substituents. All compounds were evaluated for their affinity and in vitro activity at the mu opioid (MOP) and delta opioid (DOP) receptors, and for their affinity and antagonist activity at the NK1 receptor. On the basis of their in vitro profiles, the analgesic properties of two new bifunctional hybrids were evaluated in naive and CCI-mice, representing models for acute and neuropathic pain, respectively. The compounds were administered to the spinal cord by lumbar puncture. In naive mice, the single pharmacophore opioid parent compounds provided better analgesic results, as compared to the hybrids (max 70% MPE), raising the acute pain threshold close to 100% MPE. On the other hand, the opioid parents gave poor analgesic effects under neuropathic pain conditions, while the best hybrid delivered robust (close to 100% MPE) and long lasting alleviation of both tactile and thermal hypersensitivity. The results presented emphasize the potential of opioid/NK1 hybrids in view of analgesia under nerve injury conditions.
Collapse
Affiliation(s)
- Joanna Starnowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 31-343 Krakow, Poland
| | - Roberto Costante
- Research
Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Karel Guillemyn
- Research
Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Katarzyna Popiolek-Barczyk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 31-343 Krakow, Poland
| | - Nga N. Chung
- Department
of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, QC H2W
1R7, Canada
| | - Carole Lemieux
- Department
of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, QC H2W
1R7, Canada
| | - Attila Keresztes
- Department
of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Joost Van Duppen
- Animal
Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Adriano Mollica
- Department
of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - John Streicher
- Department
of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Jozef Vanden Broeck
- Animal
Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Peter W. Schiller
- Department
of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, QC H2W
1R7, Canada
| | - Dirk Tourwé
- Research
Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 31-343 Krakow, Poland
| | - Steven Ballet
- Research
Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Barbara Przewlocka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 31-343 Krakow, Poland
| |
Collapse
|
33
|
Li F, Xue ZY, Liu X, Bai G, Wang YL. Annexin A10 contributes to chronic constrictive injury-induced pain through activating ERK1/2 signalling in rats. Int J Neurosci 2017; 128:125-132. [PMID: 28866949 DOI: 10.1080/00207454.2017.1375913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Feng Li
- Department of Anesthesiology, The First People's Hospital of Yancheng, Nantong University, Yancheng, China
| | - Zhou-Ya Xue
- Department of Anesthesiology, The First People's Hospital of Yancheng, Nantong University, Yancheng, China
| | - Xiang Liu
- Department of Anesthesiology, The First People's Hospital of Yancheng, Nantong University, Yancheng, China
| | - Gang Bai
- Department of Anesthesiology, The First People's Hospital of Yancheng, Nantong University, Yancheng, China
| | - Yuan-Lin Wang
- Department of Anesthesiology, The First People's Hospital of Huai'an, Nanjing Medical University, Huai'an, China
| |
Collapse
|
34
|
Popiolek-Barczyk K, Piotrowska A, Makuch W, Mika J. Biphalin, a Dimeric Enkephalin, Alleviates LPS-Induced Activation in Rat Primary Microglial Cultures in Opioid Receptor-Dependent and Receptor-Independent Manners. Neural Plast 2017; 2017:3829472. [PMID: 28573049 PMCID: PMC5442438 DOI: 10.1155/2017/3829472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/12/2017] [Accepted: 04/03/2017] [Indexed: 01/23/2023] Open
Abstract
Neuropathic pain is relatively less responsive to opioids than other types of pain, which is possibly due to a disrupted opioid system partially caused by the profound microglial cell activation that underlines neuroinflammation. We demonstrated that intrathecally injected biphalin, a dimeric enkephalin analog, diminished symptoms of neuropathy in a preclinical model of neuropathic pain in rats (CCI, chronic constriction injury of the sciatic nerve) at day 12 postinjury. Using primary microglial cell cultures, we revealed that biphalin did not influence cell viability but diminished NO production and expression of Iba1 in LPS-stimulated cells. Biphalin also diminished MOP receptor level, as well as pronociceptive mediators (iNOS, IL-1β, and IL-18) in an opioid receptor-dependent manner, and it was correlated with diminished p-NF-κB, p-IκB, p-p38MAPK, and TRIF levels. Biphalin reduced IL-6, IL-10, TNFα, p-STAT3, and p-ERK1/2 and upregulated SOCS3, TLR4, and MyD88; however, this effect was not reversed by naloxone pretreatment. Our study provides evidence that biphalin diminishes neuropathy symptoms, which might be partially related to reduced pronociceptive mediators released by activated microglia. Biphalin may be a putative drug for future pain therapy, especially for the treatment of neuropathic pain, when the lower analgesic effects of morphine are correlated with profound microglial cell activation.
Collapse
Affiliation(s)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
35
|
Piotrowska A, Popiolek-Barczyk K, Pavone F, Mika J. Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures. Front Cell Infect Microbiol 2017; 7:141. [PMID: 28491822 PMCID: PMC5405066 DOI: 10.3389/fcimb.2017.00141] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS) stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of SciencesKrakow, Poland
| | | | - Flaminia Pavone
- CNR, Institute of Cell Biology and NeurobiologyRome, Italy
- IRCCS, Santa Lucia FoundationRome, Italy
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of SciencesKrakow, Poland
| |
Collapse
|
36
|
Silencing of IRF3 alleviates chronic neuropathic pain following chronic constriction injury. Biomed Pharmacother 2017; 88:403-408. [DOI: 10.1016/j.biopha.2017.01.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/01/2023] Open
|
37
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
38
|
Seca AM, Silva AM, Pinto DC. Parthenolide and Parthenolide-Like Sesquiterpene Lactones as Multiple Targets Drugs. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Electroacupuncture Reduces the Effects of Acute Noxious Stimulation on the Electrical Activity of Pain-Related Neurons in the Hippocampus of Control and Neuropathic Pain Rats. Neural Plast 2016; 2016:6521026. [PMID: 27833763 PMCID: PMC5090094 DOI: 10.1155/2016/6521026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/29/2016] [Accepted: 09/27/2016] [Indexed: 11/17/2022] Open
Abstract
To study the effects of acupuncture analgesia on the hippocampus, we observed the effects of electroacupuncture (EA) and mitogen-activated protein kinase (MEK) inhibitor on pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal area CA1 of sham or chronic constrictive injury (CCI) rats. The animals were randomly divided into a control, a CCI, and a U0126 (MEK1/2 inhibitor) group. In all experiments, we briefly (10-second duration) stimulated the sciatic nerve electrically and recorded the firing rates of PENs and PINs. The results showed that in both sham and CCI rats brief sciatic nerve stimulation significantly increased the electrical activity of PENs and markedly decreased the electrical activity of PINs. These effects were significantly greater in CCI rats compared to sham rats. EA treatment reduced the effects of the noxious stimulus on PENs and PINs in both sham and CCI rats. The effects of EA treatment could be inhibited by U0126 in sham-operated rats. The results suggest that EA reduces effects of acute sciatic nerve stimulation on PENs and PINs in the CA1 region of the hippocampus of both sham and CCI rats and that the ERK (extracellular regulated kinase) signaling pathway is involved in the modulation of EA analgesia.
Collapse
|
40
|
Kopp MA, Liebscher T, Watzlawick R, Martus P, Laufer S, Blex C, Schindler R, Jungehulsing GJ, Knüppel S, Kreutzträger M, Ekkernkamp A, Dirnagl U, Strittmatter SM, Niedeggen A, Schwab JM. SCISSOR-Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open 2016; 6:e010651. [PMID: 27466236 PMCID: PMC4964175 DOI: 10.1136/bmjopen-2015-010651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The approved analgesic and anti-inflammatory drugs ibuprofen and indometacin block the small GTPase RhoA, a key enzyme that impedes axonal sprouting after axonal damage. Inhibition of the Rho pathway in a central nervous system-effective manner requires higher dosages compared with orthodox cyclooxygenase-blocking effects. Preclinical studies on spinal cord injury (SCI) imply improved motor recovery after ibuprofen/indometacin-mediated Rho inhibition. This has been reassessed by a meta-analysis of the underlying experimental evidence, which indicates an overall effect size of 20.2% regarding motor outcome achieved after ibuprofen/indometacin treatment compared with vehicle controls. In addition, ibuprofen/indometacin may also limit sickness behaviour, non-neurogenic systemic inflammatory response syndrome (SIRS), neuropathic pain and heterotopic ossifications after SCI. Consequently, 'small molecule'-mediated Rho inhibition after acute SCI warrants clinical investigation. METHODS AND ANALYSIS Protocol of an investigator-initiated clinical open-label pilot trial on high-dose ibuprofen treatment after acute traumatic, motor-complete SCI. A sample of n=12 patients will be enrolled in two cohorts treated with 2400 mg/day ibuprofen for 4 or 12 weeks, respectively. The primary safety end point is an occurrence of serious adverse events, primarily gastroduodenal bleedings. Secondary end points are pharmacokinetics, feasibility and preliminary effects on neurological recovery, neuropathic pain and heterotopic ossifications. The primary safety analysis is based on the incidence of severe gastrointestinal bleedings. Additional analyses will be mainly descriptive and casuistic. ETHICS AND DISSEMINATION The clinical trial protocol was approved by the responsible German state Ethics Board, and the Federal Institute for Drugs and Medical Devices. The study complies with the Declaration of Helsinki, the principles of Good Clinical Practice and all further applicable regulations. This safety and pharmacokinetics trial informs the planning of a subsequent randomised controlled trial. Regardless of the result of the primary and secondary outcome assessments, the clinical trial will be reported as a publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT02096913; Pre-results.
Collapse
Affiliation(s)
- Marcel A Kopp
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Liebscher
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Ralf Watzlawick
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Martus
- Department of Clinical Epidemiology and Applied Biostatistics, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christian Blex
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Schindler
- Division of Nephrology and Intensive Care, Department of Internal Medicine, Campus Virchow-Klinikum, Charité-University Medicine Berlin, Berlin, Germany
| | - Gerhard J Jungehulsing
- Department of Neurology, Jüdisches Krankenhaus Berlin, Berlin, Germany Department of Neurology and Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Knüppel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Germany
| | - Martin Kreutzträger
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Axel Ekkernkamp
- Trauma Surgery and Orthopedics Clinic, Trauma Hospital Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology and Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stephen M Strittmatter
- Department of Neurology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, USA
| | - Andreas Niedeggen
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Jan M Schwab
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany Department of Neurology, Spinal Cord Injury Division, The Ohio State University, Wexner Medical Center, Columbus, USA Department of Neuroscience and Center for Brain and Spinal Cord Repair, Department of Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, USA
| |
Collapse
|
41
|
Serotonin type-1D receptor stimulation of A-type K(+) channel decreases membrane excitability through the protein kinase A- and B-Raf-dependent p38 MAPK pathways in mouse trigeminal ganglion neurons. Cell Signal 2016; 28:979-88. [PMID: 27156838 DOI: 10.1016/j.cellsig.2016.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
Abstract
Although recent studies have implicated serotonin 5-HT1B/D receptors in the nociceptive sensitivity of primary afferent neurons, the underlying molecular and cellular mechanisms remain unclear. In this study, we identified a novel functional role of the 5-HT1D receptor subtype in regulating A-type potassium (K(+)) currents (IA) as well as membrane excitability in small trigeminal ganglion (TG) neurons. We found that the selective activation of 5-HT1D, rather than 5-HT1B, receptors reversibly increased IA, while the sustained delayed rectifier K(+) current was unaffected. The 5-HT1D-mediated IA increase was associated with a depolarizing shift in the voltage dependence of inactivation. Blocking G-protein signaling with pertussis toxin or by intracellular application of a selective antibody raised against Gαo or Gβ abolished the 5-HT1D effect on IA. Inhibition of protein kinase A (PKA), but not of phosphatidylinositol 3-kinase or protein kinase C, abolished the 5-HT1D-mediated IA increase. Analysis of phospho-p38 (p-p38) revealed that activation of 5-HT1D, but not 5-HT1B, receptors significantly activated p38, while p-ERK and p-JNK were unaffected. The p38 MAPK inhibitor SB203580, but not its inactive analogue SB202474, and inhibition of B-Raf blocked the 5-HT1D-mediated IA response. Functionally, we observed a significantly decreased action potential firing rate induced by the 5-HT1D receptors; pretreatment with 4-aminopyridine abolished this effect. Taken together, these results suggest that the activation of 5-HT1D receptors selectively enhanced IA via the Gβγ of the Go-protein, PKA, and the sequential B-Raf-dependent p38 MAPK signaling cascade. This 5-HT1D receptor effect may contribute to neuronal hypoexcitability in small TG neurons.
Collapse
|
42
|
Gui Y, Li A, Qiu B, Chen F, Chen L, Liu D, Chen S, Zhou W, Zhou H. Endogenous CBS–H2S Pathway Contributes to the Development of CCI-Induced Neuropathic Pain. Neurochem Res 2016; 41:1381-9. [DOI: 10.1007/s11064-016-1842-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 01/26/2023]
|
43
|
Zhang H, Wu L, Liu Y, Peng S, Wang W. The antinociceptive effect and mechanism of action of SY0916. Int Immunopharmacol 2016; 32:16-23. [PMID: 26780232 DOI: 10.1016/j.intimp.2016.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Pain greatly affects the quality of life of people worldwide. Despite their demonstrated efficacy, currently used opioid drugs and nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently associated with several adverse events. The identification of new therapeutic targets and the development of corresponding analgesics may represent novel approaches for effectively treating pain. SY0916 is a novel compound that was designed and synthesized by the Institute of Materia Medica, Chinese Academy of Medical Sciences. As demonstrated by the hot plate test, tail-flick test and the formalin test, SY0916 exerted strong peripheral and central antinociceptive effects. Western blot, immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) results indicate that SY0916 induces its peripheral antinociceptive effect by suppressing the peripheral activity of inflammatory mediators such as prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α) and 5-hydroxytryptamine (5-HT). Moreover, its central antinociceptive effect might be mediated by the down-regulation of PGE2 and TNF-α expression and the inhibition of p-p38 and NF-κB pathway signaling in glial cells. These findings demonstrate that SY0916 may serve as a promising analgesic candidate drug.
Collapse
Affiliation(s)
- Haijing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lianqiu Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yang Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shanying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenjie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
44
|
Popiolek-Barczyk K, Mika J. Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain. Curr Med Chem 2016; 23:2908-2928. [PMID: 27281131 PMCID: PMC5427777 DOI: 10.2174/0929867323666160607120124] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
The microglia, once thought only to be supporting cells of the central nervous system (CNS), are now recognized to play essential roles in many pathologies. Many studies within the last decades indicated that the neuro-immune interaction underlies the generation and maintenance of neuropathic pain. Through a large number of receptors and signaling pathways, the microglial cells communicate with neurons, astrocytes and other cells, including those of the immune system. A disturbance or loss of CNS homeostasis causes rapid responses of the microglia, which undergo a multistage activation process. The activated microglia change their cell shapes and gene expression profiles, which induce proliferation, migration, and the production of pro- or antinociceptive factors. The cells release a large number of mediators that can act in a manner detrimental or beneficial to the surrounding cells and can indirectly alter the nociceptive signals. This review discusses the most important microglial intracellular signaling cascades (MAPKs, NF-kB, JAK/STAT, PI3K/Akt) that are essential for neuropathic pain development and maintenance. Our objective was to identify new molecular targets that may result in the development of powerful tools to control the signaling associated with neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland.
| |
Collapse
|
45
|
Gui Y, Li A, Chen F, Zhou H, Tang Y, Chen L, Chen S, Duan S. Involvement of AMPK/SIRT1 pathway in anti-allodynic effect of troxerutin in CCI-induced neuropathic pain. Eur J Pharmacol 2015; 769:234-41. [DOI: 10.1016/j.ejphar.2015.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 01/23/2023]
|
46
|
Rojewska E, Popiolek-Barczyk K, Kolosowska N, Piotrowska A, Zychowska M, Makuch W, Przewlocka B, Mika J. PD98059 Influences Immune Factors and Enhances Opioid Analgesia in Model of Neuropathy. PLoS One 2015; 10:e0138583. [PMID: 26426693 PMCID: PMC4591269 DOI: 10.1371/journal.pone.0138583] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain treatment remains challenging due to ineffective therapy and resistance to opioid analgesia. Mitogen-activated protein kinase kinase (MAPKK) have been identified as the crucial regulators of pro- and antinociceptive factors. We used PD98059, an inhibitor of the MAPKK family members MEK1/2. The aim of study was to examine the influence of single and/or repeated PD98059 on nociception and opioid effectiveness in neuropathy. Moreover, we examined how PD98059 influences selected members of cellular pathways and cytokines. The PD98059 (2.5 mcg) was intrathecally preemptively administered before chronic constriction injury (CCI), and then once daily for 7 days. Additionally, at day 7 after CCI the PD98059-treated rats received a single injection of opioids. Using Western blot and qRT-PCR techniques in PD98059-treated rats we analyzed the mRNA and/or protein level of p38, ERK1/2, JNK, NF-kappaB, IL-1beta, IL-6, iNOS and IL-10 in the lumbar spinal cord. Our results indicate that PD98059 has an analgesic effects and potentiates morphine and/or buprenorphine analgesia. Parallel we observed that PD98059 inhibit upregulation of the CCI-elevated p38, ERK1/2, JNK and NF-kappaB protein levels. Moreover, PD98059 also prevented increase of pro- (IL-1beta, IL-6, and iNOS) but enhances anti-nociceptive (IL-10) factors. Summing up, PD98059 diminished pain and increased the effectiveness of opioids in neuropathy. The inhibition of MEKs might inactivate a variety of cell signaling pathways that are implicated in nociception.
Collapse
Affiliation(s)
- Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | - Natalia Kolosowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Zychowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail:
| |
Collapse
|
47
|
Di Cesare Mannelli L, Tenci B, Zanardelli M, Maidecchi A, Lugli A, Mattoli L, Ghelardini C. Widespread pain reliever profile of a flower extract of Tanacetum parthenium. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:752-758. [PMID: 26141762 DOI: 10.1016/j.phymed.2015.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/31/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Tanacetum parthenium L., commonly called Feverfew, is known for anti-inflammatory and anti-migraine properties. PURPOSE Aimed to individuate new therapeutical strategies to control acute and persistent pain induced by different origins we tested two hydroalcoholic extracts obtained from Feverfew flowers and leaves, respectively. STUDY DESIGN Extracts were characterized according to the European Pharmacopoeia monograph. Both the extracts were tested after acute per os administration in the dose range 30-1000 mg kg(-1). The anti-nociceptive properties were evaluated by the Writhing test in mice. RESULTS The number of abdominal contractions was dose dependently reduced by the flower extract. It reduced mechanical hypersensitivity (Paw pressure test) related to the acute inflammatory phase induced by carrageenan similarly to diclofenac and ibuprofen. In the osteoarthritis model induced by intra articular injection of monoiodoacetate (MIA) the flower extract significantly increased the pain threshold peaking 30 min after treatment. Moreover, it was effective in the chronic constriction injury model of neuropathic pain showing activity similar to the anti-epileptic drug gabapentin. The flower extract activity was confirmed in rat models of chemotherapy-induced neuropathic pain. The mechanical hypersensitivity induced by repeated treatments with the anticancer drug oxaliplatin and with the antiviral dideoxycytidine was significantly reduced after a single injection of Feverfew flower extract. The leaf extract showed lesser efficacy and potency and it was devoid of any effect in carrageenan-, MIA- and chemotherapy-induced pain. CONCLUSION The present Feverfew flower extract behaves as a potent pain reliever in acute, inflammatory, articular and neuropathic pain. It appears as a natural strategy potentially suitable for the treatment of different kinds of pain.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | - Barbara Tenci
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Anna Maidecchi
- Aboca S.p.A. Società Agricola, Località Aboca, San Sepolcro, Arezzo, Italy
| | - Andrea Lugli
- Aboca S.p.A. Società Agricola, Località Aboca, San Sepolcro, Arezzo, Italy
| | - Luisa Mattoli
- Aboca S.p.A. Società Agricola, Località Aboca, San Sepolcro, Arezzo, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
48
|
Parthenolide Relieves Pain and Promotes M2 Microglia/Macrophage Polarization in Rat Model of Neuropathy. Neural Plast 2015; 2015:676473. [PMID: 26090236 PMCID: PMC4452088 DOI: 10.1155/2015/676473] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022] Open
Abstract
Neuropathic pain treatment remains a challenge because pathomechanism is not fully understood. It is believed that glial activation and increased spinal nociceptive factors are crucial for neuropathy. We investigated the effect of parthenolide (PTL) on the chronic constriction injury to the sciatic nerve (CCI)-induced neuropathy in rat. We analyzed spinal changes in glial markers and M1 and M2 polarization factors, as well as intracellular signaling pathways. PTL (5 µg; i.t.) was preemptively and then daily administered for 7 days after CCI. PTL attenuated the allodynia and hyperalgesia and increased the protein level of IBA1 (a microglial/macrophage marker) but did not change GFAP (an astrocyte marker) on day 7 after CCI. PTL reduced the protein level of M1 (IL-1β, IL-18, and iNOS) and enhanced M2 (IL-10, TIMP1) factors. In addition, it downregulated the phosphorylated form of NF-κB, p38MAPK, and ERK1/2 protein level and upregulated STAT3. In primary microglial cell culture we have shown that IL-1β, IL-18, iNOS, IL-6, IL-10, and TIMP1 are of microglial origin. Summing up, PTL directly or indirectly attenuates neuropathy symptoms and promotes M2 microglia/macrophages polarization. We suggest that neuropathic pain therapies should be shifted from blanketed microglia/macrophage suppression toward maintenance of the balance between neuroprotective and neurotoxic microglia/macrophage phenotypes.
Collapse
|
49
|
Li G, Lu X, Zhang S, Zhou Q, Zhang L. mTOR and Erk1/2 Signaling in the Cerebrospinal Fluid-Contacting Nucleus is Involved in Neuropathic Pain. Neurochem Res 2015; 40:1053-62. [DOI: 10.1007/s11064-015-1564-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/13/2022]
|