1
|
Bonet IJM, Araldi D, Khomula EV, Bogen O, Green PG, Levine JD. G-protein-coupled estrogen receptor 30 regulation of signaling downstream of protein kinase Cε mediates sex dimorphism in hyaluronan-induced antihyperalgesia. Pain 2025; 166:539-556. [PMID: 39787533 PMCID: PMC11810595 DOI: 10.1097/j.pain.0000000000003419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/12/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT High molecular weight hyaluronan (HMWH) inhibits hyperalgesia induced by diverse pronociceptive inflammatory mediators and their second messengers, in rats of both sexes. However, the hyperalgesia induced by ligands at 3 pattern recognition receptors, lipopolysaccharide (a toll-like receptor 4 agonist), lipoteichoic acid (a toll-like receptor 2/6 agonist), and nigericin (a NOD-like receptor family, pyrin domain containing 3 activator), and oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy are only attenuated in males. After gonadectomy or intrathecal administration of an antisense to G-protein-coupled estrogen receptor 30 (GPER) mRNA, HMWH produces antihyperalgesia in females. In nociceptors cultured from rats that had been treated with oxaliplatin, HMWH reverses nociceptor sensitization from male and GPER antisense-treated female, but not from gonad intact females. G-protein-coupled estrogen receptor-dependent sex dimorphism for HMWH-induced antihyperalgesia was also observed for the prolongation of prostaglandin E 2 (PGE 2 )-induced hyperalgesia in primed nociceptors. While in primed rats, HMWH inhibits early, protein kinase A-dependent hyperalgesia, 30 minutes post PGE 2 injection, in both sexes; measured 4 hours post-PGE 2 , HMWH inhibits the protein kinase Cε (PKCε)-dependent prolongation of PGE 2 hyperalgesia only in males and GPER antisense-treated females. In females, hyperalgesia induced by PKCε agonist, ψεRACK, in control but not in primed nociceptors, was inhibited by HMWH. Inhibitors of 2 GPER second messengers, extracellular-regulated kinase 1/2 and nonreceptor tyrosine kinase, also unmasked HMWH antihyperalgesia in females with oxaliplatin chemotherapy-induced peripheral neuropathy, a condition in which nociceptors are primed as well as sensitized. Our results support GPER-dependent sex dimorphism in HMWH-induced antihyperalgesia for pain induced by pattern recognition receptor agonists, and chronic inflammatory and neuropathic pain, mediated by changes in signaling downstream of PKCε in primed nociceptors.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Eugen V. Khomula
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Oliver Bogen
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Ramirez-Perez S, Oregon-Romero E, Reyes-Perez IV, Bhattaram P. Targeting MyD88 Downregulates Inflammatory Mediators and Pathogenic Processes in PBMC From DMARDs-Naïve Rheumatoid Arthritis Patients. Front Pharmacol 2021; 12:800220. [PMID: 35002734 PMCID: PMC8735861 DOI: 10.3389/fphar.2021.800220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
MyD88-dependent intracellular signalling cascades and subsequently NF-kappaB-mediated transcription lead to the dynamic inflammatory processes underlying the pathogenesis of rheumatoid arthritis (RA) and related autoimmune diseases. This study aimed to identify the effect of the MyD88 dimerization inhibitor, ST2825, as a modulator of pathogenic gene expression signatures and systemic inflammation in disease-modifying antirheumatic drugs (DMARDs)-naïve RA patients. We analyzed bulk RNA-seq from peripheral blood mononuclear cells (PBMC) in DMARDs-naïve RA patients after stimulation with LPS and IL-1β. The transcriptional profiles of ST2825-treated PBMC were analyzed to identify its therapeutic potential. Ingenuity Pathway Analysis was implemented to identify downregulated pathogenic processes. Our analysis revealed 631 differentially expressed genes between DMARDs-naïve RA patients before and after ST2825 treatment. ST2825-treated RA PBMC exhibited a gene expression signature similar to that of healthy controls PBMC by downregulating the expression of proinflammatory cytokines, chemokines and matrix metalloproteases. In addition, B cell receptor, IL-17 and IL-15 signalling were critically downregulated pathways by ST2825. Furthermore, we identified eight genes (MMP9, CXCL9, MZB1, FUT7, TGM2, IGLV1-51, LINC01010, and CDK1) involved in pathogenic processes that ST2825 can potentially inhibit in distinct cell types within the RA synovium. Overall, our findings indicate that targeting MyD88 effectively downregulates systemic inflammatory mediators and modulates the pathogenic processes in PBMC from DMARDs-naïve RA patients. ST2825 could also potentially inhibit upregulated genes in the RA synovium, preventing synovitis and joint degeneration.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Edith Oregon-Romero
- Biomedical Sciences Research Institute (IICB), University of Guadalajara, Guadalajara, Mexico
| | | | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Zaninelli TH, Fattori V, Verri WA. Harnessing Inflammation Resolution in Arthritis: Current Understanding of Specialized Pro-resolving Lipid Mediators' Contribution to Arthritis Physiopathology and Future Perspectives. Front Physiol 2021; 12:729134. [PMID: 34539449 PMCID: PMC8440959 DOI: 10.3389/fphys.2021.729134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
The concept behind the resolution of inflammation has changed in the past decades from a passive to an active process, which reflects in novel avenues to understand and control inflammation-driven diseases. The time-dependent and active process of resolution phase is orchestrated by the endogenous biosynthesis of specialized pro-resolving lipid mediators (SPMs). Inflammation and its resolution are two forces in rheumatic diseases that affect millions of people worldwide with pain as the most common experienced symptom. The pathophysiological role of SPMs in arthritis has been demonstrated in pre-clinical and clinical studies (no clinical trials yet), which highlight their active orchestration of disease control. The endogenous roles of SPMs also give rise to the opportunity of envisaging these molecules as novel candidates to improve the life quality of rhematic diseases patients. Herein, we discuss the current understanding of SPMs endogenous roles in arthritis as pro-resolutive, protective, and immunoresolvent lipids.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
4
|
Blom AB, van den Bosch MH, Blaney Davidson EN, Roth J, Vogl T, van de Loo FA, Koenders M, van der Kraan PM, Geven EJ, van Lent PL. The alarmins S100A8 and S100A9 mediate acute pain in experimental synovitis. Arthritis Res Ther 2020; 22:199. [PMID: 32854769 PMCID: PMC7457270 DOI: 10.1186/s13075-020-02295-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023] Open
Abstract
Background Synovitis-associated pain is mediated by inflammatory factors that may include S100A8/9, which is able to stimulate nociceptive neurons via Toll-like receptor 4. In this study, we investigated the role of S100A9 in pain response during acute synovitis. Methods Acute synovitis was induced by streptococcal cell wall (SCW) injection in the knee joint of C57Bl/6 (WT) and S100A9−/− mice. The expression of S100A8/A9 was determined in serum and synovium by ELISA and immunohistochemistry. Inflammation was investigated by 99mTc accumulation, synovial cytokine release, and histology at days 1, 2, and 7. To assess pain, weight distribution, gait analysis, and mechanical allodynia were monitored. Activation markers in afferent neurons were determined by qPCR and immunohistochemistry in the dorsal root ganglia (DRG). Differences between groups were tested using a one-way or two-way analysis of variance (ANOVA). Differences in histology were tested with a non-parametric Mann–Whitney U test. p values lower than 0.05 were considered significant. Results Intra-articular SCW injection resulted in increased synovial expression and serum levels of S100A8/A9 at day 1. These increased levels, however, did not contribute to the development of inflammation, since this was equal in S100A9−/− mice. WT mice showed a significantly decreased percentage of weight bearing on the SCW hind paw on day 1, while S100A9−/− mice showed no reduction. Gait analysis showed increased “limping” behavior in WT, but not S100A9−/− mice. Mechanical allodynia was observed but not different between WT and S100A9−/− when measuring paw withdrawal threshold. The gene expression of neuron activation markers NAV1.7, ATF3, and GAP43 in DRG was significantly increased in arthritic WT mice at day 1 but not in S100A9−/− mice. Conclusions S100A8/9, released from the synovium upon inflammation, is an important mediator of pain response in the knee during the acute phase of inflammation.
Collapse
Affiliation(s)
- Arjen B Blom
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| | - Martijn H van den Bosch
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Esmeralda N Blaney Davidson
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Fons A van de Loo
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Marije Koenders
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Edwin J Geven
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Peter L van Lent
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Miller RE, Scanzello CR, Malfait AM. An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis. Semin Immunopathol 2019; 41:583-594. [PMID: 31612243 DOI: 10.1007/s00281-019-00762-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a chronic progressive, painful disease of synovial joints, characterized by cartilage degradation, subchondral bone remodeling, osteophyte formation, and synovitis. It is now widely appreciated that the innate immune system, and in particular Toll-like receptors (TLRs), contributes to pathological changes in OA joint tissues. Furthermore, it is now also increasingly recognized that TLR signaling plays a key role in initiating and maintaining pain. Here, we reviewed the literature of the past 5 years with a focus on how TLRs may contribute to joint damage and pain in OA. We discuss biological effects of specific damage-associated molecular patterns (DAMPs) which act as TLR ligands in vitro, including direct effects on pain-sensing neurons. We then discuss the phenotype of transgenic mice that target TLR pathways, and provide evidence for a complex balance between pro- and anti-inflammatory signaling pathways activated by OA DAMPs. Finally, we summarize clinical evidence implicating TLRs in OA pathogenesis, including polymorphisms and surrogate markers of disease activity. Our review of the literature led us to propose a model where multi-directional crosstalk between connective tissue cells (chondrocytes, fibroblasts), innate immune cells, and sensory neurons in the affected joint may promote OA pathology and pain.
Collapse
Affiliation(s)
- Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 W Harrison Street, Chicago, IL, 60612, USA
| | - Carla R Scanzello
- Section of Rheumatology and Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center & Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 W Harrison Street, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Wu Y, Wang Y, Wang J, Fan Q, Zhu J, Yang L, Rong W. TLR4 mediates upregulation and sensitization of TRPV1 in primary afferent neurons in 2,4,6-trinitrobenzene sulfate-induced colitis. Mol Pain 2019; 15:1744806919830018. [PMID: 30672380 PMCID: PMC6378437 DOI: 10.1177/1744806919830018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Elevated excitability of primary afferent neurons underlies chronic pain in patients with functional or inflammatory bowel diseases. Recent studies have established an essential role for an enhanced transient receptor potential vanilloid subtype 1 (TRPV1) signaling in mediating peripheral hyperalgesia in inflammatory conditions. Since colocalization of Toll-like receptor 4 (TLR4) and TRPV1 has been observed in primary afferents including the trigeminal sensory neurons and the dorsal root ganglion neurons, we test the hypothesis that TLR4 might regulate the expression and function of TRPV1 in primary afferent neurons in 2,4,6-trinitrobenzene sulfate (TNBS)-induced colitis using the TLR4-deficient and the wild-type C57 mice. Despite having a higher disease activity index following administration of 2,4,6-trinitrobenzene sulfate, the TLR4-deficient mice showed less inflammatory infiltration in the colon than the wild-type mice. Increased expression of TLR4 and TRPV1 as well as increased density of capsaicin-induced TRPV1 current was observed in L4–S2 dorsal root ganglion neurons of the wild-type colitis mice till two weeks post 2,4,6-trinitrobenzene sulfate treatment. In comparison, the TLR4-deficient colitis mice had lower TRPV1 expression and TRPV1 current density in dorsal root ganglion neurons with lower abdominal withdrawal response scores during noxious colonic distensions. In the wild type but not in the TLR4-deficient dorsal root ganglion neurons, acute administration of the TLR4 agonist lipopolysaccharide increased the capsaicin-evoked TRPV1 current. In addition, we found that the canonical signaling downstream of TLR4 was activated in 2,4,6-trinitrobenzene sulfate-induced colitis in the wild type but not in the TLR4-deficient mice. These results indicate that TLR4 may play a major role in regulation of TRPV1 signaling and peripheral hyperalgesia in inflammatory conditions.
Collapse
Affiliation(s)
- Yingwei Wu
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China.,2 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingping Wang
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Wang
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Fan
- 2 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinyu Zhu
- 2 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liu Yang
- 3 Core Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weifang Rong
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Effect of miR-495 on lower extremity deep vein thrombosis through the TLR4 signaling pathway by regulation of IL1R1. Biosci Rep 2018; 38:BSR20180598. [PMID: 30287499 PMCID: PMC6435557 DOI: 10.1042/bsr20180598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Lower extremity deep vein thrombosis (LEDVT), a common peripheral vascular disease caused by a blood clot in a deep vein is usually accompanied by swelling of the lower limbs. MicroRNAs (miRs) have been reported to play roles in LEDVT. We aimed to investigate the effect of miR-495 on LEDVT via toll-like receptor 4 (TLR4) signaling pathway through interleukin 1 receptor type 1 (IL1R1). LEDVT mouse model was established, and the femoral vein (FV) tissues were collected to detect expressions of miR-495, IL1R1, and TLR4 signaling-related genes. The expressions of both CD31 and CD34 (markers for endothelial progenitor cells) in the FV endothelial cells as well as the proportion of CD31+/CD34+ cells in peripheral blood were measured in order to evaluate thrombosis. The effect of miR-495 on cell viability, cell cycle, and apoptosis was analyzed. IL1R1 was confirmed as the target gene of miR-495. Besides, inhibiting the miR-495 expression could increase IL1R1 expression along with activating the TLR4 signaling pathway. The total number of the leukocytes along with the ratio of weight to length of thrombus in the FV tissue showed an increase. The overexpression of miR-495 could promote FV endothelial cell viability. By injecting agomiR-495 and antagomiR-495 in vivo, the number of leukocytes in the FV tissues and the ratio of weight to length of thrombus were significantly decreased in the mice injected with the overexpressed miR-495, and the IL1R1/TLR4 signaling pathway was inhibited. Collectively, overexpressed miR-495 directly promotes proliferation while simultaneously inhibiting apoptosis of FV endothelial cells, alleviating FV thrombosis by inhibiting IL1R1 via suppression of TLR4 signaling pathway.
Collapse
|
8
|
Jurga AM, Rojewska E, Makuch W, Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. PHARMACEUTICAL BIOLOGY 2018; 56:275-286. [PMID: 29656686 PMCID: PMC6130482 DOI: 10.1080/13880209.2018.1457061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Accumulating evidence has demonstrated that Toll-like receptors (TLRs), especially TLR4 localized on microglia/macrophages, may play a significant role in nociception. OBJECTIVE We examine the role of TLR4 in a neuropathic pain model. Using behavioural/biochemical methods, we examined the influence of TLR4 antagonist on levels of hypersensitivity and nociceptive factors whose contribution to neuropathy development has been confirmed. MATERIALS AND METHODS Behavioural (von Frey's/cold plate) tests were performed with Wistar male rats after intrathecal administration of a TLR4 antagonist (LPS-RS ULTRAPURE (LPS-RSU), 20 μG: lipopolysaccharide from Rhodobacter sphaeroides, InvivoGen, San Diego, CA) 16 H and 1 h before chronic constriction injury (cci) to the sciatic nerve and then daily for 7 d. three groups were used: an intact group and two cci-exposed groups that received vehicle or LPS-RSU. tissue [spinal cord/dorsal root ganglia (DRG)] for western blot analysis was collected on day 7. RESULTS The pharmacological blockade of TLR4 diminished mechanical (from ca. 40% to 16% that in the INTACT group) and thermal (from ca. 51% to 32% that in the INTACT group) hypersensitivity despite the enhanced activation of IBA-1-positive cells in DRG. Moreover, LPS-RSU changed the ratio between IL-18/IL-18BP and MMP-9/TIMP-1 in favour of the increase of antinociceptive factors IL-18BP (25%-spinal; 96%-DRG) and TIMP-1 (15%-spinal; 50%-DRG) and additionally led to an increased IL-6 (40%-spinal; 161%-DRG), which is known to have analgesic properties in neuropathy. CONCLUSIONS Our results provide evidence that LPS-RSU influences pain through the expression of TLR4. TLR4 blockade has analgesic properties and restores the balance between nociceptive factors, which indicates its engagement in neuropathy development.
Collapse
Affiliation(s)
- Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- CONTACT Joanna MikaDepartment of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31343Krakow, Poland
| |
Collapse
|
9
|
Probucol attenuates lipopolysaccharide-induced leukocyte recruitment and inflammatory hyperalgesia: effect on NF-кB activation and cytokine production. Eur J Pharmacol 2017; 809:52-63. [DOI: 10.1016/j.ejphar.2017.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
|