1
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2025; 17:516-540. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Cesarini L, Grignaffini F, Alisi A, Pastore A. Alterations in Glutathione Redox Homeostasis in Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:1461. [PMID: 39765791 PMCID: PMC11672975 DOI: 10.3390/antiox13121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Low molecular weight (LMW) thiols, particularly glutathione, play pathogenic roles in various multiorgan diseases. The liver is central for the production and systemic distribution of LMW thiols; thus, it is particularly susceptible to the imbalance of redox status that may determine increased oxidative stress and trigger the liver damage observed in metabolic dysfunction-associated steatotic liver disease (MASLD) models and humans. Indeed, increased LMW thiols at the cellular and extracellular levels may be associated with the severity of MASLD. Here, we present a systematic literature review of recent studies assessing the levels of LMW thiols in MASLD in in vivo and in vitro models and human subjects. Based on the PRISMA 2020 criteria, a search was conducted using PubMed and Scopus by applying inclusion/exclusion filters. The initial search returned 1012 documents, from which 165 eligible studies were selected, further described, and qualitatively analysed. Of these studies, most focused on animal and cellular models, while a minority used human fluids. The analysis of these studies revealed heterogeneity in the methods of sample processing and measurement of LMW thiol levels, which hinder cut-off values for diagnostic use. Standardisation of the analysis and measure of LMW thiol is necessary to facilitate future studies.
Collapse
Affiliation(s)
| | | | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.G.); (A.P.)
| | | |
Collapse
|
3
|
Rabelo ACS, Andrade AKDL, Costa DC. The Role of Oxidative Stress in Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2024; 16:1174. [PMID: 38674865 PMCID: PMC11055095 DOI: 10.3390/nu16081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic Fatty Liver Disease (AFLD) is characterized by the accumulation of lipids in liver cells owing to the metabolism of ethanol. This process leads to a decrease in the NAD+/NADH ratio and the generation of reactive oxygen species. A systematic review and meta-analysis were conducted to investigate the role of oxidative stress in AFLD. A total of 201 eligible manuscripts were included, which revealed that animals with AFLD exhibited elevated expression of CYP2E1, decreased enzymatic activity of antioxidant enzymes, and reduced levels of the transcription factor Nrf2, which plays a pivotal role in the synthesis of antioxidant enzymes. Furthermore, animals with AFLD exhibited increased levels of lipid peroxidation markers and carbonylated proteins, collectively contributing to a weakened antioxidant defense and increased oxidative damage. The liver damage in AFLD was supported by significantly higher activity of alanine and aspartate aminotransferase enzymes. Moreover, animals with AFLD had increased levels of triacylglycerol in the serum and liver, likely due to reduced fatty acid metabolism caused by decreased PPAR-α expression, which is responsible for fatty acid oxidation, and increased expression of SREBP-1c, which is involved in fatty acid synthesis. With regard to inflammation, animals with AFLD exhibited elevated levels of pro-inflammatory cytokines, including TNF-a, IL-1β, and IL-6. The heightened oxidative stress, along with inflammation, led to an upregulation of cell death markers, such as caspase-3, and an increased Bax/Bcl-2 ratio. Overall, the findings of the review and meta-analysis indicate that ethanol metabolism reduces important markers of antioxidant defense while increasing inflammatory and apoptotic markers, thereby contributing to the development of AFLD.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
- Department of Biochemistry, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | | | - Daniela Caldeira Costa
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
| |
Collapse
|
4
|
Tang H, Lv F, Zhang P, Liu J, Mao J. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1254459. [PMID: 37850091 PMCID: PMC10577417 DOI: 10.3389/fendo.2023.1254459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by episodic sleep state-dependent collapse of the upper airway, with consequent hypoxia, hypercapnia, and arousal from sleep. OSA contributes to multisystem damage; in severe cases, sudden cardiac death might occur. In addition to causing respiratory, cardiovascular and endocrine metabolic diseases, OSA is also closely associated with nonalcoholic fatty liver disease (NAFLD). As the prevalence of OSA and NAFLD increases rapidly, they significantly exert adverse effects on the health of human beings. The authors retrieved relevant documents on OSA and NAFLD from PubMed and Medline. This narrative review elaborates on the current knowledge of OSA and NAFLD, demonstrates the impact of OSA on NAFLD, and clarifies the underlying mechanisms of OSA in the progression of NAFLD. Although there is a lack of sufficient high-quality clinical studies to prove the causal or concomitant relationship between OSA and NAFLD, existing evidence has confirmed the effect of OSA on NAFLD. Elucidating the underlying mechanisms through which OSA impacts NAFLD would hold considerable importance in terms of both prevention and the identification of potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Haiying Tang
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Furong Lv
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Zhang
- Department of Medical Information Engineering, Zhongshan College of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Liu
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
6
|
Bukke VN, Moola A, Serviddio G, Vendemiale G, Bellanti F. Nuclear factor erythroid 2-related factor 2-mediated signaling and metabolic associated fatty liver disease. World J Gastroenterol 2022; 28:6909-6921. [PMID: 36632321 PMCID: PMC9827579 DOI: 10.3748/wjg.v28.i48.6909] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/05/2022] [Accepted: 11/22/2022] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is a key driver in the development and progression of several diseases, including metabolic associated fatty liver disease (MAFLD). This condition includes a wide spectrum of pathological injuries, extending from simple steatosis to inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Excessive buildup of lipids in the liver is strictly related to oxidative stress in MAFLD, progressing to liver fibrosis and cirrhosis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of redox homeostasis. NRF2 plays an important role for cellular protection by inducing the expression of genes related to antioxidant, anti-inflammatory, and cytoprotective response. Consistent evidence demonstrates that NRF2 is involved in every step of MAFLD deve-lopment, from simple steatosis to inflammation, advanced fibrosis, and ini-tiation/progression of hepatocellular carcinoma. NRF2 activators regulate lipid metabolism and oxidative stress alleviating the fatty liver disease by inducing the expression of cytoprotective genes. Thus, modulating NRF2 activation is crucial not only in understanding specific mechanisms underlying MAFLD progression but also to characterize effective therapeutic strategies. This review outlined the current knowledge on the effects of NRF2 pathway, modulators, and mechanisms involved in the therapeutic implications of liver steatosis, inflammation, and fibrosis in MAFLD.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Archana Moola
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| |
Collapse
|
7
|
Lim SY, Cengiz P. Opioid tolerance and opioid-induced hyperalgesia: Is TrkB modulation a potential pharmacological solution? Neuropharmacology 2022; 220:109260. [PMID: 36165856 DOI: 10.1016/j.neuropharm.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Opioids are widely prescribed for moderate to severe pain in patients with acute illness, cancer pain, and chronic noncancer pain. However, long-term opioid use can cause opioid tolerance and opioid-induced hyperalgesia (OIH), contributing to the opioid misuse and addiction crisis. Strategies to mitigate opioid tolerance and OIH are needed to reduce opioid use and its sequelae. Currently, there are few effective pharmacological strategies that reduce opioid tolerance and OIH. The intrinsic tyrosine kinase receptor B (TrkB) ligand, brain-derived neurotrophic factor (BDNF), has been shown to modulate pain. The BDNF-TrkB signaling plays a role in initiating and sustaining elevated pain sensitivity; however, increasing evidence has shown that BDNF and 7,8-dihydroxyflavone (7,8-DHF), a potent blood-brain barrier-permeable ligand to TrkB, exert neuroprotective, anti-inflammatory, and antioxidant effects that may protect against opioid tolerance and OIH. As such, TrkB signaling may be an important therapeutic avenue in opioid tolerance and OIH. Here, we review 1) the mechanisms of pain, opioid analgesia, opioid tolerance, and OIH; 2) the role of BDNF-TrkB in pain modulation; and 3) the neuroprotective effects of 7,8-DHF and their implications for opioid tolerance and OIH.
Collapse
Affiliation(s)
- Sin Yin Lim
- Pharmacy Practice and Translational Research Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI, United States.
| | - Pelin Cengiz
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States; Waisman Center, University of Wisconsin-Madison, United States.
| |
Collapse
|
8
|
Singh T, Kwatra M, Kushwah P, Pant R, Bezbaruah BK, Jangra A. Binge alcohol consumption exacerbates high-fat diet-induced neurobehavioral anomalies: Possible underlying mechanisms. Chem Biol Interact 2022; 364:110039. [PMID: 35863473 DOI: 10.1016/j.cbi.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
The current study was aimed to validate the mice model of alcohol (ALC), high-fat diet (HFD), and HFD + ALC combination affecting neurobehavioral and neurochemical anomalies via inflammatory cascade, lowered neurogenesis, enhanced microgliosis, reactive astrogliosis, activated IDO-1 (indoleamine 2,3-dioxygenase), and reduce CHAT (choline acetyltransferase) signaling in the hippocampus (HIP). The adult male Swiss albino mice were provided with ALC (3-15%) and in-house prepared HFD for continuous 12 weeks. The HFD and HFD + ALC consumption impacted the liver and mediated HIP damage. The liver biomarkers (AST, ALT, γ-GT, TG, HDL-C, and LDL-C), oxidative stress, and proinflammatory cytokines (IL-1β and TNF-α) level were found significantly higher in the liver and HIP tissue of HFD + ALC. Furthermore, the neurobehavioral deficits that include cognitive dysfunction, depressive, and, anxiety-like behavior were found severely affected in HFD + ALC consumed mice. The overactivated HPA axis, intense oxidative insults, and increased AChE activity were seen in the HIP of HFD + ALC grouped mice. The gene and protein expression also confirmed disrupted NF-κB-mediated inflammatory and Nrf2-regulated antioxidant balance and dysregulated TrκB/BDNF signaling. Hence, our new findings explain the insight mechanism of chronic alcoholism in exacerbating the deleterious effect of chronic high-fat diet consumption on the HIP.
Collapse
Affiliation(s)
- Tavleen Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India; Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala (SJJT) University, Jhunjhunu, Churu Rd, Vidyanagari, Churela, Rajasthan, India; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Pawan Kushwah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Rajat Pant
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | | | - Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India; Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| |
Collapse
|
9
|
Arora MK, Pandey S, Tomar R, Sahoo J, Kumar D, Jangra A. Therapeutic potential of policosanol in the concurrent management of dyslipidemia and non-alcoholic fatty liver disease. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00399-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
High-fat diet (HFD) possesses a major cause of cardiovascular disease, and hepatosteatosis. Unfortunately, long-term use of statins has a theoretical possibility of worsening of hepatic histology in the patients with non-alcoholic fatty liver disease (NAFLD). The objective of the study was to explore hepatoprotective potential of policosanol as an alternative to statins in experimental NAFLD. For the same, young male Wistar rats were fed with HFD for 8 weeks to induce NAFLD. 48 adult Wistar rats were distributed into six investigational groups: normal control, HFD control, and four treatment groups, receiving policosanol (50 and 100 mg/kg/day), atorvastatin (30 mg/kg/day), and silymarin (100 mg/kg/day) for 8 weeks along with HFD.
Result
HFD consumption caused profound hepatotoxicity evident by hepatic oxidative stress, increased Serum glutamic oxaloacetic transaminase (SGOT), Serum glutamic pyruvic transaminase (SGPT), Alkaline phosphatase (ALP), and bilirubin content. Treatment with policosanol (100 mg/kg) markedly reduced the elevated SGOT, SGPT, and ALP levels in HFD-fed rats. Moreover, policosanol significantly reduced hepatic oxidative stress manifest by reduced malondialdehyde (MDA) and increased glutathione (GSH) level. The treatment with policosanol (100 mg/kg) was found to be more active in attenuating the HFD-induced hepatotoxicity as compared to policosanol (50 mg/kg) and atorvastatin (30 mg/kg). Moreover, we observed that the hepatoprotective potential of policosanol was comparable to the silymarin.
Conclusions
The results of the study clearly indicated that the policosanol could be considered an intriguing approach for the treatment of NAFLD.
Collapse
|
10
|
El-Gendy ZA, Ramadan A, El-Batran SA, Ahmed RF, El-Marasy SA, Abd El-Rahman SS, Youssef S. Carvacrol hinders the progression of hepatic fibrosis via targeting autotaxin and thioredoxin in thioacetamide-induced liver fibrosis in rat. Hum Exp Toxicol 2021; 40:2188-2201. [PMID: 34155936 DOI: 10.1177/09603271211026729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibrosis is a common outcome of nearly all chronic diseases of liver that results in changes of its functions which requires medical attention. The current research aims to investigate the potential anti-fibrotic efficacy of Carvacrol against thioacetamide (TAA)-induced liver fibrosis in male rats using Ursodeoxycholic acid (UDCA) as a reference anti-fibrotic product. Carvacrol (25 and 50 mg/kg) markedly declined TAA-increased serum liver enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) as well as total bilirubin (TB) and direct bilirubin (DB) levels as well as increased levels of total protein (TP) and albumin. Carvacrol significantly reduced glutathione depletion (GSH), Nitric oxide (NOX) and malondialdehyde (MDA) accumulation in liver tissue. Additionally, its anti-oxidant effect brightened up via affecting markers of stress found in the cell as nuclear factor erythroid 2-related factor 2 (Nrf-2) where it still had high content and decreased Thioredoxin (Trx) level. The anti-inflammatory effect of Carvacrol was confirmed by decreasing nuclear factor kappa B (NF-κB), interleukin-1beta (IL-1β) and inducible nitric oxide synthase (iNOS) contents. Carvacrol showed anti-fibrotic effect clarified by turning down fibrosis-related markers; TGF-β1, matrix metalloproteinase-3 and 9 (MMP-3 and 9) and Autotaxin (ATX) contents. Furthermore, it decreased alpha smooth muscle actin (α-SMA) and caspase-3 immune-expression. The overall outcome of aforementioned markers results showed that Carvacrol suppresses the progression of liver fibrosis via its anti-oxidant, anti-inflammatory, anti-apoptotic effect and its ability in lowering Thioredoxin and Autotaxin; hence it can be categorized as a hepatoprotective natural substance.
Collapse
Affiliation(s)
- Z A El-Gendy
- Department of Pharmacology, 68787National Research Centre, Dokki, Giza, Egypt
| | - A Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, 63526Cairo University, Cairo, Egypt
| | - S A El-Batran
- Department of Pharmacology, 68787National Research Centre, Dokki, Giza, Egypt
| | - R F Ahmed
- Department of Pharmacology, 68787National Research Centre, Dokki, Giza, Egypt
| | - S A El-Marasy
- Department of Pharmacology, 68787National Research Centre, Dokki, Giza, Egypt
| | - S S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, 63526Cairo University, Cairo, Egypt
| | - Sah Youssef
- Department of Pharmacology, Faculty of Veterinary Medicine, 63526Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Ahuja P, Ng CF, Pang BPS, Chan WS, Tse MCL, Bi X, Kwan HLR, Brobst D, Herlea-Pana O, Yang X, Du G, Saengnipanthkul S, Noh HL, Jiao B, Kim JK, Lee CW, Ye K, Chan CB. Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy 2021; 18:1367-1384. [PMID: 34689722 DOI: 10.1080/15548627.2021.1985257] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial remodeling is dysregulated in metabolic diseases but the underlying mechanism is not fully understood. We report here that BDNF (brain derived neurotrophic factor) provokes mitochondrial fission and clearance in skeletal muscle via the PRKAA/AMPK-PINK1-PRKN/Parkin and PRKAA-DNM1L/DRP1-MFF pathways. Depleting Bdnf expression in myotubes reduced fatty acid-induced mitofission and mitophagy, which was associated with mitochondrial elongation and impaired lipid handling. Muscle-specific bdnf knockout (MBKO) mice displayed defective mitofission and mitophagy, and accumulation of dysfunctional mitochondria in the muscle when they were fed with a high-fat diet (HFD). These animals also have exacerbated body weight gain, increased intramyocellular lipid deposition, reduced energy expenditure, poor metabolic flexibility, and more insulin resistance. In contrast, consuming a BDNF mimetic (7,8-dihydroxyflavone) increased mitochondrial content, and enhanced mitofission and mitophagy in the skeletal muscles. Hence, BDNF is an essential myokine to maintain mitochondrial quality and function, and its repression in obesity might contribute to impaired metabolism.Abbreviation: 7,8-DHF: 7,8-dihydroxyflavone; ACACA/ACC: acetyl Coenzyme A carboxylase alpha; ACAD: acyl-Coenzyme A dehydrogenase family; ACADVL: acyl-Coenzyme A dehydrogenase, very long chain; ACOT: acyl-CoA thioesterase; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; BDNF: brain derived neurotrophic factor; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CCL2/MCP-1: chemokine (C-C motif) ligand 2; CCL5: chemokine (C-C motif) ligand 5; CNS: central nervous system; CPT1B: carnitine palmitoyltransferase 1b, muscle; Cpt2: carnitine palmitoyltransferase 2; CREB: cAMP responsive element binding protein; DNM1L/DRP1: dynamin 1-like; E2: estrogen; EHHADH: enoyl-CoenzymeA hydratase/3-hydroxyacyl CoenzymeA dehydrogenase; ESR1/ER-alpha: estrogen receptor 1 (alpha); FA: fatty acid; FAO: fatty acid oxidation; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FFA: free fatty acids; FGF21: fibroblast growth factor 21; FUNDC1: FUN14 domain containing 1; HADHA: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha; HFD: high-fat diet; iWAT: inguinal white adipose tissues; MAP1LC3A/LC3A: microtubule-associated protein 1 light chain 3 alpha; MBKO; muscle-specific bdnf knockout; IL6/IL-6: interleukin 6; MCEE: methylmalonyl CoA epimerase; MFF: mitochondrial fission factor; NTRK2/TRKB: neurotrophic tyrosine kinase, receptor, type 2; OPTN: optineurin; PA: palmitic acid; PARL: presenilin associated, rhomboid-like; PDH: pyruvate dehydrogenase; PINK1: PTEN induced putative kinase 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PRKAA/AMPK: protein kinase, AMP-activated, alpha 2 catalytic subunit; ROS: reactive oxygen species; TBK1: TANK-binding kinase 1; TG: triacylglycerides; TNF/TNFα: tumor necrosis factor; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Palak Ahuja
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Chun Fai Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Brian Pak Shing Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Wing Suen Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Margaret Chui Ling Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Daniel Brobst
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Oana Herlea-Pana
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Keqiang Ye
- Department of Pathology, Emory University School of Medicine, Atlanta, USA
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
| |
Collapse
|
12
|
Alleviative effects of total flavones of Glycyrrhiza uralensis Fisch on oxidative stress and lipid metabolism disorder induced by high-fat diet in intestines of Tilapia ( Oreochromis niloticus). 3 Biotech 2021; 11:348. [PMID: 34221818 DOI: 10.1007/s13205-021-02785-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 01/30/2023] Open
Abstract
Total flavones of Glycyrrhiza uralensis Fisch (GTF) are main components of Glycyrrhiza uralensis Fisch, which have anti-oxidation and lipid-lowering effects. However, its protective effects on the intestinal tissue of tilapia (Oreochromis niloticus) are unknown. The aims of the study were to evaluate the protective effects of GTF on the intestinal tissue of tilapia after high-fat diet (HFD) feeding. Tilapia (initial weight 30 ± 1 g) received diets containing four doses of GTF (0.05, 0.1, 0.5, and 1.0 g/kg diet) for 90 days. The intestinal tissues were collected to determine biochemical parameter, gene expression and protein level. The results showed that the HFD reduced antioxidant indexes and increased the fat level, lipid oxidation products in the intestinal tissue relative to the control. Adding GTF to the HFD resulted in an increase of antioxidant indexes, fat level and lipid oxidation products decreased after 60, 90 days. In the HFD group, mRNA level of fatty acid transport protein 1 (FATP1) was increased at 60 day and then decreased at 90 day. The mRNA levels of fatty acid binding protein 1 (FABP1) and sterol regulatory element binding protein 1c (SREBP 1c) were significantly increased at 60 or 90 day after HFD feeding. The mRNA levels of acetate coenzyme A carboxylase (ACCA) peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-α were decreased significantly at 30, 60 and/or 90 days after HFD feeding. Western blotting results also showed that nuclear factor (NF)-κβ C-Rel (NF-κβ C-Rel) and mitogen-activated protein kinase 8 (MAPK8) protein expression in intestinal tissue increased after consumption of the HFD. However, adding GTF to the HFD reversed the changes of genes related to fatty acid synthesis and metabolism, and the level of NF-κβ c-Rel and MAPK8 at different degrees. Overall, these results indicated that GTF promoted decomposition and metabolism of fatty acids in intestinal tissue, alleviated oxidative stress damage caused by the HFD, and had certain protective effects on the intestinal tissue of tilapia.
Collapse
|
13
|
El-Gendy ZA, El-Marasy SA, Ahmed RF, El-Batran SA, Abd El-Rahman SS, Ramadan A, Youssef SAH. Hepatoprotective effect of Saccharomyces Cervisciae Cell Wall Extract against thioacetamide-induced liver fibrosis in rats. Heliyon 2021; 7:e07159. [PMID: 34159266 PMCID: PMC8203708 DOI: 10.1016/j.heliyon.2021.e07159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
Fibrosis represents a common outcome of almost all chronic liver diseases and leads to an impairment of liver function that requires medical intervention. The current study aimed to evaluate the potential anti-fibrotic effect of Saccharomyces cervisciae cell wall extract (SCCWE) against thioacetamide (TAA)-induced liver fibrosis in rats (200mg/kg b.w. i.p. twice weekly for 6 weeks) using Ursodeoxycholic acid (UDCA) as a reference anti-fibrotic product. SCCWE at two doses (50 and 100 mg/kg) significantly ameliorated the rise in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamide transferase (GGT) activities, total bilirubin and direct bilirubin, increased total protein and albumin. SCCWE significantly reduced glutathione depletion (GSH), Nitric oxide (NOx) and malondialdehyde (MDA), thioredoxin (Trx) contents and elevated nuclear factor erythroid 2–related factor 2 (Nrf-2) content. Its anti-inflammatory effects were confirmed by observing a decrease in nuclear factor-κB (NF- κβ), interleukin-1b (IL-1β) and inducible nitric oxide synthase (iNOS) content. The anti-fibrotic effects of SCCWE were explored by assessing fibrosis related markers as it significantly reduced transform growth factor-β (TGF-β) and autotaxin (ATX) contents. Administration of SCCWE significantly decreased matrix metalloproteinase-3 and 9 (MMP-3 and -9). Furthermore, it also decreased alpha smooth muscle actin (α-SMA) and caspase-3 as assessed immunohistochemically those results were similar to that of the standard drug UDCA. This study shows that SCCWE protects against TAA-induced liver fibrosis in rats, through attenuating oxidative stress, and inflammation, ameliorating MMPs, combating apoptosis and thereby fibrotic biomarkers in addition to improving histopathological changes.
Collapse
Affiliation(s)
| | | | - Rania F Ahmed
- Department of Pharmacology, National Research Centre, Giza, Egypt
| | | | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - A Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - S A H Youssef
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Binahong ( Anredera cordifolia (Tenore) Steen.) Leaf Extract Modulates Fatty Acids and Amino Acids to Lower Blood Glucose in High-Fat Diet-Induced Diabetes Mellitus Rats. Adv Pharmacol Pharm Sci 2021; 2021:8869571. [PMID: 34007967 PMCID: PMC8100415 DOI: 10.1155/2021/8869571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/14/2021] [Accepted: 04/24/2021] [Indexed: 12/02/2022] Open
Abstract
Patients with diabetes are 1.6 times more likely to use complementary alternative medicine than nondiabetic patients. Previous studies have shown that Anredera cordifolia (Tenore) Steen. (A. cordifolia) leaf extract has the capacity to lower blood glucose, but the actual mechanisms are unclear. Therefore, in this study, we explored the effect of A. cordifolia leaf extract on the metabolism of fatty acids and amino acids. Six-week-old male Wistar rats were randomly divided into six experimental groups (n = 5 per group). Two groups were fed with a regular diet or a high-fat diet (HFD) for six weeks. The regular diet and HFD groups were administered with 0.5% carboxymethylcellulose as a vehicle, and HFD rats were also fed with a suspension of glibenclamide (0.51 mg/kg body weight (BW)) or A. cordifolia leaf extract (25, 50, and 100 mg/kg BW). During the whole treatment, BW and food intake were recorded weekly. The rats were euthanized seven weeks after treatment. Blood glucose was evaluated by spectrophotometry, while fatty acids and amino acids were evaluated using a gas chromatography/flame ionization detector (GC/FID). All doses of A. cordifolia administration reduced blood glucose significantly, and 50 mg/kg BW was most effective in lowering blood glucose, similar to the effects of glibenclamide. A. cordifolia leaf extract affected the levels of medium-chain fatty acids, especially at 50 mg/kg BW. In contrast, glibenclamide affected long-chain fatty acids (LCFAs) to lower blood glucose. Based on the analysis conducted, we conclude that administration of A. cordifolia leaf extract can decrease blood glucose levels by regulating fatty acid metabolism and that a dose of 50 mg/kg BW in rats was the optimal dose.
Collapse
|
15
|
Rahman Z, Dwivedi DK, Jena GB. The intervention of tert-butylhydroquinone protects ethanol-induced gastric ulcer in type II diabetic rats: the role of Nrf2 pathway. Can J Physiol Pharmacol 2021; 99:522-535. [PMID: 33095998 DOI: 10.1139/cjpp-2020-0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ethanol consumption increases the prevalence of gastric ulcer (GU) in rats with type II diabetes (T2D). Induction of GU by absolute ethanol (5 mL/kg or 3.94 g/kg) in the animal model resembles human ulcer characteristics. The aim was to investigate the role of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the treatment of GU in diabetic condition. The rats were exposed to absolute ethanol 1 h before sacrifice and T2D was induced by combined exposure of high-fat diet and low dose streptozotocin. Pretreatment of tert-butylhydroquinone (tBHQ) (25 and 50 mg/kg), metformin (500 mg/kg), and omeprazole (20 mg/kg) were given once daily for last three consecutive weeks. In ethanol-exposed diabetic rats, pretreatment with tBHQ, omeprazole, and metformin reduced gastric mucosal lesion, ulcer index, histological alterations, malondialdehyde level, and apoptosis. Furthermore, the intervention of tBHQ, omeprazole, and metformin improved the integrity of the stomach mucosa, glutathione, gastric pH, collagen, and goblet cells. tBHQ treatment improved ethanol-induced alterations of Nrf2, catalase, heat shock protein 70 (HSP70), NF-κB, and endothelin-1 expressions in diabetic rats. In diabetic conditions, the incidence of GU is increased due to elevated levels of reactive oxygen species, inflammatory mediators, depleted levels of cellular antioxidants, and altered gastric parameters. The tBHQ intervention could be a rational strategy to protect these changes.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - G B Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
16
|
He Y, Jiang J, He B, Shi Z. Chemical Activators of the Nrf2 Signaling Pathway in Nonalcoholic Fatty Liver Disease. Nat Prod Commun 2021. [DOI: 10.1177/1934578x20987095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is paralleling the insulin resistance and obesity epidemic and is regarded as liver metabolic syndrome, and its prevalence rate is increasing rapidly. The best explanation for the occurrence and development of NAFLD is the “multiple hit” hypothesis instead of the “two-hit” hypothesis. At present, NAFLD therapies are limited. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is a key pathway in oxidative stress. Its downstream proteins/enzymes are regulated. Metabolic enzymes and antioxidant proteins/enzymes play a vital role in cell defense protection and have attracted attention in the field of antioxidant research in recent years. This paper summarizes the regulatory mechanism of the Nrf2 signaling pathway and the research progress of Nrf2 activators in NAFLD to provide guidance for NAFLD therapy in the future.
Collapse
Affiliation(s)
- Yinghua He
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Jianping Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Beihui He
- Laboratory of Digestive Disease, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Zheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, P. R. China
- Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Hangzhou, P. R. China
- Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, P. R. China
| |
Collapse
|
17
|
Zhao Z, Xue F, Gu Y, Han J, Jia Y, Ye K, Zhang Y. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7,8-dihydroxyflavone in female mice. Mol Metab 2020; 45:101149. [PMID: 33352311 PMCID: PMC7811170 DOI: 10.1016/j.molmet.2020.101149] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Objective 7,8-Dihydroxyflavone (7,8-DHF), a small molecular mimetic of brain-derived neurotrophic factor (BDNF), alleviates high-fat diet-induced obesity in female mice in a sex-specific manner by activating muscular tropomyosin-related kinase B (TrkB). However, the underlying molecular mechanism for this sex difference is unknown. Moreover, muscular estrogen receptor α (ERα) plays a critical role in metabolic diseases. Impaired ERα action is often accompanied by metabolic syndrome (MetS) in postmenopausal women. This study investigated whether muscular ERα is involved in the metabolic effects of 7,8-DHF. Methods For the in vivo studies, 72 female C57BL/6J mice were given a low-fat diet or high-fat diet, and both received daily intragastric administration of vehicle or 7,8-DHF for 24 weeks. The hypothalamic-pituitary-ovarian (HPO) axis function was assessed by investigating typical sex-related serum hormones and the ovarian reserve. Indicators of menopausal MetS, including lipid metabolism, insulin sensitivity, bone density, and serum inflammatory cytokines, were also evaluated. The expression levels of ERα and other relevant signaling molecules were also examined. In vitro, the molecular mechanism involved in the interplay of ERα and TrkB receptors was verified in differentiated C2C12 myotubes using several inhibitors and a lentivirus short hairpin RNA-knockdown strategy. Results Long-term oral administration of 7,8-DHF acted as a protective factor for the female HPO axis function, protecting against ovarian failure, earlier menopause, and sex hormone disorders, which was paralleled by the alleviation of MetS coupled with the production of ERα-rich, TrkB-activated, and uncoupling protein 1 (UCP1) high thermogenic skeletal muscle tissues. 7,8-DHF-stimulated transactivation of ERα at serine 118 (S118) and tyrosine 537 (Y537), which was crucial to activate the BDNF/TrkB signaling cascades. In turn, activation of BDNF/TrkB signaling was also required for the ligand-independent activation of ERα, especially at the Y537 phosphorylation site. In addition, Src family kinases played a core role in the interplay of ERα and TrkB, synergistically activating the signaling pathways related to energy metabolism. Conclusions These findings revealed a novel role of 7,8-DHF in protecting the function of the female HPO axis and activating tissue-specific ERα, which improves our understanding of this sex difference in 7,8-DHF-mediated maintenance of metabolic homeostasis and provides new therapeutic strategies for managing MetS in women. 7,8-DHF improves hypothalamic-pituitary-ovarian axis function in mature adult female mice. 7,8-DHF protects against ovarian failure and onset of earlier menopause. 7,8-DHF-induced transactivation of ERα is crucial to activate BDNF/TrkB signaling cascades. 7,8-DHF-induced activations of ERα and BDNF/TrkB signaling are interdependent. Src family kinases play a core role in the crosstalk of ERα and BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Zhenlei Zhao
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Fan Xue
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yanpei Gu
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yingxian Jia
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Ying Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Emili M, Guidi S, Uguagliati B, Giacomini A, Bartesaghi R, Stagni F. Treatment with the flavonoid 7,8-Dihydroxyflavone: a promising strategy for a constellation of body and brain disorders. Crit Rev Food Sci Nutr 2020; 62:13-50. [DOI: 10.1080/10408398.2020.1810625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| |
Collapse
|
19
|
Pandey SN, Kwatra M, Dwivedi DK, Choubey P, Lahkar M, Jangra A. 7,8-Dihydroxyflavone alleviated the high-fat diet and alcohol-induced memory impairment: behavioral, biochemical and molecular evidence. Psychopharmacology (Berl) 2020; 237:1827-1840. [PMID: 32206827 DOI: 10.1007/s00213-020-05502-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Alcoholism and obesity impart a deleterious impact on human health and affects the quality of life. Chronic consumption of alcohol and western diet has been reported to cause memory deficits. 7,8-dihydroxyflavone (7,8-DHF), a TrkB agonist, comprises antioxidant and anti-inflammatory properties in treating various neurological disorders. OBJECTIVES The current study was aimed to determine the protective effect and molecular mechanism of 7,8-DHF against alcohol and high-fat diet (HFD)-induced memory deficits in rats. METHODS The adult male Wistar rats were given alcohol (3-15%) and HFD ad libitum for 12 weeks in different experimental groups. 7,8-DHF (5 mg/kg) was intraperitoneally injected daily for the last 4 weeks (9th-12th week). RESULTS The alcohol and HFD administration caused cognitive impairment as evaluated through the Morris water maze (MWM) test in alcohol, HFD, and alcohol + HFD-fed animals. The last 4-week treatment of 7,8-DHF (5 mg/kg; i.p.) attenuated alcohol and HFD-induced memory loss. 7,8-DHF treatment also restored the glutathione (GSH) level along with attenuation of nitrite, malondialdehyde content (markers of oxidative and nitrosative stress), and reduction of the acetylcholinesterase activity in the hippocampus of alcohol and HFD-fed animals. Furthermore, the administration of 7,8-DHF caused downregulation of NF-κB, iNOS, and caspase-3 and upregulation of Nrf2, HO-1, and BDNF mRNA level in rat hippocampus. CONCLUSION 7,8-DHF administration conferred beneficial effects against alcohol and HFD-induced memory deficit via its unique antioxidant, anti-inflammatory, anti-apoptotic potential, along with the activation of TrkB/BDNF signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Surya Narayan Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Priyansha Choubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| | - Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
- Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
20
|
Dwivedi DK, Jena GB. NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:705-716. [PMID: 31834465 DOI: 10.1007/s00210-019-01773-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is much higher in diabetic and obese individuals. Combined exposure of high-fat diet (HFD) and single low-dose streptozotocin (STZ) was used to induce type II diabetes-associated NAFLD, as it better replicates the human pathology of fatty liver. Glibenclamide (GLB) is a potent NLRP3 inflammasome inhibitor and possesses anti-inflammatory and anti-oxidant properties. So it was pertinent to investigate its hepatoprotective potential against NAFLD in rat. HFD was provided to rat for 17 consecutive weeks and glibenclamide (GLB; 0.5 and 2.5 mg/kg/day, orally) was administered for the last 12 consecutive weeks. Establishment of NAFLD was clearly indicated by significant increase in liver weight, glucose, triglyceride, cholesterol, % glycosylated haemoglobin and insulin levels, and GLB intervention reduced the same. GLB restored HFD-induced significant increase in ROS, MDA and decrease in GSH. Histopathological studies revealed the macro- and micro-vascular steatosis and mild degree of inflammation in HFD-fed rat compared with control, and GLB intervention reduced the same. HFD exposure significantly increased the DNA damage and apoptosis compared with control, and GLB intervention reduced the same. Immunohistochemical and immunoblotting findings showed that GLB improved the hepatic expressions of inflammatory markers (NLRP3, ASC, caspase-1, IL-1β, NF-κB), anti-oxidant markers (SOD, catalase) and insulin signalling markers (p-AKT, p-GSK-3β, p-IRS). Hepatoprotective effects of GLB was mediated by decreasing the levels of glucose, triglycerides, cholesterol, DNA damage, apoptosis and inflammatory markers, and by improving the anti-oxidant status and insulin signalling pathway in HFD fed rat.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S., Nagar, Punjab, 160062, India
| | - G B Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
21
|
Jangra A, Rajput P, Dwivedi DK, Lahkar M. Amelioration of Repeated Restraint Stress-Induced Behavioral Deficits and Hippocampal Anomalies with Taurine Treatment in Mice. Neurochem Res 2020; 45:731-740. [PMID: 31898086 DOI: 10.1007/s11064-019-02945-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Taurine, an essential neutraceutical, has been reported to exhibit antioxidant and anti-inflammatory properties. Substantial evidence indicates that prolonged stress is one of the leading causes of psychological and physiological anomalies. Restraint stress (RS) rat model is the most widely used experimental model for the induction of chronic psycho-emotional stress. In the present study, Swiss albino male mice were restrained for 6 h/day for 28 consecutive days. Animals were divided into four groups: control, RS, RS + taurine, and taurine control group. Taurine, a potent antioxidant, was administered (200 mg/kg) orally along with RS for 28 days. The taurine intervention significantly restored the RS-induced neurobehavioral alterations evident by the elevated plus-maze, Morris water maze test, forced swim test, tail suspension test, and a sucrose preference test. Moreover, taurine significantly prevented hippocampal oxidative stress (lipid peroxidation, reduced glutathione, and nitrite) and other neurochemical (acetylcholinesterase, and IL-1β) anomalies. Using western blotting analyses, we demonstrate that taurine treatment significantly ameliorated the alterations in Brain-derived neurotrophic factor, caspase-3, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) level in the hippocampus. Thus, Taurine effectively inhibited RS-induced oxidative stress, neuroinflammation, and apoptosis via a mechanism involving the inhibition of the NF-κB signaling pathway. In summary, our study is the first to demonstrate that NF-κB and caspase-3 inhibition, as well as BDNF augmentation, was involved in neuroprotective potential of taurine against RS-induced behavioural anomalies.
Collapse
Affiliation(s)
- Ashok Jangra
- Department of Pharmacology, KIET School of Pharmacy, Krishna Institute of Engineering and Technology, Ghaziabad, Uttar Pradesh, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Prabha Rajput
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| |
Collapse
|
22
|
Rahman Z, Dwivedi DK, Jena GB. Ethanol-induced gastric ulcer in rats and intervention of tert-butylhydroquinone: Involvement of Nrf2/HO-1 signalling pathway. Hum Exp Toxicol 2020; 39:547-562. [PMID: 31876185 DOI: 10.1177/0960327119895559] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric ulcer (GU) is the most common health concern that occurs due to alcohol consumption, smoking and physiological stress. Ethanol-induced GU in animal model resembles the pathophysiology of human ulcer. The present study was designed to investigate the cytoprotective and anti-inflammatory properties of tert-butylhydroquinone (tBHQ), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, against gastric mucosal damage induced by acute exposure of ethanol (5 ml/kg). The intervention of tBHQ (25 and 50 mg/kg, per os (po)) and omeprazole (20 mg/kg, po) was done for 10 consecutive days. Omeprazole was chosen as a standard drug because it is prescribed for the treatment of GU. Pretreatment of tBHQ decreased gastric mucosal lesion, ulcer index, apoptotic cells and lipid peroxidation level induced by ethanol. Furthermore, the intervention of tBHQ increased gastric mucosa integrity, pH, reduced glutathione, collagen and mucus-producing goblet cells. Intervention of tBHQ increased the expression of antioxidant markers such as Nrf2, haeme oxygenase-1 and catalase and decreased the expressions of inflammatory markers such as nuclear factor kappa-light-chain-enhancer of activated B cells and cyclooxygenase-2. The cytoprotective potential of tBHQ against gastric mucosal damage might be due to its ability to enhance cellular antioxidants and anti-inflammatory responses.
Collapse
Affiliation(s)
- Z Rahman
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - D K Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - G B Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
23
|
Natural products as promising targets in glioblastoma multiforme: a focus on NF-κB signaling pathway. Pharmacol Rep 2020; 72:285-295. [DOI: 10.1007/s43440-020-00081-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
24
|
Polyphenolic extracts from Wushan tea leaves attenuate hepatic injury in CCl4-treated mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Preparation of corn glycopeptides and evaluation of their antagonistic effects on alcohol-induced liver injury in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|