1
|
Mullagulova AI, Timechko EE, Solovyeva VV, Yakimov AM, Ibrahim A, Dmitrenko DD, Sufianov AA, Sufianova GZ, Rizvanov AA. Adeno-Associated Viral Vectors in the Treatment of Epilepsy. Int J Mol Sci 2024; 25:12081. [PMID: 39596149 PMCID: PMC11593886 DOI: 10.3390/ijms252212081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Epilepsy is a brain disorder characterized by a persistent predisposition to epileptic seizures. With various etiologies of epilepsy, a significant proportion of patients develop pharmacoresistance to antiepileptic drugs, which necessitates the search for new therapeutic methods, in particular, using gene therapy. This review discusses the use of adeno-associated viral (AAV) vectors in gene therapy for epilepsy, emphasizing their advantages, such as high efficiency of neuronal tissue transduction and low immunogenicity/cytotoxicity. AAV vectors provide the possibility of personalized therapy due to the diversity of serotypes and genomic constructs, which allows for increasing the specificity and effectiveness of treatment. Promising orientations include the modulation of the expression of neuropeptides, ion channels, transcription, and neurotrophic factors, as well as the use of antisense oligonucleotides to regulate seizure activity, which can reduce the severity of epileptic disorders. This review summarizes the current advances in the use of AAV vectors for the treatment of epilepsy of various etiologies, demonstrating the significant potential of AAV vectors for the development of personalized and more effective approaches to reducing seizure activity and improving patient prognosis.
Collapse
Affiliation(s)
- Aysilu I. Mullagulova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Valeriya V. Solovyeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Alexey M. Yakimov
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Ahmad Ibrahim
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Diana D. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia;
| | - Albert A. Rizvanov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
- Division of Medical and Biological Sciences, Academy of Sciences of the Republic of Tatarstan, Kazan 420111, Russia
| |
Collapse
|
2
|
Waris A, Ullah A, Asim M, Ullah R, Rajdoula MR, Bello ST, Alhumaydhi FA. Phytotherapeutic options for the treatment of epilepsy: pharmacology, targets, and mechanism of action. Front Pharmacol 2024; 15:1403232. [PMID: 38855752 PMCID: PMC11160429 DOI: 10.3389/fphar.2024.1403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Epilepsy is one of the most common, severe, chronic, potentially life-shortening neurological disorders, characterized by a persisting predisposition to generate seizures. It affects more than 60 million individuals globally, which is one of the major burdens in seizure-related mortality, comorbidities, disabilities, and cost. Different treatment options have been used for the management of epilepsy. More than 30 drugs have been approved by the US FDA against epilepsy. However, one-quarter of epileptic individuals still show resistance to the current medications. About 90% of individuals in low and middle-income countries do not have access to the current medication. In these countries, plant extracts have been used to treat various diseases, including epilepsy. These medicinal plants have high therapeutic value and contain valuable phytochemicals with diverse biomedical applications. Epilepsy is a multifactorial disease, and therefore, multitarget approaches such as plant extracts or extracted phytochemicals are needed, which can target multiple pathways. Numerous plant extracts and phytochemicals have been shown to treat epilepsy in various animal models by targeting various receptors, enzymes, and metabolic pathways. These extracts and phytochemicals could be used for the treatment of epilepsy in humans in the future; however, further research is needed to study the exact mechanism of action, toxicity, and dosage to reduce their side effects. In this narrative review, we comprehensively summarized the extracts of various plant species and purified phytochemicals isolated from plants, their targets and mechanism of action, and dosage used in various animal models against epilepsy.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ata Ullah
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Asim
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Rafi Ullah
- Department of Botany, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Md. Rafe Rajdoula
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Stephen Temitayo Bello
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Liang Y, Zhao L, Dai C, Liu G, Zhong Y, Liu H, Mo L, Tan C, Liu X, Chen L. Epileptiform Discharges Reduce Neuronal ATP Production by Inhibiting F0F1-ATP Synthase Activity via A Zinc-α2-Glycoprotein-Dependent Mechanism. Mol Neurobiol 2023; 60:6627-6641. [PMID: 37468739 DOI: 10.1007/s12035-023-03508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Neuronal energy metabolism dysfunction, especially adenosine triphosphate (ATP) supply decrease, is observed in epilepsy and associated with epileptogenesis and prognosis. Zinc-α2-glycoprotein (ZAG) is known as an important modulator of energy metabolism and involved in neuronal glucose metabolism, fatty acid metabolism, and ketogenesis impairment in seizures, but its effect on neuronal ATP synthesis in seizures and the specific mechanism are unclear. In this study, we verified the localization of ZAG in primary cultured neuronal mitochondria by using double-labeling immunofluorescence, immune electron microscopy, and western blot. ZAG level in neuronal mitochondria was modulated by lentiviruses and detected by western blot. The F0F1-ATP synthase activity, ATP level, and acetyl-CoA level were measured. The binding between ZAG and F0F1-ATP synthase was determined by coimmunoprecipitation. We found that both ZAG and F0F1-ATP synthase existed in neuronal mitochondria, and there was mutual binding between them. Epileptiform discharge-induced decrease of mitochondrial ZAG level was reversed by ZAG overexpression. Epileptiform discharge or ZAG knockdown decreased F0F1-ATP synthase activity and ATP level in neurons, which were reversed by ZAG overexpression, while overexpression of ZAG along only increased F0F1-ATP synthase activity but not increased ATP level. Meanwhile, neither epileptiform discharges nor changes of ZAG level can alter the acetyl-CoA level. Moreover, epileptiform discharge did not alter F0F1-ATP synthase level. In conclusion, epileptiform discharge-induced ZAG decrease in neuronal mitochondria is correlated to F0F1-ATP synthase activity inhibition, which may possibly lead to ATP supply impairments. ZAG may be a potential therapeutic target for treating neuronal energy metabolism dysfunction in seizures with further researches.
Collapse
Affiliation(s)
- Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
4
|
Zhang SN, Li HM, Liu Q, Li XZ, Yang WD, Zhou Y. Eucommiae Folium and Active Compounds Protect Against Mitochondrial Dysfunction-Calcium Overload in Epileptic Hippocampal Neurons Through the Hypertrophic Cardiomyopathy Pathway. Neurochem Res 2023:10.1007/s11064-023-03937-5. [PMID: 37067737 DOI: 10.1007/s11064-023-03937-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Epilepsy is a chronic brain disease and often occurs suddenly for no reason. Eucommiae folium (EF), an edible herb, can be used in the treatment of various kinds of brain diseases in clinic. From the perspective of safety and efficacy, EF is especially suitable for the treatment of chronic brain diseases. With the help of biolabels, this study was aimed to explore the value and feasibility of EF in the treatment of epilepsy. Proteomics and metabolomics were used to explore the biolabels of EF intervention in brain tissues. Bioinformatics was then applied to topologically analyze its neuroprotective effects and mechanisms and material basis based on biolabels, which were validated in an animal model. The biolabel-led research revealed that EF may exert the therapeutic potential to treat brain diseases through the interaction between multiple compounds and multiple targets, among which its therapeutic potential for epilepsy is particularly prominent. In the pentylenetetrazole-induction model, EF and four active compounds (oleamide, catechol, chlorogenic acid, and kaempferol) protected epileptic hippocampal neurons (Nissl and FJB staining) against mitochondrial dysfunction (MYH6, MYL3, and MYBPC3, etc.) and calcium overload (TNNI3, TNNC1, and TNNT2, etc.) through the hypertrophic cardiomyopathy pathway. This study provides new evidence and insights for the neuroprotective effects of EF, in which four active compounds may be potential drug candidates for the treatment of epilepsy.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China
| | - Hong-Mei Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China.
| | - Wu-de Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China.
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China.
| |
Collapse
|
5
|
Sheibani M, Shayan M, Khalilzadeh M, Ghasemi M, Dehpour AR. Orexin receptor antagonists in the pathophysiology and treatment of sleep disorders and epilepsy. Neuropeptides 2023; 99:102335. [PMID: 37003137 DOI: 10.1016/j.npep.2023.102335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The correlation between sleep and epilepsy has been argued over the past decades among scientists. Although the similarities and contrasts between sleep and epilepsy had been considered, their intertwined nature was not revealed until the nineteenth century. Sleep is recognized as a recurring state of mind and body through alternating brain electrical activities. It is documented that sleep disorders are associated with epilepsy. The origin, suppression, and spread of seizures are affected by sleep. As such, in patients with epilepsy, sleep disorders are a frequent comorbidity. Meanwhile, orexin, a wake-promoting neuropeptide, provides a bidirectional effect on both sleep and epilepsy. Orexin and its cognate receptors, orexin receptor type 1 (OX1R) and type 2 (OX2R), orchestrate their effects by activating various downstream signaling pathways. Although orexin was considered a therapeutic target in insomnia shortly after its discovery, its potential usefulness for psychiatric disorders and epileptic seizures has been suggested in the pre-clinical studies. This review aimed to discuss whether the relationship between sleep, epilepsy, and orexin is clearly reciprocal.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhou X, Chen Z, Xiao L, Zhong Y, Liu Y, Wu J, Tao H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022; 103:126-136. [DOI: 10.1016/j.seizure.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
7
|
Pardo-Peña K, Yañez-Hernández A, Medina-Ceja L, Morales-Villagrán A. Ellagic acid and allopurinol decrease H 2O 2 concentrations, epileptiform activity and astrogliosis after status epilepticus in the hippocampus of adult rats. Exp Brain Res 2022; 240:1191-1203. [PMID: 35171306 DOI: 10.1007/s00221-022-06323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Status epilepticus (SE) can result in an overproduction of hydrogen peroxide (H2O2), which contributes to oxidative stress and brain injury during different phases of epileptogenesis and seizures. The purpose of this study was to evaluate the effects of ellagic acid and allopurinol administered after SE on H2O2 concentrations, electrical activity and GFAP immunoreactivity in the hippocampus of rats evaluated on Day 18 after SE. H2O2 levels were measured using an online technique with high temporal resolution and simultaneous electrical activity recording. For this purpose, the lateral ventricles of male Wistar rats (200-250 g) were injected with pilocarpine (2.4 mg/2 µl) to induce SE. After SE, rats were injected with ellagic acid (50 mg/kg i.p., and two additional doses at 24 and 48 h) or allopurinol (50 mg/kg i.p., single dose). Administration of ellagic acid or allopurinol after SE significantly reduced the H2O2 concentrations and decreased the presence of epileptiform activity and GFAP immunoreactivity in the hippocampus 18 days after SE. In conclusion, the administration of antioxidants potentially reduces oxidative stress, which indicates the possible attenuation of the neurobiological consequences after SE.
Collapse
Affiliation(s)
- Kenia Pardo-Peña
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico.
| | - Aldo Yañez-Hernández
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | | |
Collapse
|
8
|
Upaganlawar AB, Wankhede NL, Kale MB, Umare MD, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Najda A, Nurzyńska-Wierdak R, Bungau S, Behl T. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother 2021; 143:112146. [PMID: 34507113 DOI: 10.1016/j.biopha.2021.112146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is the most common neurological disorder, affecting nearly 50 million people worldwide. The condition can be manifested either due to genetic predisposition or acquired from acute insult which leads to alteration of cellular and molecular mechanisms. Evaluating the latest and the current knowledge in regard to the mechanisms underlying molecular and cellular alteration, hyperexcitability is a consequence of an imbalanced state wherein enhance excitatory glutamatergic and reduced inhibitory GABAergic signaling is considered to be accountable for seizures associated damage. However, neurodegeneration contributing to epileptogenesis has become increasingly appreciated. The components at the helm of neurodegenerative alterations during epileptogenesis include GABAergic neuronal and receptor changes, neuroinflammation, alteration in axonal transport, oxidative stress, excitotoxicity, and other cellular as well as functional changes. Targeting neurodegeneration with vitamin E as an antioxidant, anti-inflammatory and neuroprotective may prove to be one of the therapeutic approaches useful in managing epilepsy. In this review, we discuss and converse about the seizure-induced episodes as a link for the development of neurodegenerative and pathological consequences of epilepsy. We also put forth a summary of the potential intervention with vitamin E therapy in the management of epilepsy.
Collapse
Affiliation(s)
- Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences, Lublin, Poland.
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
9
|
Meyer C, Kettner A, Hochenegg U, Rubi L, Hilber K, Koenig X, Boehm S, Hotka M, Kubista H. On the Origin of Paroxysmal Depolarization Shifts: The Contribution of Ca v1.x Channels as the Common Denominator of a Polymorphous Neuronal Discharge Pattern. Neuroscience 2021; 468:265-281. [PMID: 34015369 DOI: 10.1016/j.neuroscience.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/15/2022]
Abstract
Since their discovery in the 1960s, the term paroxysmal depolarization shift (PDS) has been applied to a wide variety of reinforced neuronal discharge patterns. Occurrence of PDS as cellular correlates of electrographic spikes during latent phases of insult-induced rodent epilepsy models and their resemblance to giant depolarizing potentials (GDPs) nourished the idea that PDS may be involved in epileptogenesis. Both GDPs and - in analogy - PDS may lead to progressive changes of neuronal properties by generation of pulsatile intracellular Ca2+ elevations. Herein, a key element is the gating of L-type voltage gated Ca2+ channels (LTCCs, Cav1.x family), which may convey Ca2+ signals to the nucleus. Accordingly, the present study investigates various insult-associated neuronal challenges for their propensities to trigger PDS in a LTCC-dependent manner. Our data demonstrate that diverse disturbances of neuronal function are variably suited to induce PDS-like events, and the contribution of LTCCs is essential to evoke PDS in rat hippocampal neurons that closely resemble GDPs. These PDS appear to be initiated in the dendritic sub-compartment. Their morphology critically depends on the position of recording electrodes and on their rate of occurrence. These results provide novel insight into induction mechanisms, origin, variability, and co-existence of PDS with other discharge patterns and thereby pave the way for future investigations regarding the role of PDS in epileptogenesis.
Collapse
Affiliation(s)
- Christiane Meyer
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Annika Kettner
- University of Applied Sciences (FH Campus Wien), Favoritenstrasse 226, 1100 Vienna, Austria.
| | - Ulla Hochenegg
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Lena Rubi
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Karlheinz Hilber
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Xaver Koenig
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
10
|
Thakran S, Guin D, Singh P, Singh P, Kukal S, Rawat C, Yadav S, Kushwaha SS, Srivastava AK, Hasija Y, Saso L, Ramachandran S, Kukreti R. Genetic Landscape of Common Epilepsies: Advancing towards Precision in Treatment. Int J Mol Sci 2020; 21:E7784. [PMID: 33096746 PMCID: PMC7589654 DOI: 10.3390/ijms21207784] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Epilepsy, a neurological disease characterized by recurrent seizures, is highly heterogeneous in nature. Based on the prevalence, epilepsy is classified into two types: common and rare epilepsies. Common epilepsies affecting nearly 95% people with epilepsy, comprise generalized epilepsy which encompass idiopathic generalized epilepsy like childhood absence epilepsy, juvenile myoclonic epilepsy, juvenile absence epilepsy and epilepsy with generalized tonic-clonic seizure on awakening and focal epilepsy like temporal lobe epilepsy and cryptogenic focal epilepsy. In 70% of the epilepsy cases, genetic factors are responsible either as single genetic variant in rare epilepsies or multiple genetic variants acting along with different environmental factors as in common epilepsies. Genetic testing and precision treatment have been developed for a few rare epilepsies and is lacking for common epilepsies due to their complex nature of inheritance. Precision medicine for common epilepsies require a panoramic approach that incorporates polygenic background and other non-genetic factors like microbiome, diet, age at disease onset, optimal time for treatment and other lifestyle factors which influence seizure threshold. This review aims to comprehensively present a state-of-art review of all the genes and their genetic variants that are associated with all common epilepsy subtypes. It also encompasses the basis of these genes in the epileptogenesis. Here, we discussed the current status of the common epilepsy genetics and address the clinical application so far on evidence-based markers in prognosis, diagnosis, and treatment management. In addition, we assessed the diagnostic predictability of a few genetic markers used for disease risk prediction in individuals. A combination of deeper endo-phenotyping including pharmaco-response data, electro-clinical imaging, and other clinical measurements along with genetics may be used to diagnose common epilepsies and this marks a step ahead in precision medicine in common epilepsies management.
Collapse
Affiliation(s)
- Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Suman S. Kushwaha
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, Dilshad Garden, Delhi 110095, India;
| | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India;
| | - Yasha Hasija
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Srinivasan Ramachandran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- G N Ramachandran Knowledge Centre, Council of Scientific and Industrial Research (CSIR)—Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
11
|
Dong X, Zhang X, Wang F, Liu N, Liu A, Li Y, Wei L, Chen F, Yuan S, Zhang K, Hou S, Jiao Q, Hu Q, Guo C, Wu T, Wei S, Shen H. Simultaneous calcium recordings of hippocampal CA1 and primary motor cortex M1 and their relations to behavioral activities in freely moving epileptic mice. Exp Brain Res 2020; 238:1479-1488. [PMID: 32424694 DOI: 10.1007/s00221-020-05815-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent epileptic seizures. The cause of most cases of epilepsy is unknown. Although changes of calcium events in a single brain region during seizures have been reported before, there have been few studies on relations between calcium events of two different brain regions and epileptic behaviors in freely moving mice. To analyze calcium events simultaneously recorded in hippocampal CA1 (CA1) and primary motor cortex M1 (M1), and to explore their relations to various epileptic behaviors in freely moving epileptic models. Epileptic models were induced by Kainic acid (KA), a direct agonist of glutamatergic receptor, on adult male C57/BL6J mice. Calcium events of neurons and glia in CA1 and M1 labeled by a calcium indicator dye were recorded simultaneously with a multi-channel fiber photometry system. Three typical types of calcium events associated with KA-induced seizures were observed, including calcium baseline-rising, cortical spreading depression (CSD) and calcium flashing with a steady rate. Our results showed that the calcium baseline-rising occurred in CA1 was synchronized with that in M1, but the CSD waves were not. However, synchronization of calcium flashing in the two areas was uncertain, because it was only detected in CA1. We also observed that different calcium events happened with different epileptic behaviors. Baseline-rising events were accompanied by clonus of forelimbs or trembling, CSD waves were closely related to head movements (15 out of 18, 6 mice). Calcium flashing occurred definitely with drastic convulsive motor seizures (CMS, 6 mice). The results prove that the synchronization of calcium event exists in CA1 and M1, and different calcium events are related with different seizure behaviors. Our results suggest that calcium events involve in the synchronization of neural network and behaviors in epilepsy.
Collapse
Affiliation(s)
- Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xin Zhang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Feifei Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Nannan Liu
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Liangpeng Wei
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Shiyang Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaowei Hou
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qingyan Jiao
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China. .,Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
12
|
Kubista H, Boehm S, Hotka M. The Paroxysmal Depolarization Shift: Reconsidering Its Role in Epilepsy, Epileptogenesis and Beyond. Int J Mol Sci 2019; 20:ijms20030577. [PMID: 30699993 PMCID: PMC6387313 DOI: 10.3390/ijms20030577] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022] Open
Abstract
Paroxysmal depolarization shifts (PDS) have been described by epileptologists for the first time several decades ago, but controversy still exists to date regarding their role in epilepsy. In addition to the initial view of a lack of such a role, seemingly opposing hypotheses on epileptogenic and anti-ictogenic effects of PDS have emerged. Hence, PDS may provide novel targets for epilepsy therapy. Evidence for the roles of PDS has often been obtained from investigations of the multi-unit correlate of PDS, an electrographic spike termed “interictal” because of its occurrence during seizure-free periods of epilepsy patients. Meanwhile, interictal spikes have been found to be associated with neuronal diseases other than epilepsy, e.g., Alzheimer’s disease, which may indicate a broader implication of PDS in neuropathologies. In this article, we give an introduction to PDS and review evidence that links PDS to pro- as well as anti-epileptic mechanisms, and to other types of neuronal dysfunction. The perturbation of neuronal membrane voltage and of intracellular Ca2+ that comes with PDS offers many conceivable pathomechanisms of neuronal dysfunction. Out of these, the operation of L-type voltage-gated calcium channels, which play a major role in coupling excitation to long-lasting neuronal changes, is addressed in detail.
Collapse
Affiliation(s)
- Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Abuelhassan AH, Badran MM, Hassan HA, Abdelhamed D, Elnabtity S, Aly OM. Design, synthesis, anticonvulsant activity, and pharmacophore study of new 1,5-diaryl-1H-1,2,4-triazole-3-carboxamide derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2114-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Glucagon-like Peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology 2017; 136:271-279. [PMID: 29129776 DOI: 10.1016/j.neuropharm.2017.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most prevalent neurological disorder affecting more than 50 million people worldwide. Numerous studies have suggested that an imbalance in glutamatergic (excitatory) and GABAergic (inhibitory) neurotransmitter system is one of the dominating pathophysiological mechanisms underlying the occurrence and progression of seizures. Further, this alteration in GABAergic and glutamatergic system disrupts the delicate balance of other neurotransmitters system in the brain. Emerging strides have documented the protective role of GLP-1 signaling on altered neurotransmitters signaling in Epilepsy and associated co-morbidities. GLP-1 is neuropeptide and synthesized by preproglucagon (PPG) neurons in the brain. GLP-1 receptors are widely distributed throughout the brain including hippocampus (CA3 and CA1 region) and implicated in various neurological disorders like Epilepsy. A complete understanding of alteration in neurotransmitters signaling will provide essential insight into the basic pathogenic mechanisms of epilepsy and may uncover novel targets for future drug therapies. Presently, treatment of epilepsy is palliative in nature, providing only symptomatic relief to patients. The apparent or traditional approach of treating epileptic subjects with anti-epileptic drugs is associated with variety of adverse effects. Therefore, alternative approaches that can restore altered neurotransmitter signaling are being tried and adopted. Present review is an attempt to highlight the emerging protective role of GLP-1 signaling on altered neurotransmitters signaling in epilepsy. Authors have made significant efforts to discuss effect of various GLP-1 analogs on various neurotransmitters system and associated molecular and cellular pathways as a potential drug target for the management of epilepsy and associated co-morbidities. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
|
15
|
Stiglbauer V, Hotka M, Ruiß M, Hilber K, Boehm S, Kubista H. Ca v 1.3 channels play a crucial role in the formation of paroxysmal depolarization shifts in cultured hippocampal neurons. Epilepsia 2017; 58:858-871. [PMID: 28295232 DOI: 10.1111/epi.13719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE An increase of neuronal Cav 1.3 L-type calcium channels (LTCCs) has been observed in various animal models of epilepsy. However, LTCC inhibitors failed in clinical trials of epileptic treatment. There is compelling evidence that paroxysmal depolarization shifts (PDSs) involve Ca2+ influx through LTCCs. PDSs represent a hallmark of epileptiform activity. In recent years, a probable epileptogenic role for PDSs has been proposed. However, the implication of the two neuronal LTCC isoforms, Cav 1.2 and Cav 1.3, in PDSs remained unknown. Moreover, Ca2+ -dependent nonspecific cation (CAN) channels have also been suspected to contribute to PDSs. Nevertheless, direct experimental support of an important role of CAN channel activation in PDS formation is still lacking. METHODS Primary neuronal networks derived from dissociated hippocampal neurons were generated from mice expressing a dihydropyridine-insensitive Cav 1.2 mutant (Cav 1.2DHP-/- mice) or from Cav 1.3-/- knockout mice. To investigate the role of Cav 1.2 and Cav 1.3, perforated patch-clamp recordings were made of epileptiform activity, which was elicited using either bicuculline or caffeine. LTCC activity was modulated using the dihydropyridines Bay K 8644 (agonist) and isradipine (antagonist). RESULTS Distinct PDS could be elicited upon LTCC potentiation in Cav 1.2DHP-/- neurons but not in Cav 1.3-/- neurons. In contrast, when bicuculline led to long-lasting, seizure-like discharge events rather than PDS, these were prolonged in Cav 1.3-/- neurons but not in Cav 1.2DHP-/- neurons. Because only the Cav 1.2 isoform is functionally coupled to CAN channels in primary hippocampal networks, PDS formation does not require CAN channel activity. SIGNIFICANCE Our data suggest that the LTCC requirement of PDS relates primarily to Cav 1.3 channels rather than to Cav 1.2 channels and CAN channels in hippocampal neurons. Hence, Cav 1.3 may represent a new therapeutic target for suppression of PDS development. The proposed epileptogenic role of PDSs may allow for a prophylactic rather than the unsuccessful seizure suppressing application of LTCC inhibitors.
Collapse
Affiliation(s)
- Victoria Stiglbauer
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matej Hotka
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Ruiß
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Webster KM, Sun M, Crack P, O'Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation 2017; 14:10. [PMID: 28086980 PMCID: PMC5237206 DOI: 10.1186/s12974-016-0786-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/28/2016] [Indexed: 01/02/2023] Open
Abstract
Background Epilepsy is a common and debilitating consequence of traumatic brain injury (TBI). Seizures contribute to progressive neurodegeneration and poor functional and psychosocial outcomes for TBI survivors, and epilepsy after TBI is often resistant to existing anti-epileptic drugs. The development of post-traumatic epilepsy (PTE) occurs in a complex neurobiological environment characterized by ongoing TBI-induced secondary injury processes. Neuroinflammation is an important secondary injury process, though how it contributes to epileptogenesis, and the development of chronic, spontaneous seizure activity, remains poorly understood. A mechanistic understanding of how inflammation contributes to the development of epilepsy (epileptogenesis) after TBI is important to facilitate the identification of novel therapeutic strategies to reduce or prevent seizures. Body We reviewed previous clinical and pre-clinical data to evaluate the hypothesis that inflammation contributes to seizures and epilepsy after TBI. Increasing evidence indicates that neuroinflammation is a common consequence of epileptic seizure activity, and also contributes to epileptogenesis as well as seizure initiation (ictogenesis) and perpetuation. Three key signaling factors implicated in both seizure activity and TBI-induced secondary pathogenesis are highlighted in this review: high-mobility group box protein-1 interacting with toll-like receptors, interleukin-1β interacting with its receptors, and transforming growth factor-β signaling from extravascular albumin. Lastly, we consider age-dependent differences in seizure susceptibility and neuroinflammation as mechanisms which may contribute to a heightened vulnerability to epileptogenesis in young brain-injured patients. Conclusion Several inflammatory mediators exhibit epileptogenic and ictogenic properties, acting on glia and neurons both directly and indirectly influence neuronal excitability. Further research is required to establish causality between inflammatory signaling cascades and the development of epilepsy post-TBI, and to evaluate the therapeutic potential of pharmaceuticals targeting inflammatory pathways to prevent or mitigate the development of PTE.
Collapse
Affiliation(s)
- Kyria M Webster
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Mujun Sun
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Peter Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Terence J O'Brien
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Sandy R Shultz
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Bridgette D Semple
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
17
|
Khaspekov LG, Sharonova IN, Kolbaev SN. Modeling of acquired postischemic epileptogenesis in cultures of neural cells and tissue. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416030077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
MicroRNA-132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture Model of Acquired Epilepsy and Associated with Epileptogenesis Process. Neural Plast 2016; 2016:5108489. [PMID: 27579184 PMCID: PMC4992765 DOI: 10.1155/2016/5108489] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 12/03/2022] Open
Abstract
Increasing evidence suggests that epilepsy is the result of synaptic reorganization and pathological excitatory loop formation in the central nervous system; however, the mechanisms that regulate this process are not well understood. We proposed that microRNA-132 (miR-132) and p250GAP might play important roles in this process by activating the downstream Rho GTPase family. We tested this hypothesis using a magnesium-free medium-induced epileptic model of cultured hippocampal neurons. We investigated whether miR-132 regulates GTPase activity through p250GAP and found that Cdc42 was significantly activated in our experimental model. Silencing miR-132 inhibited the electrical excitability level of cultured epileptic neurons, whereas silencing p250GAP had an opposite effect. In addition, we verified the effect of miR-132 in vivo and found that silencing miR-132 inhibited the aberrant formation of dendritic spines and chronic spontaneous seizure in a lithium-pilocarpine-induced epileptic mouse model. Finally, we confirmed that silencing miR-132 has a neuroprotective effect on cultured epileptic neurons; however, this effect did not occur through the p250GAP pathway. Generally, silencing miR-132 may suppress spontaneous seizure activity through the miR-132/p250GAP/Cdc42 pathway by regulating the morphology and electrophysiology of dendritic spines; therefore, miR-132 may serve as a potential target for the development of antiepileptic drugs.
Collapse
|
19
|
Durmus N, Gültürk S, Kaya T, Demir T, Parlak M, Altun A. Evaluation of effects of T and N type calcium channel blockers on the electroencephalogram recordings in Wistar Albino Glaxo/Rij rats, an absence epilepsy model. Indian J Pharmacol 2015; 47:34-8. [PMID: 25821308 PMCID: PMC4375815 DOI: 10.4103/0253-7613.150324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/03/2014] [Accepted: 12/08/2014] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES It is suggested that excessive calcium entry into neurons is the main triggering event in the initiation of epileptic discharges. We aimed to investigate the role of T and N type calcium channels in absence epilepsy experimental model. MATERIALS AND METHODS Wistar Albino Glaxo/Rij (WAG/Rij) rats (12-16 weeks old) were randomly allocated into four groups; sham, mibefradil (T type calcium channel blocker), w-Conotoxin MVIIA (N type calcium channel blocker), and mibefradil + w-Conotoxin MVIIA. Beta, alpha, theta, and delta wave ratios of EEG recordings and frequency and duration of spike wave discharges (SWDs) were analyzed and compared between groups. RESULTS Beta and delta recording ratios in 1 μM/5 μl mibefradil group was significantly different from basal and other dose-injected groups. Beta, alpha, and theta recordings in 0.2 μM/5 μl w-Conotoxin MVIIA group was significantly different from basal and other dose-injected groups. In w-Conotoxin MVIIA after mibefradil group, beta, alpha, and theta recording ratios were significantly different from basal and mibefradil group. Mibefradil and w-Conotoxin MVIIA significantly decreased the frequency and duration of SWDs. The decrease of frequency and duration of SWDs in mibefradil group was significantly different from w-Conotoxin MVIIA group. The frequency and duration of SWDs significantly decreased in w-Conotoxin MVIIA after mibefradil group compared with basal, mibefradil, and w-Conotoxin MVIIA groups. CONCLUSIONS We concluded that both T and L type calcium channels play activator roles in SWDs and have positive effects on frequency and duration of these discharges. These results are related with their central effects more than peripheral effects.
Collapse
Affiliation(s)
- Nedim Durmus
- Department of Medical Pharmacology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Sefa Gültürk
- Department of Physiology, Cumhuriyet University Medical Faculty, Sivas, Turkey
| | - Tijen Kaya
- Department of Medical Pharmacology, Katip Celebi University Medical Faculty, İzmir, Turkey
| | - Tuncer Demir
- Department of Physiology, Gaziantep University Medical Faculty, Gaziantep, Turkey
| | - Mesut Parlak
- Department of Medical Pharmacology, Cumhuriyet University Medical Faculty, Sivas, Turkey
| | - Ahmet Altun
- Department of Medical Pharmacology, Cumhuriyet University Medical Faculty, Sivas, Turkey
| |
Collapse
|
20
|
Hermsen A, Eienbröker A, Haag A, Mylius V, Hamer HM, Menzler K, Karakas E, Rosenow F. Perioperative changes in cortical excitability, mood, and quality of life in patients with primary hyperparathyroidism: a pilot study using transcranial magnetic stimulation. Eur J Endocrinol 2014; 170:201-9. [PMID: 24174287 DOI: 10.1530/eje-13-0552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Serum calcium (Ca(2)(+)) and parathyroid hormone (PTH), amongst others, modify cortical excitability. Alterations in cortical excitability were shown in patients with epilepsy as well as hyper- or hypoparathyroidism. In patients with primary hyperparathyroidism (pHPT), preoperative elevated serum calcium and parathyroidectomy (PTx) may affect mood and quality of life. We hypothesized that perioperative changes in Ca(2)(+) and PTH in pHPT will affect cortical excitability and improve subjective health. DESIGN AND METHODS Transcranial magnetic stimulation (TMS) was performed before and after surgery in 15 pHPT patients. We measured resting motor threshold, cortical silent period (CSP), short intracortical inhibition, and intracortical facilitation. Health questionnaires were administered before, 1 day and 6 months after PTx, along with the disease-specific Pasieka's parathyroid assessment of symptoms (PAS), which was, to our knowledge, its first use in German. RESULTS SURGERY WAS SUCCESSFUL IN ALL PATIENTS. TMS-MEASUREMENTS REMAINED UNCHANGED WHEN ANALYZING ALL PATIENTS IN THIS PILOT STUDY. POSTOPERATIVELY, DEPRESSION DECLINED (P=0.05) AND QUALITY OF LIFE IMPROVED SIGNIFICANTLY (P=0.001) IN THE SF-36-SUBSCALES: vitality, social functioning, mental health and subjective health transition (post-hoc analysis). The PAS proved early relief of disease-specific symptoms (P<0.001). CONCLUSIONS We found unchanged cortical excitability comparing pre- and post-PTx in this pilot study. Mood and quality of life improved postoperatively. The German PAS is valuable in detecting disease-specific changes early after PTx.
Collapse
Affiliation(s)
- A Hermsen
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Baldingerstr., 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Schulz R, Kirschstein T, Brehme H, Porath K, Mikkat U, Köhling R. Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents. Neurobiol Dis 2012; 45:337-47. [DOI: 10.1016/j.nbd.2011.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 08/13/2011] [Accepted: 08/18/2011] [Indexed: 11/29/2022] Open
|
22
|
Cano-Abad MF, Herrera-Peco I, Sola RG, Pastor J, García-Navarrete E, Moro RC, Pizzo P, Ruiz-Nuño A. New insights on culture and calcium signalling in neurons and astrocytes from epileptic patients. Int J Dev Neurosci 2011; 29:121-9. [PMID: 21238565 DOI: 10.1016/j.ijdevneu.2010.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/11/2010] [Accepted: 12/24/2010] [Indexed: 11/16/2022] Open
Abstract
Primary brain cell cultures are a useful tool for understanding the physiopathology of epilepsy and for searching new potential antiepileptic drugs. These cell types are usually prepared from murine species and few human models have been described. The main goal of this study is the establishment of experimental conditions to isolate and culture neurons and astrocytes from human brain and to test its functionality. The tissues came from antiepileptic drug-resistant epileptic patients undergoing surgery. Human neurons and astrocytes were isolated following an enzymatic and mechanical dissociation protocol. Cultures were viable for 3-6 weeks. Cytological characterization was performed by immunocytochemistry using specific antibodies against both neuron (anti-NeuN) and astrocyte (anti-GFAP) protein markers. In order to test their viability and functionality, cells were loaded with the fluorescent calcium probe fura-2 and variations in cytosolic calcium concentrations ([Ca2+]c) were measured by cell imaging. [Ca2+]c increases were evoked upon cell stimulation with high K+ (KCl 75 mM), glutamate (500 μM) or bicuculline (100 μM). Interestingly, spontaneous [Ca2+]c transients were also observed in some neuron-like cells. A novel unreported finding in this study has been the incorporation of human serum that was critical for cell functionality. The setting of these human cultures open the opportunity to new insights on culture and calcium signalling studies on the mechanism(s) of cell resistance to antiepileptic drugs, as well as to studies on plasticity, maturation and possible neurite emission for graft studies.
Collapse
Affiliation(s)
- M F Cano-Abad
- Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Instituto Teófilo Hernando (ITH), Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ding YX, Zhang Y, He B, Yue WH, Zhang D, Zou LP. A possible association of responsiveness to adrenocorticotropic hormone with specific GRIN1 haplotypes in infantile spasms. Dev Med Child Neurol 2010; 52:1028-32. [PMID: 20722663 DOI: 10.1111/j.1469-8749.2010.03746.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Adrenocorticotropic hormone (ACTH) has been used as the major therapy for infantile spasms since 1958 because it effectively suppresses seizures; it also normalizes the electroencephalogram in the short-term treatment of infantile spasms. G protein-regulated inducer of neurite outgrowth 1 (GRIN1, also known as N-methyl-D-aspartate receptor 1, NMDAR1), a glutamate receptor, is the main component of functional N-methyl-D-aspartic acid receptors that are involved in the glucocorticoid-induced neuronal damage. Thus, it may be a candidate gene to be tested for responsiveness to ACTH in infantile spasms. In the present study, polymorphisms in the GRIN1 gene in infantile spasms were investigated using a case-control design. METHOD Twelve single nucleotide polymorphisms in the GRIN1 gene were genotyped in a Chinese case-control set consisting of 97 unrelated patients with infantile spasms (60 males, 37 females; mean age 6.4 mo, SD 2.7) and 96 healthy individuals (63 males, 33 females; mean age 7.3 mo, SD 3.8). Association analysis was performed on the genotyped data. RESULTS Five estimated haplotypes with a frequency of more than 3% were detected. Results of the study showed that responsiveness to treatment with ACTH in homozygous carriers of the CTA haplotype was higher than that in heterozygous carriers and non-carriers (p=0.022). Furthermore, CTG, a rare haplotype, was strongly associated with infantile spasms (p=0.013). INTERPRETATION The results suggest that haplotypes of GRIN1 may influence responsiveness to ACTH. The findings necessitate further study for confirmation.
Collapse
Affiliation(s)
- Ying-Xue Ding
- Department of Neurology, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
24
|
Rijkers K, Mescheriakova J, Majoie M, Lemmens E, van Wijk X, Philippens M, Van Kranen-Mastenbroek V, Schijns O, Vles J, Hoogland G. Polymorphisms in CACNA1E and Camk2d are associated with seizure susceptibility of Sprague-Dawley rats. Epilepsy Res 2010; 91:28-34. [PMID: 20638246 DOI: 10.1016/j.eplepsyres.2010.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/29/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Seizures are associated with high intracellular calcium levels. However, conditions characterized by high intracellular calcium levels, such as stroke or traumatic brain injury, do not always evoke epilepsy. We hypothesized that polymorphisms in calcium-related genes CACNA1E and Camk2d contribute to the individual variability in seizure susceptibility. The distribution of one single nucleotide polymorphism (SNP) in the CACNA1E and one in the Camk2d gene was determined in Sprague-Dawley rats that were subjected to amygdala kindling or hyperthermia-induced seizures. The pre-kindling afterdischarge threshold was significantly lower in rats with the CACNA1E GG genotype (45.2+/-6.7microA) than in the GT genotyped animals (79.3+/-53.7microA). Among hyperthermia treated rats, the Camk2d G allele was more frequent among rats that did not display behavioral seizures during hyperthermia (67%) than in animals that did show behavioral seizures during hyperthermia (52%, chi(2)(1)=3.847, p=0.05). SNPs in CACNA1E and Camk2d genes are associated with the individual variability in seizure susceptibility in two experimental seizure models.
Collapse
Affiliation(s)
- Kim Rijkers
- Department of Neurosurgery, University Medical Center Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Faria LC, Prince DA. Presynaptic inhibitory terminals are functionally abnormal in a rat model of posttraumatic epilepsy. J Neurophysiol 2010; 104:280-90. [PMID: 20484536 DOI: 10.1152/jn.00351.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Partially isolated "undercut" neocortex with intact pial circulation is a well-established model of posttraumatic epileptogenesis. Results of previous experiments showed a decreased frequency of miniature inhibitory postsynaptic currents (mIPSCs) in layer V pyramidal (Pyr) neurons of undercuts. We further examined possible functional abnormalities in GABAergic inhibition in rat epileptogenic neocortical slices in vitro by recording whole cell monosynaptic IPSCs in layer V Pyr cells and fast-spiking (FS) GABAergic interneurons using a paired pulse paradigm. Compared with controls, IPSCs in Pyr neurons of injured slices showed increased threshold and decreased peak amplitude at threshold, decreased input/output slopes, increased failure rates, and a shift from paired pulse depression toward paired pulse facilitation (increased paired pulse ratio or PPR). Increasing [Ca(2+)](o) from 2 to 4 mM partially reversed these abnormalities in Pyr cells of the epileptogenic tissue. IPSCs onto FS cells also had an increased PPR and failures. Blockade of GABA(B) receptors did not affect the paired results. These findings suggest that there are functional alterations in GABAergic presynaptic terminals onto both Pyr and FS cells in this model of posttraumatic epileptogenesis.
Collapse
Affiliation(s)
- Leonardo C Faria
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, California 94305-5122, USA
| | | |
Collapse
|
26
|
Fekete A, Franklin L, Ikemoto T, Rózsa B, Lendvai B, Sylvester Vizi E, Zelles T. Mechanism of the persistent sodium current activator veratridine-evoked Ca elevation: implication for epilepsy. J Neurochem 2009; 111:745-56. [PMID: 19719824 DOI: 10.1111/j.1471-4159.2009.06368.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the role of Na(+) in several aspects of Ca(2+) regulation has already been shown, the exact mechanism of intracellular Ca(2+) concentration ([Ca(2+)](i)) increase resulting from an enhancement in the persistent, non-inactivating Na(+) current (I(Na,P)), a decisive factor in certain forms of epilepsy, has yet to be resolved. Persistent Na(+) current, evoked by veratridine, induced bursts of action potentials and sustained membrane depolarization with monophasic intracellular Na(+) concentration ([Na(+)](i)) and biphasic [Ca(2+)](i) increase in CA1 pyramidal cells in acute hippocampal slices. The Ca(2+) response was tetrodotoxin- and extracellular Ca(2+)-dependent and ionotropic glutamate receptor-independent. The first phase of [Ca(2+)](i) rise was the net result of Ca(2+) influx through voltage-gated Ca(2+) channels and mitochondrial Ca(2+) sequestration. The robust second phase in addition involved reverse operation of the Na(+)-Ca(2+) exchanger and mitochondrial Ca(2+) release. We excluded contribution of the endoplasmic reticulum. These results demonstrate a complex interaction between persistent, non-inactivating Na(+) current and [Ca(2+)](i) regulation in CA1 pyramidal cells. The described cellular mechanisms are most likely part of the pathomechanism of certain forms of epilepsy that are associated with I(Na,P). Describing the magnitude, temporal pattern and sources of Ca(2+) increase induced by I(Na,P) may provide novel targets for antiepileptic drug therapy.
Collapse
Affiliation(s)
- Adám Fekete
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Szigony, Hungary
| | | | | | | | | | | | | |
Collapse
|
27
|
Involvement of the cAMP-dependent pathway in the reduction of epileptiform bursting caused by somatostatin in the mouse hippocampus. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:563-77. [PMID: 18665350 DOI: 10.1007/s00210-008-0338-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/10/2008] [Indexed: 11/27/2022]
Abstract
The cyclic AMP pathway is major signal transduction system involved in hippocampal neurotransmission. Recently, the peptide somatostatin-14 (SRIF) has emerged as a key signal that, by activating its receptors, inhibits epileptiform bursting in the mouse hippocampus. Little is known on transduction mechanisms, which may mediate SRIF function in native cell/tissues. Using a well-established model of epileptiform activity induced by Mg(2+)-free medium with 4-aminopyridine [0 Mg(2+)/4-aminopyridine (4-AP)] in mouse hippocampal slices, we demonstrated that protein kinase A (PKA)-related signaling is upregulated by hippocampal bursting and that treatment with SRIF normalizes this upregulation. We also demonstrated that the SRIF-induced inhibition of PKA impairs phosphorylation of the NMDA receptor subunit NR1. Extracellular recordings of the 0 Mg(2+)/4-AP-induced hippocampal discharge from the CA3 region demonstrated that treating slices with compounds, which interfere with PKA activity, prevent SRIF inhibition of epileptiform bursting. Our results suggest that SRIF modulation of hippocampal activity may involve PKA-related signaling.
Collapse
|
28
|
Pentoxifylline ameliorates lithium-pilocarpine induced status epilepticus in young rats. Epilepsy Behav 2008; 12:354-65. [PMID: 18203664 DOI: 10.1016/j.yebeh.2007.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 12/04/2007] [Accepted: 12/08/2007] [Indexed: 11/23/2022]
Abstract
The neuroprotective effects of pentoxifylline (PTX) against lithium-pilocarpine (Li-Pc)-induced status epilepticus (SE) in young rats are described. Animals treated with PTX (0, 20, 40, and 60 mg/kg) before induction of SE were examined for latency to and frequency of SE, behavioral changes, oxidative stress, neurochemical alterations in the hippocampus and striatum, and histological abnormalities in the hippocampus. Treatment with PTX significantly ameliorated the frequency and severity of epileptic seizures in a dose-dependent manner. Our behavioral studies using the elevated plus-maze, rotarod, and water maze tests suggested a significant reduction in anxiety, enhanced motor performance, and improved learning and memory in PTX-treated rats. Li-Pc-induced neuronal cell loss and sprouting of mossy fibers in the hippocampus were also attenuated by PTX. The neuroprotective activity of PTX was accompanied by reduction in oxidative stress and reversal of SE-induced depletion of dopamine and 5-hydroxytryptamine in hippocampus and striatum. The results of this study provide a good rationale to explore the prophylactic/therapeutic potential of PTX in SE.
Collapse
|
29
|
Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MFM. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 2008; 78:102-16. [PMID: 18226499 PMCID: PMC2272535 DOI: 10.1016/j.eplepsyres.2007.11.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/20/2007] [Accepted: 11/30/2007] [Indexed: 11/20/2022]
Abstract
Acute brain insults, such as traumatic brain injury, status epilepticus, or stroke are common etiologies for the development of epilepsy, including temporal lobe epilepsy (TLE), which is often refractory to drug therapy. The mechanisms by which a brain injury can lead to epilepsy are poorly understood. It is well recognized that excessive glutamatergic activity plays a major role in the initial pathological and pathophysiological damage. This initial damage is followed by a latent period, during which there is no seizure activity, yet a number of pathophysiological and structural alterations are taking place in key brain regions, that culminate in the expression of epilepsy. The process by which affected/injured neurons that have survived the acute insult, along with well-preserved neurons are progressively forming hyperexcitable, epileptic neuronal networks has been termed epileptogenesis. Understanding the mechanisms of epileptogenesis is crucial for the development of therapeutic interventions that will prevent the manifestation of epilepsy after a brain injury, or reduce its severity. The amygdala, a temporal lobe structure that is most well known for its central role in emotional behavior, also plays a key role in epileptogenesis and epilepsy. In this article, we review the current knowledge on the pathology of the amygdala associated with epileptogenesis and/or epilepsy in TLE patients, and in animal models of TLE. In addition, because a derangement in the balance between glutamatergic and GABAergic synaptic transmission is a salient feature of hyperexcitable, epileptic neuronal circuits, we also review the information available on the role of the glutamatergic and GABAergic systems in epileptogenesis and epilepsy in the amygdala.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
30
|
Shapiro SM, Sombati S, Geiger A, Rice AC. NMDA channel antagonist MK-801 does not protect against bilirubin neurotoxicity. Neonatology 2007; 92:248-57. [PMID: 17556843 DOI: 10.1159/000103743] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/05/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bilirubin encephalopathy or kernicterus is a potentially serious complication of neonatal hyperbilirubinemia. The mechanism of bilirubin-induced neurotoxicity is not known. Many neurological insults are mediated through NMDA receptor activation. OBJECTIVE We assessed the effect of the NMDA channel antagonist, MK-801 on bilirubin neurotoxicity in vivo and in vitro. METHODS Bilirubin toxicity in vitro was assessed using trypan blue staining. Sulfadimethoxine injected (i.p.) jaundiced Gunn rat pups exhibit many neurological sequelae observed in human hyperbilirubinemia. Brainstem auditory-evoked potentials (BAEPs), a noninvasive sensitive tool to assess auditory dysfunction due to bilirubin neurotoxicity, were used to assess neuroprotection with MK-801 (i.p.) in vivo. RESULTS In primary cultures of hippocampal neurons, 20 min exposure to 64:32 microM bilirubin:human serum albumin reduced the cell viability by approximately 50% ten hours later. MK-801 treatment did not protect the cells. MK-801 pretreatment doses ranging from 0.1-4.0 mg/kg did not protect against BAEP abnormalities in Gunn rat pups 6 h after sulfadimethoxine injection. CONCLUSION Our findings suggest that bilirubin neurotoxicity is not mediated through NMDA receptor activation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Anti-Infective Agents
- Bilirubin/adverse effects
- Cell Survival/drug effects
- Cell Survival/physiology
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hyperbilirubinemia/chemically induced
- Hyperbilirubinemia/complications
- Hyperbilirubinemia/physiopathology
- Jaundice/chemically induced
- Jaundice/complications
- Jaundice/physiopathology
- Kernicterus/etiology
- Kernicterus/physiopathology
- Kernicterus/prevention & control
- Neurons/drug effects
- Neurons/physiology
- Neuroprotective Agents/pharmacology
- Rats
- Rats, Gunn
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Sulfadimethoxine
Collapse
Affiliation(s)
- Steven M Shapiro
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298-0599, USA
| | | | | | | |
Collapse
|