1
|
Honda Y, Li J, Hino A, Tsujimoto S, Lee JK. High-Throughput Drug Screening System Based on Human Induced Pluripotent Stem Cell-Derived Atrial Myocytes ∼ A Novel Platform to Detect Cardiac Toxicity for Atrial Arrhythmias. Front Pharmacol 2021; 12:680618. [PMID: 34413773 PMCID: PMC8369502 DOI: 10.3389/fphar.2021.680618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Evaluation of proarrhythmic properties is critical for drug discovery. In particular, QT prolongation in electrocardiograms has been utilized as a surrogate marker in many evaluation systems to assess the risk of torsade de pointes and lethal ventricular arrhythmia. Recently, new evaluation systems based on human iPS cell-derived cardiomyocytes have been established. On the other hand, in clinical situations, it has been reported that the incidence of atrial arrhythmias such as atrial fibrillation has been increasing every year, with the prediction of a persistent increase in the near future. As to the increased incidence of atrial arrhythmias, in addition to the increased population of geriatric patients, a wide variety of drug treatments may be related, as an experimental method to detect drug-induced atrial arrhythmia has not been established so far. In the present study, we characterized the atrial-like cardiomyocytes derived from human induced pluripotent stem cells and examined their potential for the evaluation of drug-induced atrial arrhythmia. Atrial-like cardiomyocytes were induced by adding retinoic acid (RA) during the process of myocardial differentiation, and their characteristics were compared to those of RA-free cardiomyocytes. Using gene expression and membrane potential analysis, it was confirmed that the cells with or without RA treatment have atrial or ventricular like cardiomyocytes, respectively. Using the ultra-rapid activating delayed rectifier potassium current (IKur) channel inhibitor, which is specific to atrial cardiomyocytes, Pulse width duration (PWD) 30cF prolongation was confirmed only in atrial-like cardiomyocytes. In addition, ventricular like cardiomyocytes exhibited an early after depolarization by treatment with rapidly activating delayed rectifier potassium current (IKr) channel inhibitor, which induces ventricular arrhythmia in clinical situations. Here, we have established a high-throughput drug evaluation system using human iPS cell-derived atrial-like cardiomyocytes. Based on the obtained data, the system might be a valuable platform to detect potential risks for drug-induced atrial arrhythmias.
Collapse
Affiliation(s)
- Yayoi Honda
- Sumitomo-Dainippon Pharma CO., Ltd., Osaka, Japan.,Bioanalysis Group, Osaka Laboratory, Technical Solution Headquarters, Sumika Chemical Analysis Service, Ltd., Osaka, Japan
| | - Jun Li
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Aya Hino
- Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Jong-Kook Lee
- Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
2
|
Honda Y. [Availability of a novel cardiotoxicity evaluation system using human induced pluripotent stem cell-derived atrial-like myocytes]. Nihon Yakurigaku Zasshi 2020; 155:303-308. [PMID: 32879170 DOI: 10.1254/fpj.20041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It is reported that the incidence of atrial arrhythmias has been increasing year by year and it might increase from now on. Although not only aging but pharmaceutical drug treatments might relate to atrial arrhythmias, experimental method to detect drug-induced atrial arrhythmias has not been established so far. Therefore, we induced differentiation of atrial-like cardiomyocytes from human induced pluripotent stem (iPS) cell, and clarified their characteristics and verified their dug responsiveness. Atrial-like cardiomyocytes were induced by adding retinoic acid (RA) during the process of myocardial differentiation, and their character was compared to RA-untreated cardiomyocytes. In gene expression and membrane potential analysis, it was confirmed that the cells with or without RA treatment have the characters of atrial or ventricular like cardiomyocytes, respectively. In addition, it was also confirmed that atrial-like cardiomyocytes induced reentry-like conduction disorder, which is atrial arrhythmias. Furthermore, as a result of examining the responsiveness of various ion channel inhibitors using these cells, the inhibition of ultra-rapid delayed rectifier potassium current (IKur) specifically existed in atrial muscle induced prolongation of PWD30cF (membrane potential duration at 30% depolarization corrected by Fridericia formula) only in atrial-like cardiomyocytes. In addition, ventricular-like cardiomyocytes alone exhibited an early after depolarization by treatment of rapid rectifier potassium current (IKr) inhibitor which induced ventricular arrhythmia in clinical situation. Based on above evidences, current evaluation systems using human iPS cell-derived atrial-like cardiomyocytes might be a valuable tool for drug-induced atrial arrhythmias.
Collapse
Affiliation(s)
- Yayoi Honda
- Sumitomo Dainippon Pharma, Co., Ltd.,Bioanalysis Group, Osaka Laboratory, Technical Solution Headquarters, Sumika Chemical Analysis Service, Ltd
| |
Collapse
|
3
|
Pekkanen-Mattila M, Häkli M, Pölönen RP, Mansikkala T, Junnila A, Talvitie E, Koivisto JT, Kellomäki M, Aalto-Setälä K. Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1805. [PMID: 31163704 PMCID: PMC6600740 DOI: 10.3390/ma12111805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to serve as a model for human cardiomyocytes. However, hiPSC-CMs are still considered immature. CMs differentiated from hiPSCs more resemble fetal than adult cardiomyocytes. Putative factors enhancing maturation include in vitro culture duration, culture surface topography, and mechanical, chemical, and electrical stimulation. Stem cell-derived cardiomyocytes are traditionally cultured on glass surfaces coated with extracellular matrix derivatives such as gelatin. hiPSC-CMs are flat and round and their sarcomeres are randomly distributed and unorganized. Morphology can be enhanced by culturing cells on surfaces providing topographical cues to the cells. In this study, a textile based-culturing method used to enhance the maturation status of hiPSC-CMs is presented. Gelatin-coated polyethylene terephthalate (PET)-based textiles were used as the culturing surface for hiPSC-CMs and the effects of the textiles on the maturation status of the hiPSC-CMs were assessed. The hiPSC-CMs were characterized by analyzing their morphology, sarcomere organization, expression of cardiac specific genes, and calcium handling. We show that the topographical cues improve the structure of the hiPSC-CMs in vitro. Human iPSC-CMs grown on PET textiles demonstrated improved structural properties such as rod-shape structure and increased sarcomere orientation.
Collapse
Affiliation(s)
- Mari Pekkanen-Mattila
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Martta Häkli
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Risto-Pekka Pölönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Tuomas Mansikkala
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Anni Junnila
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Elina Talvitie
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Janne T Koivisto
- Microelectronics Research Unit, University of Oulu, FI-90014 Oulu, Finland.
| | - Minna Kellomäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | | |
Collapse
|
4
|
Font J, Simeon M, Simard C, Allouche S, Plane AF, Ferchaud V, Brionne M, Rouet R, Nowoczyn M, Manrique A, Puddu PE, Milliez P, Alexandre J. PAR1 contribution in acute electrophysiological properties of oral anticoagulants in rabbit pulmonary vein sleeve preparations. Fundam Clin Pharmacol 2018. [PMID: 29526032 DOI: 10.1111/fcp.12365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Whether oral anticoagulants, vitamin K antagonists (VKAs), and nonvitamin K oral anticoagulant (NOACs) frequently prescribed to atrial fibrillation (AF) patients, do themselves have a pro- or anti-arrhythmic effect have never been addressed. Transmembrane action potentials were recorded in an acute rabbit model of superfused pulmonary veins (PVs) sleeves preparations using standard microelectrode technique. Fluindione 10 μm (n = 6) increased the AP (action potential) duration (APD), induced a significantly Vmax depression (from 95 ± 14 to 53 ± 5 V/s, P < 0.05), and 2 : 1 blocks during rapid atrial pacing thus evoking class I anti-arrhythmic properties, and prevented spontaneous trigger APs. Apixaban 10 μm (n = 6) increased the APD, significantly prolonged the effective refractory period (from 56.3 ± 4.2 to 72.0 ± 8.6 ms, P < 0.05), and prevented triggered APs occurrence. Fluindione and apixaban effects were suppressed with the addition of the protease-activated receptors 1 (PAR 1) agonist SFLLR-NH2 . Warfarin 10 μm (n = 6) significantly abbreviated the early refractory period (from 56.3 ± 4.2 to 45.0 ± 2.2 ms, P < 0.05) and increased triggered APs occurrence that were successfully prevented by nifedipine but not by the addition of the protease-activated receptors 1 agonist SFLLR-NH2 . In this acute rabbit PVs model, VKAs and NOACs, at physiological concentrations, exhibited very different pharmacological properties that influence PVs electrophysiology, implying PAR1, with fluindione and apixaban which exhibited more anti-arrhythmic properties, whereas warfarin exhibited more pro-arrhythmic properties.
Collapse
Affiliation(s)
- Jonaz Font
- Normandie Univ, UNICAEN, CHU Caen, Signalization, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, F-14032, France
| | - Mathilda Simeon
- Normandie Univ, UNICAEN, CHU Caen, Signalization, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, F-14032, France
| | - Christophe Simard
- Normandie Univ, UNICAEN, CHU Caen, Signalization, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, F-14032, France
| | - Stéphane Allouche
- Normandie Univ, UNICAEN, CHU Caen, Signalization, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, F-14032, France.,Department of Biochemistry, CHU de Caen, Caen, F-14032, France
| | | | | | - Marie Brionne
- Department of Hematology, CHU de Caen, Caen, F-14032, France
| | - René Rouet
- Normandie Univ, UNICAEN, CHU Caen, Signalization, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, F-14032, France
| | - Marie Nowoczyn
- Normandie Univ, UNICAEN, CHU Caen, Signalization, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, F-14032, France.,Department of Biochemistry, CHU de Caen, Caen, F-14032, France
| | - Alain Manrique
- Normandie Univ, UNICAEN, CHU Caen, Signalization, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, F-14032, France.,Department of Nuclear Medicine, CHU de Caen, Caen, F-14032, France
| | | | - Paul Milliez
- Normandie Univ, UNICAEN, CHU Caen, Signalization, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, F-14032, France.,Department of Cardiology, CHU de Caen, Caen, F-14032, France
| | - Joachim Alexandre
- Normandie Univ, UNICAEN, CHU Caen, Signalization, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, F-14032, France.,Department of Pharmacology, CHU de Caen, Caen, F-14032, France
| |
Collapse
|
5
|
Hagiwara M, Shibuta S, Takada K, Kambayashi R, Nakajo M, Aimoto M, Nagasawa Y, Takahara A. The anaesthetized rabbit with acute atrioventricular block provides a new model for detecting drug-induced Torsade de Pointes. Br J Pharmacol 2017; 174:2591-2605. [PMID: 28547743 DOI: 10.1111/bph.13870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Several rabbit proarrhythmia models have been developed using genetic or pharmacological methods to suppress the slow component of delayed rectifier K+ currents in the ventricle, leading to reduction of the repolarization reserve. Here we have characterized a novel rabbit in vivo proarrhythmia model with severe bradycardia caused by acute atrioventricular block (AVB). EXPERIMENTAL APPROACH Bradycardia was induced in isoflurane-anaesthetized rabbits by inducing AVB with catheter ablation, and the ventricle was electrically driven at 60 beats min-1 throughout the experiment except when extrasystoles appeared. We assessed the effects of two antiarrhythmics, two quinolone antibiotics and one antipsychotic drug, which were chosen as positive drugs (dofetilide, sparfloxacin and haloperidol) and negative drugs (amiodarone and moxifloxacin) for induction of Torsades de Pointes (TdP). KEY RESULTS In our model, TdP arrhythmias appeared with high reproducibility after i.v. dofetilide (10-100 μg·kg-1 ) in five out of six rabbits, sparfloxacin (30 mg·kg-1 ) in three out of six rabbits and haloperidol (0.3-3 mg·kg-1 ) in two out of six rabbits. The lethal arrhythmias repeatedly appeared and were accompanied with prolongation of the QT interval and early afterdepolarization-like phenomena. Neither amiodarone (0.3-10 mg·kg-1 , n = 6) nor moxifloxacin (3-30 mg·kg-1 , n = 6) induced such arrhythmias, even when QT intervals were prolonged. CONCLUSIONS AND IMPLICATIONS These results suggest that our model of the unremodelled and bradycardic heart of the anaesthetized rabbit is a useful test system for the detection of drug-induced TdP arrhythmias.
Collapse
Affiliation(s)
- Mihoko Hagiwara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Seiji Shibuta
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kazuhiro Takada
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Misako Nakajo
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Megumi Aimoto
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Yoshinobu Nagasawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| |
Collapse
|
6
|
Dubois VFS, Smania G, Yu H, Graf R, Chain ASY, Danhof M, Della Pasqua O. Translating QT interval prolongation from conscious dogs to humans. Br J Clin Pharmacol 2017; 83:349-362. [PMID: 27614058 PMCID: PMC5237692 DOI: 10.1111/bcp.13123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/08/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
AIM In spite of screening procedures in early drug development, uncertainty remains about the propensity of new chemical entities (NCEs) to prolong the QT/QTc interval. The evaluation of proarrhythmic activity using a comprehensive in vitro proarrhythmia assay does not fully account for pharmacokinetic-pharmacodynamic (PKPD) differences in vivo. In the present study, we evaluated the correlation between drug-specific parameters describing QT interval prolongation in dogs and in humans. METHODS Using estimates of the drug-specific parameter, data on the slopes of the PKPD relationships of nine compounds with varying QT-prolonging effects (cisapride, sotalol, moxifloxacin, carabersat, GSK945237, SB237376 and GSK618334, and two anonymized NCEs) were analysed. Mean slope estimates varied between -0.98 ms μM-1 and 6.1 ms μM-1 in dogs and -10 ms μM-1 and 90 ms μM-1 in humans, indicating a wide range of effects on the QT interval. Linear regression techniques were then applied to characterize the correlation between the parameter estimates across species. RESULTS For compounds without a mixed ion channel block, a correlation was observed between the drug-specific parameter in dogs and humans (y = -1.709 + 11.6x; R2 = 0.989). These results show that per unit concentration, the drug effect on the QT interval in humans is 11.6-fold larger than in dogs. CONCLUSIONS Together with information about the expected therapeutic exposure, the evidence of a correlation between the compound-specific parameter in dogs and in humans represents an opportunity for translating preclinical safety data before progression into the clinic. Whereas further investigation is required to establish the generalizability of our findings, this approach can be used with clinical trial simulations to predict the probability of QT prolongation in humans.
Collapse
Affiliation(s)
- Vincent F. S. Dubois
- Leiden Academic Centre for Drug Research, Division of PharmacologyLeiden UniversityLeidenThe Netherlands
- PharmacometricsGrunenthal GmbHAachenGermany
| | - Giovanni Smania
- Clinical Pharmacology Modelling & SimulationGlaxoSmithKline, Stockley ParkUxbridgeUK
| | - Huixin Yu
- Leiden Academic Centre for Drug Research, Division of PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Ramona Graf
- Clinical Pharmacology Modelling & SimulationGlaxoSmithKline, Stockley ParkUxbridgeUK
| | - Anne S. Y. Chain
- Leiden Academic Centre for Drug Research, Division of PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Meindert Danhof
- Leiden Academic Centre for Drug Research, Division of PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Oscar Della Pasqua
- Clinical Pharmacology Modelling & SimulationGlaxoSmithKline, Stockley ParkUxbridgeUK
- Clinical Pharmacology & TherapeuticsUCLLondonUK
| | | | | |
Collapse
|
7
|
Gottlieb LA, Lubberding A, Larsen AP, Thomsen MB. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2. Chronobiol Int 2016; 34:45-56. [PMID: 27736193 DOI: 10.1080/07420528.2016.1225074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2-/- mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT100 = QT/(RR/100)1/2). Moreover, QT intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QTmean-RR). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2-/- (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2-/- mice. Circadian rhythms in QT100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2-/-, respectively (p = 0.15). A diurnal rhythm in QT100 intervals was only found in WT mice. QTmean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2-/-. The amplitude of the circadian rhythm in QTmean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2-/-, respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.
Collapse
Affiliation(s)
- Lisa A Gottlieb
- a Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Anniek Lubberding
- a Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Anders Peter Larsen
- a Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Morten B Thomsen
- a Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
8
|
Dubois VFS, Casarotto E, Danhof M, Della Pasqua O. Pharmacokinetic-pharmacodynamic modelling of drug-induced QTc interval prolongation in man: prediction from in vitro human ether-à-go-go-related gene binding and functional inhibition assays and conscious dog studies. Br J Pharmacol 2016; 173:2819-32. [PMID: 27427789 DOI: 10.1111/bph.13558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Functional measures of human ether-à-go-go-related gene (hERG; Kv 11.1) channel inhibition have been prioritized as an in vitro screening tool for candidate molecules. However, it is unclear how these results can be translated to humans. Here, we explore how data on drug binding and functional inhibition in vitro relate to QT prolongation in vivo. Using cisapride, sotalol and moxifloxacin as paradigm compounds, we assessed the relationship between drug concentrations, binding, functional measures and in vivo effects in preclinical species and humans. EXPERIMENTAL APPROACH Pharmacokinetic-pharmacodynamic modelling was used to characterize the drug effects in hERG functional patch clamp, hERG radio-labelled dofetilide displacement experiments and QT interval in conscious dogs. Data were analysed in parallel to identify potential correlations between pharmacological activity in vitro and in vivo. KEY RESULTS An Emax model could not be used due to large variability in the functional patch clamp assay. Dofetilide displacement revealed that binding curves are unrelated to the in vivo potency estimates for QTc prolongation in dogs and humans. Mean in vitro potency estimates ranged from 99.9 nM for cisapride to 1030 μM for moxifloxacin. CONCLUSIONS AND IMPLICATIONS The lack of standardized protocols for in vitro assays leads to significant differences in experimental conditions, making the assessment of in vitro-in vivo correlations unreliable. Identification of an accurate safety window during the screening of candidate molecules requires a quantitative framework that disentangles system- from drug-specific properties under physiological conditions, enabling translation of the results to humans. Similar considerations will be relevant for the comprehensive in vitro pro-arrhythmia assay initiative.
Collapse
Affiliation(s)
- V F S Dubois
- Leiden Academic Centre for Drug Research, Division of Pharmacology, Leiden University, Leiden, The Netherlands
| | - E Casarotto
- Leiden Academic Centre for Drug Research, Division of Pharmacology, Leiden University, Leiden, The Netherlands
| | - M Danhof
- Leiden Academic Centre for Drug Research, Division of Pharmacology, Leiden University, Leiden, The Netherlands
| | - O Della Pasqua
- Leiden Academic Centre for Drug Research, Division of Pharmacology, Leiden University, Leiden, The Netherlands. .,Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Uxbridge, UK. .,Clinical Pharmacology and Therapeutics, School of Life and Medical Sciences, University College London, London, UK.
| |
Collapse
|
9
|
Salem JE, Alexandre J, Bachelot A, Funck-Brentano C. Influence of steroid hormones on ventricular repolarization. Pharmacol Ther 2016; 167:38-47. [PMID: 27452340 DOI: 10.1016/j.pharmthera.2016.07.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
QT interval prolongation, corrected for heart rate (QTc), either spontaneous or drug-induced, is associated with an increased risk of torsades de pointes and sudden death. Women have longer QTc than men and are at higher risk of torsades de pointes, particularly during post-partum and the follicular phase. Men with peripheral hypogonadism have longer QTc than healthy controls. The role of the main sex steroid hormones has been extensively studied with inconsistent findings. Overall, estradiol is considered to promote QTc lengthening while progesterone and testosterone shorten QTc. New findings suggest more complex regulation of QTc by sex steroid hormones involving gonadotropins (i.e. follicle-stimulating hormone), the relative concentrations of sex steroid hormones (which depends on gender, i.e., progesterone/estradiol ratio in women). Aldosterone, another structurally related steroid hormone, can also prolong ventricular repolarization in both sex. Better understanding of pathophysiological hormonal processes which may lead to increased susceptibility of women (and possibly hypogonadic men) to drug-induced arrhythmia may foster preventive treatments (e.g. progesterone in women). Exogenous hormonal intake might offer new therapeutic opportunities or, alternatively, increase the risk of torsades de pointes. Some exogenous sex steroids may also have paradoxical effects on ventricular repolarization. Lastly, variations of QTc in women linked to the menstrual cycle and sex hormone fluctuations are generally ignored in regulatory thorough QT studies. Investigators and regulatory agencies promoting inclusion of women in thorough QT studies should be aware of this source of variability especially when studying drugs over several days of administration.
Collapse
Affiliation(s)
- Joe-Elie Salem
- INSERM, CIC-1421 and UMR ICAN 1166, France; AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology and CIC-1421, France; Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, France; Institute of Cardiometabolism and Nutrition (ICAN), F-75013 Paris, France
| | - Joachim Alexandre
- Normandie Université, France; EA 4650, Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-reperfusion Myocardique, France; Pharmacology Department, CHU Caen, F-14032 Caen, France
| | - Anne Bachelot
- AP-HP, Pitié-Salpêtrière Hospital, IE3M, Department of Endocrinology and Reproductive Medicine, and Centre de Référence des Maladies Endocriniennes Rares de la croissance et Centre des Pathologies gynécologiques Rares, and CIC-1421, F-75013 Paris, France
| | - Christian Funck-Brentano
- INSERM, CIC-1421 and UMR ICAN 1166, France; AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology and CIC-1421, France; Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, France; Institute of Cardiometabolism and Nutrition (ICAN), F-75013 Paris, France.
| |
Collapse
|
10
|
Abstract
A prolonged QT interval is an important risk factor for ventricular arrhythmias and sudden cardiac death. QT prolongation can be caused by drugs. There are multiple risk factors for drug-induced QT prolongation, including genetic variation. QT prolongation is one of the most common reasons for withdrawal of drugs from the market, despite the fact that these drugs may be beneficial for certain patients and not harmful in every patient. Identifying genetic variants associated with drug-induced QT prolongation might add to tailored pharmacotherapy and prevent beneficial drugs from being withdrawn unnecessarily. In this review, our objective was to provide an overview of the genetic background of drug-induced QT prolongation, distinguishing pharmacokinetic and pharmacodynamic pathways. Pharmacokinetic-mediated genetic susceptibility is mainly characterized by variation in genes encoding drug-metabolizing cytochrome P450 enzymes or drug transporters. For instance, the P-glycoprotein drug transporter plays a role in the pharmacokinetic susceptibility of drug-induced QT prolongation. The pharmacodynamic component of genetic susceptibility is mainly characterized by genes known to be associated with QT interval duration in the general population and genes in which the causal mutations of congenital long QT syndromes are located. Ethnicity influences susceptibility to drug-induced QT interval prolongation, with Caucasians being more sensitive than other ethnicities. Research on the association between pharmacogenetic interactions and clinical endpoints such as sudden cardiac death is still limited. Future studies in this area could enable us to determine the risk of arrhythmias more adequately in clinical practice.
Collapse
|
11
|
Alexandre J, Hof T, Puddu PE, Rouet R, Guinamard R, Manrique A, Beygui F, Sallé L, Milliez P. Rapid and MR-Independent IK1 Activation by Aldosterone during Ischemia-Reperfusion. PLoS One 2015. [PMID: 26222262 PMCID: PMC4519293 DOI: 10.1371/journal.pone.0132592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In ST elevation myocardial infarction (STEMI) context, clinical studies have shown the deleterious effect of high aldosterone levels on ventricular arrhythmia occurrence and cardiac mortality. Previous in vitro reports showed that during ischemia-reperfusion, aldosterone modulates K+ currents involved in the holding of the resting membrane potential (RMP). The aim of this study was to assess the electrophysiological impact of aldosterone on IK1 current during myocardial ischemia-reperfusion. We used an in vitro model of “border zone” using right rabbit ventricle and standard microelectrode technique followed by cell-attached recordings from freshly isolated rabbit ventricular cardiomyocytes. In microelectrode experiments, aldosterone (10 and 100 nmol/L, n=7 respectively) increased the action potential duration (APD) dispersion at 90% between ischemic and normoxic zones (from 95±4 ms to 116±6 ms and 127±5 ms respectively, P<0.05) and reperfusion-induced sustained premature ventricular contractions occurrence (from 2/12 to 5/7 preparations, P<0.05). Conversely, potassium canrenoate 100 nmol/L and RU 28318 1 μmol/l alone did not affect AP parameters and premature ventricular contractions occurrence (except Vmax which was decreased by potassium canrenoate during simulated-ischemia). Furthermore, aldosterone induced a RMP hyperpolarization, evoking an implication of a K+ current involved in the holding of the RMP. Cell-attached recordings showed that aldosterone 10 nmol/L quickly activated (within 6.2±0.4 min) a 30 pS K+-selective current, inward rectifier, with pharmacological and biophysical properties consistent with the IK1 current (NPo =1.9±0.4 in control vs NPo=3.0±0.4, n=10, P<0.05). These deleterious effects persisted in presence of RU 28318, a specific MR antagonist, and were successfully prevented by potassium canrenoate, a non specific MR antagonist, in both microelectrode and patch-clamp recordings, thus indicating a MR-independent IK1 activation. In this ischemia-reperfusion context, aldosterone induced rapid and MR-independent deleterious effects including an arrhythmia substrate (increased APD90 dispersion) and triggered activities (increased premature ventricular contractions occurrence on reperfusion) possibly related to direct IK1 activation.
Collapse
Affiliation(s)
- Joachim Alexandre
- CHU de Caen, Department of Cardiology, Caen, France
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
| | - Thomas Hof
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
| | | | - René Rouet
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Romain Guinamard
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Alain Manrique
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Farzin Beygui
- CHU de Caen, Department of Cardiology, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Laurent Sallé
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Paul Milliez
- CHU de Caen, Department of Cardiology, Caen, France
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
- * E-mail:
| |
Collapse
|
12
|
Husti Z, Tábori K, Juhász V, Hornyik T, Varró A, Baczkó I. Combined inhibition of key potassium currents has different effects on cardiac repolarization reserve and arrhythmia susceptibility in dogs and rabbits. Can J Physiol Pharmacol 2015; 93:535-44. [DOI: 10.1139/cjpp-2014-0514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A reliable assessment of the pro-arrhythmic potential for drugs in the development phase remains elusive. Rabbits and dogs are commonly used to create models of pro-arrhythmia, but the differences between them with respect to repolarizing potassium currents are poorly understood. We investigated the incidence of drug-induced torsades de pointes (TdP) and measured conventional ECG parameters and the short-term variability of the QT interval (STVQT) following combined pharmacological inhibition of IK1+IKs and IK1+IKr in conscious dogs and anesthetized rabbits. A high incidence of TdP was observed following the combined inhibition of IK1+IKs in dogs (67% vs. 14% in rabbits). Rabbits exhibited higher TdP incidence after inhibition of IK1+IKr (72% vs. 14% in dogs). Increased TdP incidence was associated with significantly larger STVQT in both models. The relatively different roles of IK1 and IKs in dog and rabbit repolarization reserve should be taken into account when extrapolating the results from animal models of pro-arrhythmia to humans. A stronger repolarization reserve in dogs (likely due to stronger IK1 and IKs), and the more human-like susceptibility to arrhythmia of rabbits argues for the preferred use of rabbits in the evaluation of adverse pro-arrhythmic effects.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - Katalin Tábori
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - Viktor Juhász
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| |
Collapse
|
13
|
Assessment of anti-arrhythmic activity of antipsychotic drugs in an animal model: Influence of non-cardiac α1-adrenergic receptors. Eur J Pharmacol 2015; 748:10-7. [DOI: 10.1016/j.ejphar.2014.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 01/09/2023]
|
14
|
Khan JM, Lyon AR, Harding SE. The case for induced pluripotent stem cell-derived cardiomyocytes in pharmacological screening. Br J Pharmacol 2014; 169:304-17. [PMID: 22845396 DOI: 10.1111/j.1476-5381.2012.02118.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The current drug screening models are deficient, particularly in detecting cardiac side effects. Human stem cell-derived cardiomyocytes could aid both early cardiotoxicity detection and novel drug discovery. Work over the last decade has generated human embryonic stem cells as potentially accurate sources of human cardiomyocytes, but ethical constraints and poor efficacy in establishing cell lines limit their use. Induced pluripotent stem cells do not require the use of human embryos and have the added advantage of producing patient-specific cardiomyocytes, allowing both generic and disease- and patient-specific pharmacological screening, as well as drug development through disease modelling. A critical question is whether sufficient standards have been achieved in the reliable and reproducible generation of 'adult-like' cardiomyocytes from human fibroblast tissue to progress from validation to safe use in practice and drug discovery. This review will highlight the need for a new experimental system, assess the validity of human induced pluripotent stem cell-derived cardiomyocytes and explore what the future may hold for their use in pharmacology.
Collapse
Affiliation(s)
- Jaffar M Khan
- Royal Brompton and Harefield NHS Trust, London, UK National Heart and Lung Institute, Imperial College, London, UK
| | | | | |
Collapse
|
15
|
VARKEVISSER ROSANNE, VOS MARCA, BEEKMAN JETD, TIELAND RALPHG, VAN DER HEYDEN MARCELA. AV-Block and Conduction Slowing Prevail Over TdP Arrhythmias in the Methoxamine-Sensitized Pro-Arrhythmic Rabbit Model. J Cardiovasc Electrophysiol 2014; 26:82-9. [DOI: 10.1111/jce.12533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/27/2022]
Affiliation(s)
- ROSANNE VARKEVISSER
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| | - MARC A. VOS
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| | - JET D. BEEKMAN
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| | - RALPH G. TIELAND
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| | - MARCEL A. VAN DER HEYDEN
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
16
|
Effects of proarrhythmic drugs on relaxation time and beating pattern in rat engineered heart tissue. Basic Res Cardiol 2014; 109:436. [PMID: 25209140 PMCID: PMC4160570 DOI: 10.1007/s00395-014-0436-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/24/2022]
Abstract
The assessment of proarrhythmic risks of drugs remains challenging. To evaluate
the suitability of rat engineered heart tissue (EHT) for detecting proarrhythmic effects. We monitored drug effects on spontaneous contractile activity and, in selected cases, on action potentials (sharp microelectrode) and Ca2+ transients (Fura-2) and contraction under electrical pacing. The Ito-blocker inhibitor 4-aminopyridine increased action potential duration and T2 and caused aftercontractions, which were abolished by inhibitors of ryanodine receptors (RyR2; JTV-519) or sodium calcium exchanger (NCX; SEA0400). 77 Drugs were then tested at 1-10-100× free therapeutic plasma concentrations (FTPC): Inhibitors of IKr, IKs, Ito, antiarrhythmics (8), drugs withdrawn from market for torsades des pointes arrhythmias (TdP, 5), drugs with measurable (7) or isolated TdP incidence (13), drugs considered safe (14), 28 new chemical entities (NCE). Inhibitors of IKr or IKs had no effect alone, but substantially prolonged relaxation time (T2) when combined at high concentration. 15/33 drugs associated with TdP and 6/14 drugs considered non-torsadogenic (cibenzoline, diltiazem, ebastine, ketoconazole, moxifloxacin, and phenytoin) induced concentration-dependent T2 prolongations (10-100× FTPC). Bepridil, desipramine, imipramine, thioridazine, and erythromycin induced irregular beating. Three NCE prolonged T2, one reduced force. Drugs inhibiting repolarization prolong relaxation in rat EHTs and cause aftercontractions involving RyR2 and NCX. Insensitivity to IKr inhibitors makes rat EHTs unsuitable as general proarrhythmia screen, but favors detection of effects on Ito, IKs + Ito or IKs + IKr. Screening a large panel of drugs suggests that effects on these currents, in addition to IKr, are more common than anticipated.
Collapse
|
17
|
Osadchii OE. Impact of hypokalemia on electromechanical window, excitation wavelength and repolarization gradients in guinea-pig and rabbit hearts. PLoS One 2014; 9:e105599. [PMID: 25141124 PMCID: PMC4139393 DOI: 10.1371/journal.pone.0105599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/25/2014] [Indexed: 01/15/2023] Open
Abstract
Normal hearts exhibit a positive time difference between the end of ventricular contraction and the end of QT interval, which is referred to as the electromechanical (EM) window. Drug-induced prolongation of repolarization may lead to the negative EM window, which was proposed to be a novel proarrhythmic marker. This study examined whether abnormal changes in the EM window may account for arrhythmogenic effects produced by hypokalemia. Left ventricular pressure, electrocardiogram, and epicardial monophasic action potentials were recorded in perfused hearts from guinea-pig and rabbit. Hypokalemia (2.5 mM K(+)) was found to prolong repolarization, reduce the EM window, and promote tachyarrhythmia. Nevertheless, during both regular pacing and extrasystolic excitation, the increased QT interval invariably remained shorter than the duration of mechanical systole, thus yielding positive EM window values. Hypokalemia-induced arrhythmogenicity was associated with slowed ventricular conduction, and shortened effective refractory periods, which translated to a reduced excitation wavelength index. Hypokalemia also evoked non-uniform prolongation of action potential duration in distinct epicardial regions, which resulted in increased spatial variability in the repolarization time. These findings suggest that arrhythmogenic effects of hypokalemia are not accounted for by the negative EM window, and are rather attributed to abnormal changes in ventricular conduction times, refractoriness, excitation wavelength, and spatial repolarization gradients.
Collapse
Affiliation(s)
- Oleg E. Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
18
|
Niemeijer MN, van den Berg ME, Eijgelsheim M, van Herpen G, Stricker BH, Kors JA, Rijnbeek PR. Short-term QT variability markers for the prediction of ventricular arrhythmias and sudden cardiac death: a systematic review. Heart 2014; 100:1831-6. [PMID: 25092875 DOI: 10.1136/heartjnl-2014-305671] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sudden cardiac death (SCD) is a major health burden and is primarily caused by ventricular arrhythmias. Currently, the most well-known marker for the risk of ventricular arrhythmias is QT/QTc prolongation. Animal studies indicate that QT variability might be a better indicator. Our objective was to give an overview of the literature on QT variability in humans, therefore we performed a free-text search in PubMed and Embase from inception through February 2013. We identified nine QT variability markers in 109 studies reporting on QT variability markers, measured on the surface ECG. QT variability can be distinguished using two characteristics: heart rate normalisation and whether QT interval is measured on consecutive beats. Most study populations were small (median 48 subjects, range 1-805) and different methods, time intervals and leads for measurement were used. QT variability markers were determinants for the risk of ventricular arrhythmias, (sudden) cardiac death and total mortality. Few studies compared the predictive value of QT variability with that of QT/QTc prolongation. A study comparing all different QT variability markers is lacking. In conclusion, QT variability markers are potential determinants of ventricular arrhythmias and cardiac mortality. However, it is unclear which marker and methodology are clinically most useful as well as what reference values are reliable. More studies on larger datasets are needed to find the most accurate marker for the prediction of arrhythmias and SCD to assess its value in addition to QT/QTc duration and its role in drug-induced arrhythmia and sudden death.
Collapse
Affiliation(s)
- Maartje N Niemeijer
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marten E van den Berg
- Department of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mark Eijgelsheim
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard van Herpen
- Department of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands Inspectorate of Health Care, The Hague, The Netherlands
| | - Jan A Kors
- Department of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter R Rijnbeek
- Department of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Tereshchenko LG, Berger RD. Towards a better understanding of QT interval variability. Ther Adv Drug Saf 2014; 2:245-51. [PMID: 25083216 DOI: 10.1177/2042098611421209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) Guideline E14 recommends 'Thorough QT Study' as a standard assessment of drug-induced QT interval prolongation. At the same time, the value of drug-induced QTc prolongation as a surrogate marker for risk of life-threatening polymorphic ventricular tachycardia known as torsades des pointes remains controversial. Beat-to-beat variability of QT interval was recently proposed as an alternative metric. The following review addresses mechanisms of beat-to-beat QT variability, methods of QT interval variability measurements, and its prognostic value in clinical studies.
Collapse
Affiliation(s)
- Larisa G Tereshchenko
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald D Berger
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Carnegie 592, 600 N. Wolfe St., Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Yamazaki K, Hihara T, Kato H, Fukushima T, Fukushima K, Taniguchi T, Yoshinaga T, Miyamoto N, Ito M, Sawada K. Beat-to-Beat Variability in Field Potential Duration in Human Embryonic Stem Cell-Derived Cardiomyocyte Clusters for Assessment of Arrhythmogenic Risk, and a Case Study of Its Application. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/pp.2014.51017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Dronedarone Versus Amiodarone in Preventing Premature Ventricular Contractions in an In Vitro Model of “Border Zone”. J Cardiovasc Pharmacol 2014; 63:49-57. [DOI: 10.1097/fjc.0000000000000023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
The Lambeth Conventions (II): Guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 2013; 139:213-48. [DOI: 10.1016/j.pharmthera.2013.04.008] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/17/2022]
|
23
|
Jonsson MK, van Veen TA, Goumans MJ, Vos MA, Duker G, Sartipy P. Improvement of cardiac efficacy and safety models in drug discovery by the use of stem cell-derived cardiomyocytes. Expert Opin Drug Discov 2013; 4:357-72. [PMID: 23485039 DOI: 10.1517/17460440902794912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The pharmaceutical industry suffers from high attrition rates during late phases of drug development. Improved models for early evaluation of drug efficacy and safety are needed to address this problem. Recent developments have illustrated that human stem cell-derived cardiomyocytes are attractive for using as a model system for different cardiac diseases and as a model for screening, safety pharmacology and toxicology. OBJECTIVE In this review, we discuss contemporary drug discovery models and their characteristics for cardiac efficacy testing and safety assessment. Additionally, we evaluate various sources of stem cells and how these cells could potentially improve early screening and safety models. CONCLUSION We conclude that human stem cells offer a source of physiologically relevant cells that show great potential as a future tool in cardiac drug discovery. However, some technical challenges related to cell differentiation and production and also to validation of improved platforms remain and must be overcome before successful application can become a reality.
Collapse
Affiliation(s)
- Malin Kb Jonsson
- University Medical Center Utrecht, Division Heart & Lungs, Department of Medical Physiology, Yalelaan 50, 3584 CM Utrecht, The Netherlands +46 31 7065571 ; +46 31 7763766 ;
| | | | | | | | | | | |
Collapse
|
24
|
A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 2012; 6:22-30. [PMID: 23229562 DOI: 10.1007/s12265-012-9423-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 01/05/2023]
Abstract
Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.
Collapse
|
25
|
Beat-to-beat variability of repolarization as a new biomarker for proarrhythmia in vivo. Heart Rhythm 2012; 9:1718-26. [DOI: 10.1016/j.hrthm.2012.05.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Indexed: 11/20/2022]
|
26
|
Stams TRG, Bourgonje VJA, Vos MA, van der Heyden MAG. Verapamil as an antiarrhythmic agent in congestive heart failure: hopping from rabbit to human? Br J Pharmacol 2012; 166:554-6. [PMID: 22188337 DOI: 10.1111/j.1476-5381.2011.01818.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Repolarization-dependent cardiac arrhythmias only arise in hearts facing multiple 'challenges' affecting its so-called repolarization reserve. Congestive heart failure (CHF) is one such challenge frequently observed in humans and is accompanied by altered calcium handling within the contractile heart cell. This raises the question as to whether or not the well-known calcium channel antagonist verapamil acts as an antiarrhythmic drug in this setting, as seen in arrhythmia models without CHF. According to the study of Milberg et al. in this issue of BJP, the answer is yes. The results of this study, using a rabbit CHF model, raise important questions. First, given that the model combines CHF with a number of other interventions that predispose towards arrhythmia, will similar conclusions be reached in a setting where CHF is a more prominent proarrhythmic challenge; second, what is the extent to which other effects of calcium channel block would limit the clinical viability of this pharmacological approach in CHF? In vivo studies in large animal CHF models are now required to further explore this interesting, but complex, approach to the treatment of arrhythmia. LINKED ARTICLE This article is a commentary on Milberg et al., pp. 557-568 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2011.01721.x.
Collapse
Affiliation(s)
- Thom R G Stams
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
27
|
Dennis AT, Wang L, Wan H, Nassal D, Deschenes I, Ficker E. Molecular determinants of pentamidine-induced hERG trafficking inhibition. Mol Pharmacol 2012; 81:198-209. [PMID: 22046004 PMCID: PMC3263949 DOI: 10.1124/mol.111.075135] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/01/2011] [Indexed: 01/09/2023] Open
Abstract
Pentamidine is an antiprotozoal compound that clinically causes acquired long QT syndrome (acLQTS), which is associated with prolonged QT intervals, tachycardias, and sudden cardiac arrest. Pentamidine delays terminal repolarization in human heart by acutely blocking cardiac inward rectifier currents. At the same time, pentamidine reduces surface expression of the cardiac potassium channel I(Kr)/human ether à-go-go-related gene (hERG). This is unusual in that acLQTS is caused most often by direct block of the cardiac potassium current I(Kr)/hERG. The present study was designed to provide a more complete picture of how hERG surface expression is disrupted by pentamidine at the cellular and molecular levels. Using biochemical and electrophysiological methods, we found that pentamidine exclusively inhibits hERG export from the endoplasmic reticulum to the cell surface in a heterologous expression system as well as in cardiomyocytes. hERG trafficking inhibition could be rescued in the presence of the pharmacological chaperone astemizole. We used rescue experiments in combination with an extensive mutational analysis to locate an interaction site for pentamidine at phenylalanine 656, a crucial residue in the canonical drug binding site of terminally folded hERG. Our data suggest that pentamidine binding to a folding intermediate of hERG arrests channel maturation in a conformational state that cannot be exported from the endoplasmic reticulum. We propose that pentamidine is the founding member of a novel pharmacological entity whose members act as small molecule antichaperones.
Collapse
Affiliation(s)
- Adrienne T Dennis
- Rammelkamp Center for Education and Research, MetroHealth Campus, Cleveland, OH 44109, USA
| | | | | | | | | | | |
Collapse
|
28
|
Houtman MJC, Takanari H, Kok BGJM, van Eck M, Montagne DR, Vos MA, de Boer TP, van der Heyden MAG. Experimental Mapping of the Canine KCNJ2 and KCNJ12 Gene Structures and Functional Analysis of the Canine K(IR)2.2 ion Channel. Front Physiol 2012; 3:9. [PMID: 22363290 PMCID: PMC3277267 DOI: 10.3389/fphys.2012.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/12/2012] [Indexed: 12/18/2022] Open
Abstract
For many model organisms traditionally in use for cardiac electrophysiological studies, characterization of ion channel genes is lacking. We focused here on two genes encoding the inward rectifier current, KCNJ2 and KCNJ12, in the dog heart. A combination of RT-PCR, 5′-RACE, and 3′-RACE demonstrated the status of KCNJ2 as a two exon gene. The complete open reading frame (ORF) was located on the second exon. One transcription initiation site was mapped. Four differential transcription termination sites were found downstream of two consensus polyadenylation signals. The canine KCNJ12 gene was found to consist of three exons, with its ORF located on the third exon. One transcription initiation and one termination site were found. No alternative splicing was observed in right ventricle or brain cortex. The gene structure of canine KCNJ2 and KCNJ12 was conserved amongst other vertebrates, while current GenBank gene annotation was determined as incomplete. In silico translation of KCN12 revealed a non-conserved glycine rich stretch located near the carboxy-terminus of the KIR2.2 protein. However, no differences were observed when comparing dog with human KIR2.2 protein upon ectopic expression in COS-7 or HEK293 cells with respect to subcellular localization or electrophysiological properties.
Collapse
Affiliation(s)
- Marien J C Houtman
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Johnson DM, Hussein L, Spätjens RL, Valentin J, Volders PG, Abi‐Gerges N. Measurement of Action Potential Generation in Isolated Canine Left Ventricular Midmyocardial Myocytes. ACTA ACUST UNITED AC 2011; Chapter 10:Unit 10.14.1-23. [DOI: 10.1002/0471141755.ph1014s55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel M. Johnson
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre Maastricht The Netherlands
| | - Leyla Hussein
- Safety Assessment UK, AstraZeneca R&D, Macclesfield Cheshire United Kingdom
| | - Roel L.H.M.G. Spätjens
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre Maastricht The Netherlands
| | | | - Paul G.A. Volders
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre Maastricht The Netherlands
| | - Najah Abi‐Gerges
- Safety Assessment UK, AstraZeneca R&D, Macclesfield Cheshire United Kingdom
| |
Collapse
|
30
|
Abrahamsson C, Dota C, Skallefell B, Carlsson L, Halawani D, Frison L, Berggren A, Edvardsson N, Duker G. DeltaT50--a new method to assess temporal ventricular repolarization variability. J Electrocardiol 2011; 44:477.e1-9. [PMID: 21704223 DOI: 10.1016/j.jelectrocard.2011.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND Increased beat-to-beat variability in cardiac repolarization time is a tentative risk marker of drug-induced torsades de pointes. We developed a new, automatic method based on the temporal variability of the T-wave down slope to assess this variability. METHOD AND RESULTS Leads V(1) to V(6) of resting electrocardiograms were recorded in 42 healthy subjects (18-68 years, 22 men). The temporal variability at 50% of the T-wave down slope, deltaT50 (1.5 ± 0.41 milliseconds; range, 0.86-2.66 milliseconds), was measured with an accuracy of 1 millisecond on at least 9 pairs of electrocardiogram complexes with a signal-to-noise ratio more than 10 and changes in the R-R interval less than 150 milliseconds. The correlation between repeated measurements of deltaT50 was high. DeltaT50 was measured without corrections for age, sex, heart rate, T-wave amplitude, signal-to-noise ratio, R-R variability, and QTcF because none of these factors explained more than 4% of the within-subject deltaT50 variability. CONCLUSION The beat-to-beat repolarization variability was measured with high fidelity with the deltaT50 method and was a robust measure in healthy volunteers.
Collapse
Affiliation(s)
- Christina Abrahamsson
- AstraZeneca R&D, Mölndal and Sahlgrenska Academy at Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Supplemental Studies for Cardiovascular Risk Assessment in Safety Pharmacology: A Critical Overview. Cardiovasc Toxicol 2011; 11:285-307. [DOI: 10.1007/s12012-011-9133-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Puddu PE, Sallé L, Gérard JL, Rouet R, Ducroq J. IKs blockade in border zone arrhythmias from guinea-pig ventricular myocardium submitted to simulated ischemia and reperfusion. Fundam Clin Pharmacol 2011; 26:445-53. [DOI: 10.1111/j.1472-8206.2011.00970.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Jie X, Rodriguez B, Pueyo E. A new ECG biomarker for drug toxicity: a combined signal processing and computational modeling study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2010:2565-8. [PMID: 21096447 DOI: 10.1109/iembs.2010.5626864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
QT prolongation is the only clinically proven, yet insufficient, electrocardiogram (ECG) biomarker for drug-induced cardiac toxicity. The goal of this study is to evaluate whether JT area, i.e., total area of the T-wave, can serve as an ECG biomarker for drug-induced cardiac toxicity using both signal processing and computational modeling approaches. An ECG dataset that contained recordings from patients under control and sotalol condition was analyzed. In order to relate sotalol-induced ECG changes to its effect on ion channel level, i.e., blockade of the rapid component of the delayed rectifier potassium channel (I(Kr)), varied degrees of I(Kr) blockade were simulated in a slab of ventricular tissue. The mean JT area increased by 36.5% following the administration of sotalol in patients. Simulations in the slab tissue showed that sotalol increased action potential duration preferentially in the midmyocardium, which led to increased transmural dispersion of repolarization and JT area. In conclusion, JT area reflects the transmural dispersion of repolarization and may be a potentially useful surrogate/supplemental ECG biomarker to assess drug safety.
Collapse
Affiliation(s)
- Xiao Jie
- Computing Laboratory, Oxford University, OX1 3QD, UK.
| | | | | |
Collapse
|
34
|
Puddu PE, Legrand JC, Sallé L, Rouet R, Ducroq J. IKr vs. IKs blockade and arrhythmogenicity in normoxic rabbit Purkinje fibers: does it really make a difference? Fundam Clin Pharmacol 2011; 25:304-12. [DOI: 10.1111/j.1472-8206.2010.00920.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Sugiyama A, Nakamura Y, Akie Y, Saito H, Izumi Y, Yamazaki H, Kaneko N, Itoh K. Microminipig, a Non-rodent Experimental Animal Optimized for Life Science Research: In Vivo Proarrhythmia Models of Drug-Induced Long QT Syndrome: Development of Chronic Atrioventricular Block Model of Microminipig. J Pharmacol Sci 2011; 115:122-126. [DOI: 10.1254/jphs.10r21fm] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022] Open
|
36
|
Oros A, Houtman MJ, Neco P, Gomez AM, Rajamani S, Oosterhoff P, Attevelt NJ, Beekman JD, van der Heyden MAG, Ver Donck L, Belardinelli L, Richard S, Antoons G, Vos MA. Robust anti-arrhythmic efficacy of verapamil and flunarizine against dofetilide-induced TdP arrhythmias is based upon a shared and a different mode of action. Br J Pharmacol 2010; 161:162-75. [PMID: 20718748 DOI: 10.1111/j.1476-5381.2010.00883.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The high predisposition to Torsade de Pointes (TdP) in dogs with chronic AV-block (CAVB) is well documented. The anti-arrhythmic efficacy and mode of action of Ca(2+) channel antagonists, flunarizine and verapamil against TdP were investigated. EXPERIMENTAL APPROACH Mongrel dogs with CAVB were selected based on the inducibility of TdP with dofetilide. The effects of flunarizine and verapamil were assessed after TdP and in different experiments to prevent dofetilide-induced TdP. Electrocardiogram and ventricular monophasic action potentials were recorded. Electrophysiological parameters and short-term variability of repolarization (STV) were determined. In vitro, flunarizine and verapamil were added to determine their effect on (i) dofetilide-induced early after depolarizations (EADs) in canine ventricular myocytes (VM); (ii) diastolic Ca(2+) sparks in RyR2(R4496+/+) mouse myocytes; and (iii) peak and late I(Na) in SCN5A-HEK 293 cells. KEY RESULTS Dofetilide increased STV prior to TdP and in VM prior to EADs. Both flunarizine and verapamil completely suppressed TdP and reversed STV to baseline values. Complete prevention of TdP was achieved with both drugs, accompanied by the prevention of an increase in STV. Suppression of EADs was confirmed after flunarizine. Only flunarizine blocked late I(Na). Ca(2+) sparks were reduced with verapamil. CONCLUSIONS AND IMPLICATIONS Robust anti-arrhythmic efficacy was seen with both Ca(2+) channel antagonists. Their divergent electrophysiological actions may be related to different additional effects of the two drugs.
Collapse
Affiliation(s)
- A Oros
- Department of Medical Physiology, Division Heart & Lungs, UMC Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Puddu PE, Rouet R, Morel M. [How to measure high V(max) values by systems aimed at action potential recording?]. Therapie 2010; 65:491-8. [PMID: 21144485 DOI: 10.2515/therapie/2010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
Abstract
This investigation was aimed at increasing both accuracy and performance of systems used to obtain and measure V(max) (dV/dt(max)), an important yet underevaluated physiological parameter. A method is presented to correct measured V(max) (V(mes)) based on an algorythm adapted to 2 tested systems: IOX and DataPac. We also investigated 89 rabbit Purkinje fibres (before and 30 min following drugs effective on ventricular repolarization) to derive experimental electrophysiological correlations. In fact, no method may be reliable without knowing its accuracy over a large scale of representative physiological values. This is why it is essential to estimate accuracy, precision and fidelity of systems aimed at action potential recording before pharmacological or pathophysiological investigations are performed, even more if therapeutical consequences might ensue. A formula is presented to obtain real V(max), based on V(mes) [V(max)=V(mes)/1 - (tau.V(mes)/APA)(2.p)], where tau=49.64 µs, p=0.72 and APA=action potential amplitude. This formula is reliable up to V(max) values of 1000 V/s which may be seen in rabbit Purkinje fibres, a classical model for in vitro studies. Using this formula may have practical implications in cellular electrophysiology which may impact on safety pharmacology and therapeutics.
Collapse
Affiliation(s)
- Paolo-Emilio Puddu
- Département du Cœur et Gros Vaisseaux « Attilio Reale », Unité Complexe de Biotechnologies Appliquées à la Cardiologie (BMC09), Université de Rome « La Sapienza », Rome, Italie.
| | | | | |
Collapse
|
38
|
Panyasing Y, Kijtawornrat A, del Rio C, Carnes C, Hamlin RL. Uni- or bi-ventricular hypertrophy and susceptibility to drug-induced torsades de pointes. J Pharmacol Toxicol Methods 2010; 62:148-56. [DOI: 10.1016/j.vascn.2010.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 04/16/2010] [Indexed: 11/28/2022]
|
39
|
Corrias A, Jie X, Romero L, Bishop MJ, Bernabeu M, Pueyo E, Rodriguez B. Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:3001-25. [PMID: 20478918 PMCID: PMC2944395 DOI: 10.1098/rsta.2010.0083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this paper, we illustrate how advanced computational modelling and simulation can be used to investigate drug-induced effects on cardiac electrophysiology and on specific biomarkers of pro-arrhythmic risk. To do so, we first perform a thorough literature review of proposed arrhythmic risk biomarkers from the ionic to the electrocardiogram levels. The review highlights the variety of proposed biomarkers, the complexity of the mechanisms of drug-induced pro-arrhythmia and the existence of significant animal species differences in drug-induced effects on cardiac electrophysiology. Predicting drug-induced pro-arrhythmic risk solely using experiments is challenging both preclinically and clinically, as attested by the rise in the cost of releasing new compounds to the market. Computational modelling and simulation has significantly contributed to the understanding of cardiac electrophysiology and arrhythmias over the last 40 years. In the second part of this paper, we illustrate how state-of-the-art open source computational modelling and simulation tools can be used to simulate multi-scale effects of drug-induced ion channel block in ventricular electrophysiology at the cellular, tissue and whole ventricular levels for different animal species. We believe that the use of computational modelling and simulation in combination with experimental techniques could be a powerful tool for the assessment of drug safety pharmacology.
Collapse
Affiliation(s)
- A. Corrias
- Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
| | - X. Jie
- Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
| | - L. Romero
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano, 6 Universidad Politécnica de Valencia (I3BH ), Valencia, Spain
| | - M. J. Bishop
- Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
| | - M. Bernabeu
- Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
| | - E. Pueyo
- Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
- Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Saragossa, Spain
| | - B. Rodriguez
- Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
- Author for correspondence ()
| |
Collapse
|
40
|
|
41
|
Jacobson I, Carlsson L, Duker G. Beat-by-beat QT interval variability, but not QT prolongation per se, predicts drug-induced torsades de pointes in the anaesthetised methoxamine-sensitized rabbit. J Pharmacol Toxicol Methods 2010; 63:40-6. [PMID: 20451633 DOI: 10.1016/j.vascn.2010.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/19/2010] [Accepted: 04/23/2010] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Accumulating evidence suggest that drug-induced QT prolongation per se poorly predicts repolarisation-related proarrhythmia liability. We examined whether beat-by-beat variability of the QT interval may be a complementary proarrhythmia marker to QT prolongation. METHODS Anaesthetised rabbits sensitized towards developing torsades de pointes (TdP) were infused for 30 min maximum with explorative antiarrhythmic compounds characterised as mixed ion channel blockers. Based on the outcome in this model the compounds were classified as having a low (TdPlow; n=5), intermediate (TdPintermediate; n=7) or high (TdPhigh; n=10) proarrhythmic potential. Dofetilide (n=4) was included as a representative of a selective IKr-blocking antiarrhythmic with known high proarrhythmic potential. QT interval prolongation and beat-by-beat QT variability (quantified as the short-term variability, STV) were continuously assessed during the infusion or up to the point where ventricular proarrhythmias were induced. RESULTS All compounds significantly prolonged the QT interval. For TdPlow and TdPhigh compounds the QT interval maximally increased from 169 ± 14 to 225 ± 28 ms (p<0.05) and from 186 ± 21 to 268 ± 42 ms (p<0.01), respectively. Likewise, in the dofetilide-infused rabbits the QT interval maximally increased from 177 ± 11 to 243 ± 25 ms (p<0.01). In contrast, whereas the STV in rabbits administered the TdPhigh compounds or dofetilide significantly increased prior to proarrhythmia induction (from 1.6 ± 0.4 to 10.5 ± 5.6 ms and from 1.6 ± 0.5 to 5.9 ± 1.8 ms, p<0.01) it remained unaltered in the TdPlow group (1.3 ± 0.6 to 2.2 ± 0.9 ms). In the TdPintermediate group, rabbits experiencing TdP had a similar maximal QT prolongation as the non-susceptible rabbits whereas the change in the STV was significantly different (from 0.9 ± 0.5 to 8.7 ± 7.3 ms vs 0.8 ± 0.3 to 2.5 ± 1.1 ms). DISCUSSION It is concluded from the present series of experiments in a sensitive rabbit model of TdP that increased beat-by-beat QT interval variability precedes drug-induced TdP. In addition, assessment of this potential proarrhythmia marker may be useful in discriminating highly proarrhythmic compounds from compounds with a low proarrhythmic potential.
Collapse
|
42
|
Jonsson MKB, Duker G, Tropp C, Andersson B, Sartipy P, Vos MA, van Veen TAB. Quantified proarrhythmic potential of selected human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 2010; 4:189-200. [PMID: 20303332 DOI: 10.1016/j.scr.2010.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 12/19/2022] Open
Abstract
To improve proarrhythmic predictability of preclinical models, we assessed whether human ventricular-like embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be selected following a standardized protocol. Also, we quantified their arrhythmogenic response and compared this to a contemporary used rabbit Purkinje fiber (PF) model. Multiple transmembrane action potentials (AP) were recorded from 164 hESC-CM clusters (9 different batches), and 12 isolated PFs from New Zealand White rabbits. AP duration (APD), early afterdepolarizations (EADs), triangulation (T), and short-term variability of repolarization (STV) were determined on application of the I(Kr) blocker E-4031 (0.03/0.1/0.3/1 muM). Isoproterenol (0.1 muM) was used to assess adrenergic response. To validate the phenotype, RNA isolated from atrial- and ventricular-like clusters (n=8) was analyzed using low-density Taqman arrays. Based on initial experiments, slow beating rate (<50 bpm) and long APD (>200 ms) were used to select 31 ventricular-like clusters. E-4031 (1 muM) prolonged APD (31/31) and induced EADs only in clusters with APD90>300 ms (11/16). EADs were associated with increased T (1.6+/-0.2 vs 2.0+/-0.3) and STV (2.7+/-1.5 vs 6.9+/-1.9). Rabbit PF reacted in a similar way with regards to EADs (5/12), increased T (1.3+/-0.1 vs 1.9+/-0.4), and STV (1.2+/-0.9 vs 7.1+/-5.6). According to ROC values, hESC-CMs (STV 0.91) could predict EADs at least equivalent to PF (STV 0.69). Isoproterenol shortened APD and completely suppressed EADs. Gene expression analysis revealed that HCN1/2, KCNA5, and GJA5 were higher in atrial/nodal-like cells, whereas KCNJ2 and SCN1B were higher in ventricular-like cells (P<0.05). Selection of hESC-CM clusters with a ventricular-like phenotype can be standardized. The proarrhythmic results are qualitatively and quantitatively comparable between hESC-CMs and rabbit PF. Our results indicate that additional validation of this new safety pharmacology model is warranted.
Collapse
Affiliation(s)
- Malin K B Jonsson
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Andersson B, Abi-Gerges N, Carlsson L. The combined ion channel blocker AZD1305 attenuates late Na current and IKr-induced action potential prolongation and repolarization instability. Europace 2010; 12:1003-10. [DOI: 10.1093/europace/euq070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Lee N, Authier S, Pugsley MK, Curtis MJ. The continuing evolution of torsades de pointes liability testing methods: Is there an end in sight? Toxicol Appl Pharmacol 2010; 243:146-53. [DOI: 10.1016/j.taap.2009.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 01/08/2023]
|
46
|
Farkas AS, Nattel S. Minimizing Repolarization-Related Proarrhythmic Risk in Drug Development and Clinical Practice. Drugs 2010; 70:573-603. [DOI: 10.2165/11535230-000000000-00000] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Weissenburger J, Funck-Brentano C, Jaillon P, Charbit B. Droperidol and ondansetron in vitro electrophysiological drug interaction study. Fundam Clin Pharmacol 2009; 23:719-26. [DOI: 10.1111/j.1472-8206.2009.00735.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Sicouri S, Glass A, Ferreiro M, Antzelevitch C. Transseptal dispersion of repolarization and its role in the development of Torsade de Pointes arrhythmias. J Cardiovasc Electrophysiol 2009; 21:441-7. [PMID: 19909385 DOI: 10.1111/j.1540-8167.2009.01641.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study was designed to quantitate transseptal dispersion of repolarization (DR) and delineate its role in arrhythmogenesis using the calcium agonist BayK 8644 to mimic the gain of function of calcium channel current responsible for Timothy syndrome. BACKGROUND Amplification of transmural dispersion of repolarization (TDR) has been shown to contribute to development of Torsade de Pointes (TdP) arrhythmias under long-QT conditions. METHODS An arterially perfused septal wedge preparation was developed via cannulation of the septal artery. Action potentials (APs) were recorded using floating microelectrodes together with a transseptal electrocardiogram (ECG). These data were compared to those recorded from arterially perfused canine left ventricular (LV) wedge preparations. RESULTS Under control conditions, the shortest AP duration measured at 90% repolarization (APD(90)) was observed in right ventricular (RV) endocardium (181.8 +/- 15 ms), APD(90) peaked close to midseptum (278.0 +/- 32 ms), and abbreviated again as LV endocardium was approached (207.3 +/- 9 ms). Transseptal DR averaged 106 +/- 24 ms and T(peak)-T(end) 84 +/- 7 ms (n = 6). TDR and T(peak)-T(end) recorded from LV wedge were 36 +/- 9 ms and 34 +/- 19 ms, respectively (n = 30). BayK 8644 increased transseptal DR to 123.2 +/- 35 ms (n = 5) and induced early and delayed afterdepolarizations (3/5), rate-dependent ST-T-wave alternans (5/5), and TdP arrhythmias (3/5). CONCLUSIONS Our data indicate that dispersion of repolarization across the interventricular septum is twice that of the LV free wall, predisposing to development of TdP under long-QT conditions. Our findings suggest that the coronary-perfused ventricular septal preparation may be a sensitive model in which to assess the potential arrhythmogenic effects of drugs and pathophysiological conditions.
Collapse
Affiliation(s)
- Serge Sicouri
- Masonic Medical Research Laboratory, Utica, New York 13501, USA.
| | | | | | | |
Collapse
|
49
|
Nagy N, Szűts V, Horváth Z, Seprényi G, Farkas AS, Acsai K, Prorok J, Bitay M, Kun A, Pataricza J, Papp JG, Nánási PP, Varró A, Tóth A. Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? J Mol Cell Cardiol 2009; 47:656-63. [DOI: 10.1016/j.yjmcc.2009.07.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 06/19/2009] [Accepted: 07/16/2009] [Indexed: 11/27/2022]
|
50
|
Raschi E, Ceccarini L, De Ponti F, Recanatini M. hERG-related drug toxicity and models for predicting hERG liability and QT prolongation. Expert Opin Drug Metab Toxicol 2009; 5:1005-1021. [PMID: 19572824 DOI: 10.1517/17425250903055070] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND hERG K(+) channels have been recognized as a primary antitarget in safety pharmacology. Their blockade, caused by several drugs with different therapeutic indications, may lead to QT prolongation and, eventually, to potentially fatal arrhythmia, namely torsade de pointes. Therefore, a number of preclinical models have been developed to predict hERG liability early in the drug development process. OBJECTIVE The aim of this review is to outline the present state of the art on drug-induced hERG blockade, providing insights on the predictive value of in vitro and in silico models for hERG liability. METHODS On the basis of latest reports, high-throughput preclinical models have been discussed outlining advantages and limitations. CONCLUSION Although no single model has an absolute value, an integrated risk assessment is recommended to predict the pro-arrhythmic risk of a given drug. This prediction requires expertise from different areas and should encompass emerging issues such as interference with hERG trafficking and QT shortening.
Collapse
Affiliation(s)
- Emanuel Raschi
- University of Bologna, Department of Pharmacology, Italy
| | | | | | | |
Collapse
|