1
|
Vázquez M, Fagiolino P. The role of efflux transporters and metabolizing enzymes in brain and peripheral organs to explain drug-resistant epilepsy. Epilepsia Open 2021; 7 Suppl 1:S47-S58. [PMID: 34560816 PMCID: PMC9340310 DOI: 10.1002/epi4.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
Drug‐resistant epilepsy has been explained by different mechanisms. The most accepted one involves overexpression of multidrug transporters proteins at the blood brain barrier and brain metabolizing enzymes. This hypothesis is one of the main pharmacokinetic reasons that lead to the lack of response of some antiseizure drug substrates of these transporters and enzymes due to their limited entrance into the brain and limited stay at the sites of actions. Although uncontrolled seizures can be the cause of the overexpression, some antiseizure medications themselves can cause such overexpression leading to treatment failure and thus refractoriness. However, it has to be taken into account that the inductive effect of some drugs such as carbamazepine or phenytoin not only impacts on the brain but also on the rest of the body with different intensity, influencing the amount of drug available for the central nervous system. Such induction is not only local drug concentration but also time dependent. In the case of valproic acid, the deficient disposition of ammonia due to a malfunction of the urea cycle, which would have its origin in an intrinsic deficiency of L‐carnitine levels in the patient or by its depletion caused by the action of this antiseizure drug, could lead to drug‐resistant epilepsy. Many efforts have been made to change this situation. In order to name some, the administration of once‐daily dosing of phenytoin or the coadministration of carnitine with valproic acid would be preferable to avoid iatrogenic refractoriness. Another could be the use of an adjuvant drug that down‐regulates the expression of transporters. In this case, the use of cannabidiol with antiseizure properties itself and able to diminish the overexpression of these transporters in the brain could be a novel therapy in order to allow penetration of other antiseizure medications into the brain.
Collapse
Affiliation(s)
- Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Pietro Fagiolino
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Silva-Adaya D, Garza-Lombó C, Gonsebatt ME. Xenobiotic transport and metabolism in the human brain. Neurotoxicology 2021; 86:125-138. [PMID: 34371026 DOI: 10.1016/j.neuro.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Organisms have metabolic pathways responsible for eliminating endogenous and exogenous toxicants. Generally, we associate the liver par excellence as the organ in charge of detoxifying the body; however, this process occurs in all tissues, including the brain. Due to the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), the Central Nervous System (CNS) is considered a partially isolated organ, but similar to other organs, the CNS possess xenobiotic transporters and metabolic pathways associated with the elimination of xenobiotic agents. In this review, we describe the different systems related to the detoxification of xenobiotics in the CNS, providing examples in which their association with neurodegenerative processes is suspected. The CNS detoxifying systems include carrier-mediated, active efflux and receptor-mediated transport, and detoxifying systems that include phase I and phase II enzymes, as well as those enzymes in charge of neutralizing compounds such as electrophilic agents, reactive oxygen species (ROS), and free radicals, which are products of the bioactivation of xenobiotics. Moreover, we discuss the differential expression of these systems in different regions of the CNS, showing the different detoxifying needs and the composition of each region in terms of the cell type, neurotransmitter content, and the accumulation of xenobiotics and/or reactive compounds.
Collapse
Affiliation(s)
- Daniela Silva-Adaya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico; Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Carla Garza-Lombó
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB, Indianapolis, IN, 46202, USA
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
3
|
Meesawatsom P, Hathway G, Bennett A, Constantin-Teodosiu D, Chapman V. Spinal neuronal excitability and neuroinflammation in a model of chemotherapeutic neuropathic pain: targeting the resolution pathways. J Neuroinflammation 2020; 17:316. [PMID: 33097087 PMCID: PMC7585293 DOI: 10.1186/s12974-020-01997-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background Neuroinflammation is a critical feature of sensitisation of spinal nociceptive processing in chronic pain states. We hypothesised that the resolvin pathways, a unique endogenous control system, may ameliorate aberrant spinal processing of somatosensory inputs associated with chemotherapy-induced neuropathic pain (CINP). Method The paclitaxel (PCX) model of CINP was established in male Sprague-Dawley rats and compared to control rats (n = 23 and 22, respectively). Behavioural pain responses were measured, and either single unit electrophysiological recordings of dorsal horn wide dynamic range (WDR) neurones were performed, or mRNA microarray analysis of the dorsal horn of the spinal cord was undertaken. Results PCX rats exhibited significant changes in behavioural responses to mechanical and cold stimuli. A higher proportion of WDR neurones in PCX rats were polymodal (generating post-discharge following a non-noxious mechanical stimulus, responding to non-noxious cold and exhibiting spontaneous activity) compared to control (p < 0.05). Microarray analysis revealed changes in proinflammatory pathways (Tlr, Tnfrsf1a, Nlrp1a, Cxcr1, Cxcr5, Ccr1, Cx3cr1) and anti-inflammatory lipid resolvin pathways (Alox5ap, Cyp2j4 and Ptgr1) compared to control (p < 0.05). Ingenuity pathway analysis predicted changes in glutamatergic and astrocyte signaling in the PCX group. Activation of the resolvin system via the spinal administration of aspirin-triggered resolvin D1 (AT-RvD1) markedly inhibited (73 ± 7% inhibition) normally non-noxious mechanically (8 g) evoked responses of WDR neurones only in PCX rats, whilst leaving responses to noxious mechanically induced stimuli intact. Inhibitory effects of AT-RvD1were comparable in magnitude to spinal morphine (84 ± 4% inhibition). Conclusion The PCX model of CINP was associated with mechanical allodynia, altered neuronal responses and dysregulation of pro- and anti-inflammatory signalling in the spinal dorsal horn. The resolvin AT-RvD1 selectively inhibited low weight mechanical-evoked responses of WDR neurones in PCX rats, but not in controls. Our data support the targeting of spinal neuroinflammation via the activation of the resolvin system as a new therapeutic approach for CINP.
Collapse
Affiliation(s)
- Pongsatorn Meesawatsom
- Pain Centre Versus Arthritis, School of Life Sciences, Medical School, University of Nottingham, Nottingham, NG7 2UH, UK.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok, 10400, Thailand
| | - Gareth Hathway
- Pain Centre Versus Arthritis, School of Life Sciences, Medical School, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Andrew Bennett
- FRAME Alternatives Laboratory, School of Life Sciences, Medical School, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, Medical School, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Victoria Chapman
- Pain Centre Versus Arthritis, School of Life Sciences, Medical School, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
4
|
Circulating Extracellular Vesicles Containing Xenobiotic Metabolizing CYP Enzymes and Their Potential Roles in Extrahepatic Cells Via Cell-Cell Interactions. Int J Mol Sci 2019; 20:ijms20246178. [PMID: 31817878 PMCID: PMC6940889 DOI: 10.3390/ijms20246178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The cytochrome P450 (CYP) family of enzymes is known to metabolize the majority of xenobiotics. Hepatocytes, powerhouses of CYP enzymes, are where most drugs are metabolized into non-toxic metabolites. Additional tissues/cells such as gut, kidneys, lungs, blood, and brain cells express selective CYP enzymes. Extrahepatic CYP enzymes, especially in kidneys, also metabolize drugs into excretable forms. However, extrahepatic cells express a much lower level of CYPs than hepatocytes. It is possible that the liver secretes CYP enzymes, which circulate via plasma and are eventually delivered to extrahepatic cells (e.g., brain cells). CYP circulation likely occurs via extracellular vesicles (EVs), which carry important biomolecules for delivery to distant cells. Recent studies have revealed an abundance of several CYPs in plasma EVs and other cell-derived EVs, and have demonstrated the role of CYP-containing EVs in xenobiotic-induced toxicity via cell–cell interactions. Thus, it is important to study the mechanism for packaging CYP into EVs, their circulation via plasma, and their role in extrahepatic cells. Future studies could help to find novel EV biomarkers and help to utilize EVs in novel interventions via CYP-containing EV drug delivery. This review mainly covers the abundance of CYPs in plasma EVs and EVs derived from CYP-expressing cells, as well as the potential role of EV CYPs in cell–cell communication and their application with respect to novel biomarkers and therapeutic interventions.
Collapse
|
5
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
6
|
The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4680732. [PMID: 28163821 PMCID: PMC5259652 DOI: 10.1155/2017/4680732] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023]
Abstract
Organisms have metabolic pathways that are responsible for removing toxic agents. We always associate the liver as the major organ responsible for detoxification of the body; however this process occurs in many tissues. In the same way, as in the liver, the brain expresses metabolic pathways associated with the elimination of xenobiotics. Besides the detoxifying role of CYP2E1 for compounds such as electrophilic agents, reactive oxygen species, free radical products, and the bioactivation of xenobiotics, CYP2E1 is also related in several diseases and pathophysiological conditions. In this review, we describe the presence of phase I monooxygenase CYP2E1 in regions of the brain. We also explore the conditions where protein, mRNA, and the activity of CYP2E1 are induced. Finally, we describe the relation of CYP2E1 in brain disorders, including the behavioral relations for alcohol consumption via CYP2E1 metabolism.
Collapse
|
7
|
Choquet H, Trapani E, Goitre L, Trabalzini L, Akers A, Fontanella M, Hart BL, Morrison LA, Pawlikowska L, Kim H, Retta SF. Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1. Free Radic Biol Med 2016; 92:100-109. [PMID: 26795600 PMCID: PMC4774945 DOI: 10.1016/j.freeradbiomed.2016.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease. METHODS Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 'common Hispanic mutation' (CCM1-CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually. RESULTS The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity. CONCLUSIONS Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment.
Collapse
Affiliation(s)
- Hélène Choquet
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | | | - Marco Fontanella
- Department of Neurosurgery, Spedali Civili and University of Brescia, Brescia, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Blaine L Hart
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Leslie A Morrison
- Department of Neurology University of New Mexico, Albuquerque, NM, USA; Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Ludmila Pawlikowska
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it).
| |
Collapse
|
8
|
Azurmendi A, Pascual-Sagastizabal E, Vergara AI, Muñoz JM, Braza P, Carreras R, Braza F, Sánchez-Martín JR. Developmental trajectories of aggressive behavior in children from ages 8 to 10: The role of sex and hormones. Am J Hum Biol 2015; 28:90-7. [DOI: 10.1002/ajhb.22750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 05/13/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Aitziber Azurmendi
- Department of Basic Psychological Processes and their Development; Faculty of Psychology, University of the Basque Country UPV/EHU; 20018 San Sebastian Spain
| | - Eider Pascual-Sagastizabal
- Department of Developmental and Educational Psychology; University of the Basque Country UPV/EHU; 48940 Leioa Spain
| | - Ana I. Vergara
- Department of Social Psychology and Methodology of the Behavioral Sciences. Faculty of Psychology; University of the Basque Country UPV/EHU; 20018 San Sebastian Spain
| | - Jose M. Muñoz
- Child Development and Social Risk Group; Psychology Department; Faculty of Sciences of Education, University of Cádiz; 11519 Puerto Real Cádiz Spain
| | - Paloma Braza
- Child Development and Social Risk Group; Psychology Department; Faculty of Sciences of Education, University of Cádiz; 11519 Puerto Real Cádiz Spain
| | - Rosario Carreras
- Child Development and Social Risk Group; Psychology Department; Faculty of Sciences of Education, University of Cádiz; 11519 Puerto Real Cádiz Spain
| | - Francisco Braza
- Department of Ethology and Biodiversity Conservation; Doñana Biological Station. Spanish Council for Scientific Research (CSIC); 41092 Seville Spain
| | - José R. Sánchez-Martín
- Department of Basic Psychological Processes and their Development; Faculty of Psychology, University of the Basque Country UPV/EHU; 20018 San Sebastian Spain
| |
Collapse
|
9
|
Stingl J, Viviani R. Polymorphism in CYP2D6 and CYP2C19, members of the cytochrome P450 mixed-function oxidase system, in the metabolism of psychotropic drugs. J Intern Med 2015; 277:167-177. [PMID: 25297512 DOI: 10.1111/joim.12317] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous studies in the field of psychopharmacological treatment have investigated the possible contribution of genetic variability between individuals to differences in drug efficacy and safety, motivated by the wide individual variation in treatment response. Genomewide analyses have been conducted in several large-scale studies on antidepressant drug response. However, no consistent findings have emerged from these studies. In a recent meta-analysis of genomewide data from the three studies capturing common variation for association with symptomatic improvement and remission revealed the absence of any strong genetic association and failed to replicate results of individual studies in the pooled data. However, there are good reasons to consider the possible importance of pharmacogenetic variants separately. These variants explain a large portion of the manifold variability in individual drug metabolism. More than 20 psychotropic drugs have now been relabelled by the FDA adding information on polymorphic drug metabolism and therapeutic recommendations. Furthermore, dose recommendations for polymorphisms in drug metabolizing enzymes, first and foremost CYP2D6 and CYP2C19, have been issued with the advice to reduce the dosage in poor metabolizers to 50% or less (in eight cases), or to choose an alternative treatment. Beside the well-described role in hepatic drug metabolism, these enzymes are also expressed in the brain and play a role in biotransformation of endogenous substrates. These polymorphisms may therefore modulate brain metabolism and affect the function of the neural substrates of cognition and emotion.
Collapse
Affiliation(s)
- J Stingl
- Center for Translational Medicine, University of Bonn Medical School, Bonn, Germany
| | - R Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| |
Collapse
|
10
|
Role of brain cytochrome P450 mono-oxygenases in bilirubin oxidation-specific induction and activity. Arch Toxicol 2014; 90:279-90. [DOI: 10.1007/s00204-014-1394-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/16/2014] [Indexed: 01/24/2023]
|
11
|
Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Human cytochrome P450 epoxygenases: Variability in expression and role in inflammation-related disorders. Pharmacol Ther 2014; 144:134-61. [DOI: 10.1016/j.pharmthera.2014.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
12
|
Ehler A, Benz J, Schlatter D, Rudolph MG. Mapping the conformational space accessible to catechol-O-methyltransferase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2163-74. [PMID: 25084335 PMCID: PMC4118827 DOI: 10.1107/s1399004714012917] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/03/2014] [Indexed: 11/10/2022]
Abstract
Methylation catalysed by catechol-O-methyltransferase (COMT) is the main pathway of catechol neurotransmitter deactivation in the prefrontal cortex. Low levels of this class of neurotransmitters are held to be causative of diseases such as schizophrenia, depression and Parkinson's disease. Inhibition of COMT may increase neurotransmitter levels, thus offering a route for treatment. Structure-based drug design hitherto seems to be based on the closed enzyme conformation. Here, a set of apo, semi-holo, holo and Michaelis form crystal structures are described that define the conformational space available to COMT and that include likely intermediates along the catalytic pathway. Domain swaps and sizeable loop movements around the active site testify to the flexibility of this enzyme, rendering COMT a difficult drug target. The low affinity of the co-substrate S-adenosylmethionine and the large conformational changes involved during catalysis highlight significant energetic investment to achieve the closed conformation. Since each conformation of COMT is a bona fide target for inhibitors, other states than the closed conformation may be promising to address. Crystallographic data for an alternative avenue of COMT inhibition, i.e. locking of the apo state by an inhibitor, are presented. The set of COMT structures may prove to be useful for the development of novel classes of inhibitors.
Collapse
Affiliation(s)
- Andreas Ehler
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche, Grenzacher Strasse 124, Basel, Switzerland
| | - Jörg Benz
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche, Grenzacher Strasse 124, Basel, Switzerland
| | - Daniel Schlatter
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche, Grenzacher Strasse 124, Basel, Switzerland
| | - Markus G. Rudolph
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche, Grenzacher Strasse 124, Basel, Switzerland
| |
Collapse
|
13
|
Otasek D, Pastrello C, Holzinger A, Jurisica I. Visual Data Mining: Effective Exploration of the Biological Universe. INTERACTIVE KNOWLEDGE DISCOVERY AND DATA MINING IN BIOMEDICAL INFORMATICS 2014. [DOI: 10.1007/978-3-662-43968-5_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Use of vitamins for correction of the functional state of cytochrome P450 systems at experimental allergic encephalomyelitis. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.05.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Lili W, Cheng G, Zhiyong Z, Qi Y, Yan L, Dan L, Xueli Z, Yuan Z. Steady-State Plasma Concentration of Donepezil Enantiomers and Its Stereoselective Metabolism and Transport In Vitro. Chirality 2013; 25:498-505. [PMID: 23798321 DOI: 10.1002/chir.22153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/10/2012] [Indexed: 01/22/2023]
Affiliation(s)
- Wan Lili
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Guo Cheng
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Zhou Zhiyong
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Yu Qi
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Li Yan
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Li Dan
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Zheng Xueli
- Department of Geriatrics, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Zhong Yuan
- Department of Geriatrics, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| |
Collapse
|
16
|
Booth Depaz IM, Toselli F, Wilce PA, Gillam EMJ. Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholic subjects and drug-free controls. Drug Metab Dispos 2013; 41:1187-94. [PMID: 23491640 DOI: 10.1124/dmd.113.051359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytochrome P450 enzymes are responsible for the metabolism of most commonly used drugs. Among these enzymes, CYP3A forms mediate the clearance of around 40-50% of drugs and may also play roles in the biotransformation of endogenous compounds. CYP3A forms are expressed both in the liver and extrahepatically. However, little is known about the expression of CYP3A proteins in specific regions of the human brain. In this study, form-selective antibodies raised to CYP3A4 and CYP3A5 were used to characterize the expression of these forms in the human brain. Both CYP3A4 and CYP3A5 immunoreactivity were found to varying extents in the microsomal fractions of cortex, hippocampus, basal ganglia, amygdala, and cerebellum. However, only CYP3A4 expression was observed in the mitochondrial fractions of these brain regions. N-terminal sequencing confirmed the principal antigen detected by the anti-CYP3A4 antibody in cortical microsomes to be CYP3A4. Immunohistochemical analysis revealed that CYP3A4 and CYP3A5 expression was primarily localized in the soma and axonal hillock of neurons and varied according to cell type and cell layer within brain regions. Finally, analysis of the frontal cortex of chronic alcohol abusers revealed elevated expression of CYP3A4 in microsomal but not mitochondrial fractions; CYP3A5 expression was unchanged. The site-specific expression of CYP3A4 and CYP3A5 in the human brain may have implications for the role of these enzymes in both normal brain physiology and the response to drugs.
Collapse
Affiliation(s)
- Iris M Booth Depaz
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
17
|
Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 2013; 18:273-87. [PMID: 22565785 DOI: 10.1038/mp.2012.42] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymorphic drug-metabolizing enzymes (DMEs) are responsible for the metabolism of the majority of psychotropic drugs. By explaining a large portion of variability in individual drug metabolism, pharmacogenetics offers a diagnostic tool in the burgeoning era of personalized medicine. This review updates existing evidence on the influence of pharmacogenetic variants on drug exposure and discusses the rationale for genetic testing in the clinical context. Dose adjustments based on pharmacogenetic knowledge are the first step to translate pharmacogenetics into clinical practice. However, also clinical factors, such as the consequences on toxicity and therapeutic failure, must be considered to provide clinical recommendations and assess the cost-effectiveness of pharmacogenetic treatment strategies. DME polymorphisms are relevant not only for clinical pharmacology and practice but also for research in psychiatry and neuroscience. Several DMEs, above all the cytochrome P (CYP) enzymes, are expressed in the brain, where they may contribute to the local biochemical homeostasis. Of particular interest is the possibility of DMEs playing a physiological role through their action on endogenous substrates, which may underlie the reported associations between genetic polymorphisms and cognitive function, personality and vulnerability to mental disorders. Neuroimaging studies have recently presented evidence of an effect of the CYP2D6 polymorphism on basic brain function. This review summarizes evidence on the effect of DME polymorphisms on brain function that adds to the well-known effects of DME polymorphisms on pharmacokinetics in explaining the range of phenotypes that are relevant to psychiatric practice.
Collapse
|
18
|
Hubbs AF, Sargent LM, Porter DW, Sager TM, Chen BT, Frazer DG, Castranova V, Sriram K, Nurkiewicz TR, Reynolds SH, Battelli LA, Schwegler-Berry D, McKinney W, Fluharty KL, Mercer RR. Nanotechnology: toxicologic pathology. Toxicol Pathol 2013; 41:395-409. [PMID: 23389777 DOI: 10.1177/0192623312467403] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ruparel S, Henry MA, Akopian A, Patil M, Zeldin DC, Roman L, Hargreaves KM. Plasticity of cytochrome P450 isozyme expression in rat trigeminal ganglia neurons during inflammation. Pain 2012; 153:2031-2039. [PMID: 22633978 DOI: 10.1016/j.pain.2012.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Recently, specific oxidized linoleic acid metabolites (OLAMs) have been identified as transient receptor potential vanilloid 1 (TRPV1) channel agonists that contribute to inflammatory and heat hyperalgesia mechanisms, yet the specific mechanism responsible for OLAM synthesis in sensory neurons is unknown. Here, we use molecular, anatomical, calcium imaging, and perforated patch electrophysiology methods to demonstrate the specific involvement of cytochrome P450 enzymes (CYPs) in the oxidation of linoleic acid leading to neuronal activation and show that this is enhanced under inflammatory conditions. Additional studies evaluated CYP expressions in the native rat trigeminal ganglia (TG) tissue and cultures as well as changes in their expression pattern following the induction of peripheral inflammation. Fourteen of 20 candidate transcripts were detected in native TG, and 7 of these displayed altered expression under cultured conditions. Moreover, complete Freund's adjuvant-induced inflammation of vibrissal pad selectively increased expression of CYP3A23/3A1 and CYP2J4 transcripts in TG. In situ hybridization studies demonstrated broad expression pattern of CYP3A23/3A1 and CYP2J4 within TG neurons. Anatomical studies characterized the expression of CYP3A1 and the CYP2J families within TG sensory neurons, including those with TRPV1, with about half of all TRPV1-positive neurons showing more prominent CYP3A1 and CYP2J expression. Together, these findings show that CYP enzymes play a primary role in mediating linoleic acid-evoked activation of sensory neurons and furthermore, implicate the involvement of specific CYPs as contributing to the formation of OLAMs that act as TRPV1 agonists within this subpopulation of nociceptors.
Collapse
Affiliation(s)
- Shivani Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA Division of Intramural Research, National Institute of Environmental Health Science (NIEHS), National Institutes of Health, Research Triangle Park, NC, USA Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Schyman P, Lai W, Chen H, Wang Y, Shaik S. The directive of the protein: how does cytochrome P450 select the mechanism of dopamine formation? J Am Chem Soc 2011; 133:7977-84. [PMID: 21539368 DOI: 10.1021/ja201665x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopamine can be generated from tyramine via arene hydroxylation catalyzed by a cytochrome P450 enzyme (CYP2D6). Our quantum mechanical/molecular mechanical (QM/MM) results reveal the decisive impact of the protein in selecting the 'best' reaction mechanism. Instead of the traditional Meisenheimer-complex mechanism, the study reveals a mechanism involving an initial hydrogen atom transfer from the phenolic hydroxyl group of the tyramine to the iron-oxo of the compound I (Cpd I), followed by a ring-π radical rebound that eventually leads to dopamine by keto-enol rearrangement. This mechanism is not viable in the gas phase since the O-H bond activation by Cpd I is endothermic and the process does not form a stable intermediate. By contrast, the in-protein reaction has a low barrier and is exothermic. It is shown that the local electric field of the protein environment serves as a template that stabilizes the intermediate of the H-abstraction step and thereby mediates the catalysis of dopamine formation at a lower energy cost. Furthermore, it is shown that external electric fields can either catalyze or inhibit the process depending on their directionality.
Collapse
Affiliation(s)
- Patric Schyman
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
21
|
Schyman P, Usharani D, Wang Y, Shaik S. Brain chemistry: how does P450 catalyze the O-demethylation reaction of 5-methoxytryptamine to yield serotonin? J Phys Chem B 2010; 114:7078-89. [PMID: 20405876 DOI: 10.1021/jp1008994] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory has been applied to elucidate the mechanism of the O-demethylation reaction that generates serotonin from 5-methoxytryptamine (5-MT); a process that is efficiently catalyzed by P450 CYP2D6. Two substrates, the neutral 5-MT and the protonated 5-MTH(+), were used to probe the reactivity of CYP2D6 compound I. Notably, the H-abstraction process is found to be slightly more facile for 5-MT. However, our DFT augmented by docking results show that the amino acid Glu216 in the active site holds the NH(3)(+) tail of the 5-MTH(+) substrate in an upright conformation and thereby controls the regioselectivity of the bond activation. Thus, the substrate protonation serves an important function in maximizing the yield of serotonin. This finding is in accord with experimental conclusions that 5-MTH(+) serves as the substrate for the CYP2D6 enzyme. The study further shows that the H-abstraction follows two-state reactivity (TSR), whereas the rebound path may involve more states due to the appearance of both Fe(IV) and Fe(III) electromers during the reaction of 5-MTH(+).
Collapse
Affiliation(s)
- Patric Schyman
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91940 Jerusalem, Israel
| | | | | | | |
Collapse
|
22
|
Heydel JM, Holsztynska EJ, Legendre A, Thiebaud N, Artur Y, Le Bon AM. UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function. Drug Metab Rev 2010; 42:74-97. [PMID: 20067364 DOI: 10.3109/03602530903208363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aims to review uridine diphosphate (UDP)-glucuronosyltransferase (UGT) expression and activities along different neuronal structures involved in the common physiological process of olfaction: olfactory epithelium, olfactory bulb, and olfactory cortex. For the first time, using high-throughput in situ hybridization data generated by the Allen Brain Atlas (ABA), we present quantitative analysis of spatial distribution of UGT genes in the mouse brain. The olfactory area is a central nervous system site with the highest expression of UGTs, including UGT isoforms not previously identified in the brain. Since there is evidence of the transfer of xenobiotics to the brain through the nasal pathway, circumventing the blood-brain barrier, olfactory UGTs doubtlessly share the common function of detoxification, but they are also involved in the metabolism and turnover of exogenous or endogenous compounds critical for physiological olfactory processing in these tissues. The function of olfactory UGTs will be discussed with a special focus on their participation in the perireceptor events involved in the modulation of olfactory perception.
Collapse
|
23
|
Grova N, Schroeder H, Farinelle S, Prodhomme E, Valley A, Muller CP. Sub-acute administration of benzo[a]pyrene (B[a]P) reduces anxiety-related behaviour in adult mice and modulates regional expression of N-methyl-D-aspartate (NMDA) receptors genes in relevant brain regions. CHEMOSPHERE 2008; 73:S295-S302. [PMID: 18442843 DOI: 10.1016/j.chemosphere.2007.12.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2007] [Indexed: 05/26/2023]
Abstract
Abnormal glutamatergic transmission caused by modulation of N-methyl-D-aspartate (NMDA) receptors was demonstrated in animal models chronically exposed to various organic micropollutants. Recent developments in neurobiology have implicated these receptors in the regulation of anxiety. In order to investigate anxiety-related effects of benzo[a]pyrene (B[a]P), Balb/c mice were sub-acutely exposed to B[a]P (0.02-200 mg kg(-1) day(-1), 10 days, i.p.). Their performance was tested in the elevated-plus maze and the hole-board apparatus and the NMDA receptor expression genes (NR1, 2A and 2B subunits) was measured in eight brain regions. Mice treated with 20-200 mg kg(-1) B[a]P showed a disproportionate accumulation of B[a]P and its metabolites (in particular, the toxic 7,8-diol-B[a]P) in the blood and even more in the brain. These mice were less anxious than controls in the hole-board test and the elevated-plus maze. This observation was associated with an overexpression of the NMDA NR1 receptor gene and concomitant decreases of the NR2A and NR2B subunits expression in the hippocampus, the hypothalamus and the cerebellum. In the temporal cortex, a significant dose-related decrease of NR2A was observed whereas the other subunits remained unchanged. In conclusion, a sub-acute exposure to B[a]P (20 and 200 mg kg(-1)) reduced anxiety-related behaviour in adult mice and concomitantly impaired NMDA receptor gene expression in relevant brain regions.
Collapse
Affiliation(s)
- Nathalie Grova
- Institute of Immunology, Laboratoire National de Santé, 20A Rue Auguste Lumière, P.O. Box 1102, L-1011 Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|
24
|
Agarwal V, Kommaddi RP, Valli K, Ryder D, Hyde TM, Kleinman JE, Strobel HW, Ravindranath V. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite. PLoS One 2008; 3:e2337. [PMID: 18545703 PMCID: PMC2408964 DOI: 10.1371/journal.pone.0002337] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 04/27/2008] [Indexed: 11/19/2022] Open
Abstract
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.
Collapse
Affiliation(s)
- Varsha Agarwal
- Division of Molecular and Cellular Neuroscience, National Brain Research Centre, Nainwal Mode, Manesar, India
| | - Reddy P. Kommaddi
- Division of Molecular and Cellular Neuroscience, National Brain Research Centre, Nainwal Mode, Manesar, India
| | - Khader Valli
- Division of Molecular and Cellular Neuroscience, National Brain Research Centre, Nainwal Mode, Manesar, India
| | - Daniel Ryder
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas, United States of America
| | - Thomas M. Hyde
- Clinical Brain Disorders Branch, Section on Neuropathology, Division of Intramural Research Programs (DIRP)/National Institute of Mental Health (NIMH)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Joel E. Kleinman
- Clinical Brain Disorders Branch, Section on Neuropathology, Division of Intramural Research Programs (DIRP)/National Institute of Mental Health (NIMH)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Henry W. Strobel
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas, United States of America
| | - Vijayalakshmi Ravindranath
- Division of Molecular and Cellular Neuroscience, National Brain Research Centre, Nainwal Mode, Manesar, India
| |
Collapse
|
25
|
Frampton JP, Shuler ML, Shain W, Hynd MR. Biomedical Technologies for in vitro Screening and Controlled Delivery of Neuroactive Compounds. Cent Nerv Syst Agents Med Chem 2008; 8:203-219. [PMID: 19079777 PMCID: PMC2600660 DOI: 10.2174/187152408785699613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell culture models can provide information pertaining to the effective dose, toxiciology, and kinetics, for a variety of neuroactive compounds. However, many in vitro models fail to adequately predict how such compounds will perform in a living organism. At the systems level, interactions between organs can dramatically affect the properties of a compound by alteration of its biological activity or by elimination of it from the body. At the tissue level, interaction between cell types can alter the transport properties of a particular compound, or can buffer its effects on target cells by uptake, processing, or changes in chemical signaling between cells. In any given tissue, cells exist in a three-dimensional environment bounded on all sides by other cells and components of the extracellular matrix, providing kinetics that are dramatically different from the kinetics in traditional two-dimensional cell culture systems. Cell culture analogs are currently being developed to better model the complex transport and processing that occur prior to drug uptake in the CNS, and to predict blood-brain barrier permeability. These approaches utilize microfluidics, hydrogel matrices, and a variety of cell types (including lung epithelial cells, hepatocytes, adipocytes, glial cells, and neurons) to more accurately model drug transport and biological activity. Similar strategies are also being used to control both the spatial and temporal release of therapeutic compounds for targeted treatment of CNS disease.
Collapse
Affiliation(s)
- John P Frampton
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | | | | | | |
Collapse
|
26
|
Lieber CS, Cao Q, DeCarli LM, Leo MA, Mak KM, Ponomarenko A, Ren C, Wang X. Role of medium-chain triglycerides in the alcohol-mediated cytochrome P450 2E1 induction of mitochondria. Alcohol Clin Exp Res 2007; 31:1660-8. [PMID: 17681033 DOI: 10.1111/j.1530-0277.2007.00475.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic alcohol consumption is known to induce cytochrome P450 2E1 (CYP2E1) leading to lipid peroxidation, mitochondrial dysfunction and hepatotoxicity. We showed that replacement of dietary long-chain triglycerides (LCT) by medium-chain triglycerides (MCT) could be protective. We now wondered whether the induction of mitochondrial CYP2E1 plays a role and whether liver injury could be avoided through mitochondrial intervention. METHODS Rats were fed 4 different isocaloric liquid diets. The control group received our standard dextrin-maltose diet with intake limited to the average consumption of the 3 alcohol groups fed ad libitum the alcohol containing Lieber-DeCarli liquid diet. The fat was either 32% of calories as LCT (alcohol), or 16% as LCT + 16% as MCT (alcohol-MCT 16%), or 32% as MCT only (alcohol-MCT 32%). RESULTS After 21 days, compared to the controls, the alcohol and both alcohol-MCT groups had a significant increase in mitochondrial CYP2E1 (p < 0.05 for both). As shown before, the same was found for the microsomal CYP2E1. When MCT replaced all the fat, like in the alcohol-MCT 32% group, CYP2E1 was significantly reduced by 40% in mitochondria (p < 0.05) and 30% in microsomes (p < 0.01). In mitochondria, 4-hydroxynonenal (4-HNE), a parameter of oxidative stress, paralleled CYP2E1. Compared to controls, alcohol and alcohol-MCT 16% significantly raised mitochondrial 4-HNE (p < 0.001), whereas the alcohol-MCT 32% diet brought it down to control levels (p < 0.001). Mitochondrial reduced glutathione (GSH) was also significantly lowered by alcohol consumption (p < 0.05), and it increased to almost normal levels with alcohol-MCT 32% (p = 0.006). These changes in the mitochondria reflected the reduction observed in total liver in which alcohol-MCT 32% decreased the alcohol-induced steatosis with a diminution of triglycerides (p < 0.001) and of the pro-inflammatory cytokine tumor necrosis factor-alpha (p < 0.001). CONCLUSION Mitochondria participate in the induction of CYP2E1 by alcohol and contribute to lipid peroxidation and GSH depletion. Thus, lipid composition of the diet is an important determinant for the beneficial effect of MCT, with a diet containing a mixture of LCT/MCT being ineffective.
Collapse
|