1
|
Wang Z. Role of transforming growth factor-β in airway remodelling in bronchiolitis obliterans. Growth Factors 2023; 41:192-209. [PMID: 37487145 DOI: 10.1080/08977194.2023.2239356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Airway remodelling is the main pathological mechanism of bronchiolitis obliterans (BO). Several studies have found that transforming growth factor-β (TGF-β) expression is increased in BO during airway remodelling, where it plays an important role in various biological processes by binding to its receptor complex to activate multiple signalling proteins and pathways. This review examines the role of TGF-β in airway remodelling in BO and its potential as a therapeutic target, highlighting the mechanisms of TGF-β activation and signalling, cellular targets of TGF-β actions, and research progress in TGF-β signalling and TGF-β-mediated processes.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Bos S, Milross L, Filby AJ, Vos R, Fisher AJ. Immune processes in the pathogenesis of chronic lung allograft dysfunction: identifying the missing pieces of the puzzle. Eur Respir Rev 2022; 31:31/165/220060. [PMID: 35896274 DOI: 10.1183/16000617.0060-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lung transplantation is the optimal treatment for selected patients with end-stage chronic lung diseases. However, chronic lung allograft dysfunction remains the leading obstacle to improved long-term outcomes. Traditionally, lung allograft rejection has been considered primarily as a manifestation of cellular immune responses. However, in reality, an array of complex, interacting and multifactorial mechanisms contribute to its emergence. Alloimmune-dependent mechanisms, including T-cell-mediated rejection and antibody-mediated rejection, as well as non-alloimmune injuries, have been implicated. Moreover, a role has emerged for autoimmune responses to lung self-antigens in the development of chronic graft injury. The aim of this review is to summarise the immune processes involved in the pathogenesis of chronic lung allograft dysfunction, with advanced insights into the role of innate immune pathways and crosstalk between innate and adaptive immunity, and to identify gaps in current knowledge.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robin Vos
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK .,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Angiogenesis, Lymphangiogenesis, and Inflammation in Chronic Obstructive Pulmonary Disease (COPD): Few Certainties and Many Outstanding Questions. Cells 2022; 11:cells11101720. [PMID: 35626756 PMCID: PMC9139415 DOI: 10.3390/cells11101720] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, predominantly affecting the lung parenchyma and peripheral airways, that results in progressive and irreversible airflow obstruction. COPD development is promoted by persistent pulmonary inflammation in response to several stimuli (e.g., cigarette smoke, bacterial and viral infections, air pollution, etc.). Angiogenesis, the formation of new blood vessels, and lymphangiogenesis, the formation of new lymphatic vessels, are features of airway inflammation in COPD. There is compelling evidence that effector cells of inflammation (lung-resident macrophages and mast cells and infiltrating neutrophils, eosinophils, basophils, lymphocytes, etc.) are major sources of a vast array of angiogenic (e.g., vascular endothelial growth factor-A (VEGF-A), angiopoietins) and/or lymphangiogenic factors (VEGF-C, -D). Further, structural cells, including bronchial and alveolar epithelial cells, endothelial cells, fibroblasts/myofibroblasts, and airway smooth muscle cells, can contribute to inflammation and angiogenesis in COPD. Although there is evidence that alterations of angiogenesis and, to a lesser extent, lymphangiogenesis, are associated with COPD, there are still many unanswered questions.
Collapse
|
4
|
Womble JT, McQuade VL, Ihrie MD, Ingram JL. Imbalanced Coagulation in the Airway of Type-2 High Asthma with Comorbid Obesity. J Asthma Allergy 2021; 14:967-980. [PMID: 34408442 PMCID: PMC8364356 DOI: 10.2147/jaa.s318017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common, chronic airway inflammatory disease marked by airway hyperresponsiveness, inflammation, and remodeling. Asthma incidence has increased rapidly in the past few decades and recent multicenter analyses have revealed several unique asthma endotypes. Of these, type-2 high asthma with comorbid obesity presents a unique clinical challenge marked by increased resistance to standard therapies and exacerbated disease development. The extrinsic coagulation pathway plays a significant role in both type-2 high asthma and obesity. The type-2 high asthma airway is marked by increased procoagulant potential, which is readily activated following damage to airway tissue. In this review, we summarize the current understanding of the role the extrinsic coagulation pathway plays in the airway of type-2 high asthma with comorbid obesity. We propose that asthma control is worsened in obesity as a result of a systemic and local airway shift towards a procoagulant and anti-fibrinolytic environment. Lastly, we hypothesize bariatric surgery as a treatment for improved asthma management in type-2 high asthma with comorbid obesity, facilitated by normalization of systemic procoagulant and pro-inflammatory mediators. A better understanding of attenuated coagulation parameters in the airway following bariatric surgery will advance our knowledge of biomolecular pathways driving asthma pathobiology in patients with obesity.
Collapse
Affiliation(s)
- Jack T Womble
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Victoria L McQuade
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mark D Ihrie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
5
|
Bodkhe S, Nikam M, Sherje AP, Khan T, Suvarna V, Patel K. Current insights on clinical efficacy of roflumilast for treatment of COPD, asthma and ACOS. Int Immunopharmacol 2020; 88:106906. [PMID: 33182057 DOI: 10.1016/j.intimp.2020.106906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Phosphodiesterase-4 inhibitors (PDE4) are of great interest for the treatment of airway inflammatory diseases due to its broad anti-inflammatory effects. Roflumilast is a selective PDE4 inhibitor that inhibits pulmonary and systemic inflammation and rallies symptoms in airway diseases. Asthma and COPD are common chronic airway inflammatory diseases having incompletely illustrious pathophysiology and clinical manifestations. Recently, the condition called Asthma- COPD Overlap (ACO) has been evolved having the overlapping symptoms of both diseases. The newly discovered PDE4 inhibitor, roflumilast has exposed its potential in the treatment of Asthma, COPD and ACOS. Its mechanism of action in airway inflammatory diseases are said to be exerts by elevating intracellular cAMP and shows its anti-inflammatory action. Roflumilast, a promising therapeutic approach in inflammatory airway diseases, has many significant outcomes. In this review, we have provided various promising clinical evidences of roflumilast in COPD and asthma. However, there is no published clinical evidence to date for the role of roflumilast in ACOS. Nevertheless, there are therapeutic mechanisms that provide a reference for clinical application for ACOS.
Collapse
Affiliation(s)
- Shradha Bodkhe
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Mayuri Nikam
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Atul P Sherje
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India.
| | - Tabassum Khan
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Vasanti Suvarna
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Kavit Patel
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
6
|
Mei F, Liu J, Wu J, Duan Z, Chen M, Meng K, Chen S, Shen X, Xia G, Zhao M. Collagen Peptides Isolated from Salmo salar and Tilapia nilotica Skin Accelerate Wound Healing by Altering Cutaneous Microbiome Colonization via Upregulated NOD2 and BD14. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1621-1633. [PMID: 31967468 DOI: 10.1021/acs.jafc.9b08002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collagen peptides can promote wound healing and are closely related to microbiome colonization. We investigated the relationship among collagen peptides, wound healing, and wound microflora colonization by administering the murine wound model with Salmo salar skin collagen peptides (Ss-SCPs) and Tilapia nilotica skin collagen peptides (Tn-SCPs). We analyzed the vascular endothelial growth factor (VEGF), fibroblast growth factors (β-FGF), pattern recognition receptor (NOD2), antimicrobial peptides (β-defence14, BD14), proinflammatory (TNF-α, IL-6, and IL-8) and anti-inflammatory (IL-10) cytokines, macrophages, neutrophil infiltration levels, and microbial communities in the rat wound. The healing rates of the Ss-SCP- and Tn-SCP-treated groups were significantly accelerated, associated with decreased TNF-α, IL-6, and IL-8 and upregulated BD14, NOD2, IL-10, VEGF, and β-FGF. Accelerated healing in the collagen peptide group shows that the wound microflora such as Leuconostoc, Enterococcus, and Bacillus have a positive effect on wound healing (P < 0.01). Other microbiome species such as Stenotrophomonas, Bradyrhizobium, Sphingomonas, and Phyllobacterium had a negative influence and decreased colonization (P < 0.01). Altogether, these studies show that collagen peptide could upregulate wound NOD2 and BD14, which were implicated in microflora colonization regulation in the wound tissue and promoted wound healing by controlling the inflammatory reaction and increasing wound angiogenesis and collagen deposition.
Collapse
Affiliation(s)
- Fengfeng Mei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea , Hainan University , Hainan 570228 , China
- College of Food Science and Technology , Hainan University , Hainan 570228 , China
| | - Jingjie Liu
- College of Food Science and Technology , Hainan University , Hainan 570228 , China
| | - Jintao Wu
- College of Food Science and Technology , Hainan University , Hainan 570228 , China
| | - Zhouwei Duan
- Institute of Processing & Design of Agroproducts , Hainan Academy of Agricultural Science , Hainan 570228 , China
| | - Muxue Chen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea , Hainan University , Hainan 570228 , China
- College of Food Science and Technology , Hainan University , Hainan 570228 , China
| | - Keke Meng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea , Hainan University , Hainan 570228 , China
- College of Food Science and Technology , Hainan University , Hainan 570228 , China
| | - Shenjun Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Guangdong 510000 , China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea , Hainan University , Hainan 570228 , China
- College of Food Science and Technology , Hainan University , Hainan 570228 , China
- Collaborative Innovation Center of Marine Food Deep Processing , Dalian Polytechnic University , Liaoning 116000 , China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea , Hainan University , Hainan 570228 , China
- College of Food Science and Technology , Hainan University , Hainan 570228 , China
- Collaborative Innovation Center of Marine Food Deep Processing , Dalian Polytechnic University , Liaoning 116000 , China
| | - Meihui Zhao
- College of Food Science and Technology , Hainan University , Hainan 570228 , China
| |
Collapse
|
7
|
Quantitative computed tomography measurement of cross-sectional area of small pulmonary vessels in asthmatic patients. Chin Med J (Engl) 2020; 132:1903-1908. [PMID: 31369430 PMCID: PMC6708698 DOI: 10.1097/cm9.0000000000000367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Cross-sectional area (CSA) for small pulmonary vessels is considered a parameter of pulmonary vessel alterations in patients with chronic obstructive pulmonary disease. This study was to evaluate the correlation of CSA with airflow obstruction parameters in asthma. Furthermore, we aimed to measure the difference in vascular alteration between asthma phenotypes and evaluate its relation with cytokine levels. Methods: We consecutively enrolled 20 adult asthmatic patients (13 women: age range, 26–80 years) and 20 healthy controls (8 women: age range, 23–61 years) from Peking University Third Hospital. Total CSA <5 mm2 (CSA<5) was measured with 64-slice spiral computed tomography, and the percentage CSA <5 for the lung area (%CSA<5) was calculated. Data were corrected for body surface area to obtain sixth-generation airway luminal diameter (LDcor), luminal area (Aicor), and airway wall thickness, and airway wall area percentage (WA%) was calculated. Enzyme-linked immunosorbent assay was used to detect the expression of leptin, total immunoglobulin E, periostin, and transforming growth factor β1 in serum and matrix metalloproteinase 9 in induced sputum supernatant of asthmatic patients. The differences in %CSA<5 between subgroups were assessed by independent samples Student's t test, and Spearman correlation analysis was used to analyze the correlation of %CSA<5 with clinical indexes and inflammatory cytokine levels. Results: Patients with asthma and controls did not differ in %CSA<5. In asthma patients, %CSA<5 was lower with initial onset age ≤12 years old, airflow restriction and uncontrolled Global Initiative for Asthma classification (all P < 0.05). Moreover, it was positively correlated with forced vital capacity ratio in 1 s (FEV1)/forced expiratory volume ratio, FEV1%, LDcor, Aicor, and serum leptin level (all P < 0.05) and negatively with total lung WA% (P = 0.007). Conclusions: %CSA<5 of pulmonary small vessels was well correlated with airflow limitation indexes and sixth-generation airway parameters. It has certain significance in predicting the clinical control of asthma.
Collapse
|
8
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
9
|
Işık S, Karaman M, Micili SÇ, Çağlayan-Sözmen Ş, Bağrıyanık HA, Arıkan-Ayyıldız Z, Uzuner N, Karaman Ö. Sinomenine ameliorates the airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in a murine model of chronic asthma. Allergol Immunopathol (Madr) 2018; 46:67-75. [PMID: 28778746 DOI: 10.1016/j.aller.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sinomenine (SIN), an alkaloid isolated from the root of Sinomenium acutum which has a variety of pharmacological effects, including anti-inflammation, immunosuppression and anti-angiogenesis. The present study aimed to evaluate the effects of SIN on airway remodelling, epithelial apoptosis, and T Helper (Th)-2 derived cytokine levels in a murine model of chronic asthma. METHODS Twenty-two BALB/c mice were divided into four groups; I (control), II (placebo), III, IV. Mice in groups III and IV received the SIN (100mg/kg), and dexamethasone (1mg/kg) respectively. Epithelium thickness, sub-epithelial smooth muscle thickness, number of mast and goblet cells of samples isolated from the lung were measured. Immunohistochemical scorings of the lung tissue for matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEG-F), transforming growth factor-beta (TGF-β), terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) and cysteine-dependent aspartate-specific proteases (caspase)-3 were determined. IL-4, IL-5, IL-13, Nitric oxide in bronchoalveolar lavage fluid (BALF) and ovalbumin-specific immunoglobulin (Ig) E in serum were quantified by standard ELISA protocols. RESULTS The dose of 100mg/kg SIN treatment provided beneficial effects on all of the histopathological findings of airway remodelling compared to placebo (p<0.05). All cytokine levels in BALF and serum and immunohistochemical scores were significantly lower in 100mg/kg SIN treated group compared to the placebo (p<0.05). CONCLUSIONS These findings suggested that the dose of 100mg/kg SIN improved all histopathological changes of airway remodelling and its beneficial effects might be related to modulating Th-2 derived cytokines and the inhibition of apoptosis of airway epithelial cells.
Collapse
Affiliation(s)
- S Işık
- Dokuz Eylul University, Department of Pediatric Allergy and Immunology, Izmir, Turkey.
| | - M Karaman
- Dokuz Eylul University, Department of Microbiology, Izmir, Turkey
| | - S Ç Micili
- Dokuz Eylul University, Department of Histology, Izmir, Turkey
| | - Ş Çağlayan-Sözmen
- Dokuz Eylul University, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - H A Bağrıyanık
- Dokuz Eylul University, Department of Histology, Izmir, Turkey
| | - Z Arıkan-Ayyıldız
- Dokuz Eylul University, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - N Uzuner
- Dokuz Eylul University, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Ö Karaman
- Dokuz Eylul University, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| |
Collapse
|
10
|
Salter B, Sehmi R. The role of bone marrow-derived endothelial progenitor cells and angiogenic responses in chronic obstructive pulmonary disease. J Thorac Dis 2017; 9:2168-2177. [PMID: 28840018 DOI: 10.21037/jtd.2017.07.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increased vascularity of the bronchial sub-mucosa is a cardinal feature of chronic obstructive pulmonary disease (COPD) and is associated with disease severity. Capillary engorgement, leakage, and vasodilatation can directly increase airway wall thickness resulting in airway luminal narrowing and facilitate inflammatory cell trafficking, thereby contributing to irreversible airflow obstruction, a characteristic of COPD. Airway wall neovascularisation, seen as increases in both the size and number of bronchial blood vessels is a prominent feature of COPD that correlates with reticular basement membrane thickening and airway obstruction. Sub-epithelial vascularization may be an important remodelling event for airway narrowing and airflow obstruction in COPD. Post-natal angiogenesis is a complex process, whereby new blood vessels sprouting from extant microvasculature, can arise from the proliferation of resident mature vascular endothelial cells (ECs). In addition, this may arise from increased turnover and lung-homing of circulating endothelial progenitor cells (EPCs) from the bone marrow (BM). Following lung-homing, EPCs can differentiate locally within the tissue into ECs, further contributing to vascular repair, maintenance, and expansion under pathological conditions, governed by a locally elaborated milieu of growth factors (GFs). In this article, we will review evidence for the role of BM-derived EPCs in the development of angiogenesis in the lug and discuss how this may relate to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Brittany Salter
- CardioRespiratory Research Group, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- CardioRespiratory Research Group, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma. Allergol Immunopathol (Madr) 2017; 45:339-349. [PMID: 28256288 DOI: 10.1016/j.aller.2016.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/19/2016] [Accepted: 12/03/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS In previous studies, anti-inflammatory, anti-apoptotic and immunomodulatory effects of ursodeoxycholic acid (UDCA) on liver diseases have been shown. In this study, we aimed to investigate the effects of UDCA on airway remodelling, epithelial apoptosis, and T Helper (Th)-2 derived cytokine levels in a murine model of chronic asthma. METHODS Twenty-seven BALB/c mice were divided into five groups; PBS-Control, OVA-Placebo, OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone. Mice in groups OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone received the UDCA (50mg/kg), UDCA (150mg/kg), and dexamethasone, respectively. Epithelium thickness, sub-epithelial smooth muscle thickness, number of mast and goblet cells of samples isolated from the lung were measured. Immunohistochemical scorings of the lung tissue for matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEG-F), transforming growth factor-beta (TGF-β), terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) and cysteine-dependent aspartate-specific proteases (caspase)-3 were determined. IL-4, IL-5, IL-13, Nitric oxide, ovalbumin-specific immunoglobulin (Ig) E levels were quantified. RESULTS The dose of 150mg/kg UDCA treatment led to lower epithelial thickness, sub-epithelial smooth muscle thickness, goblet and mast cell numbers compared to placebo. Except for MMP-9 and TUNEL all immunohistochemical scores were similar in both UDCA treated groups and the placebo. All cytokine levels were significantly lower in group IV compared to the placebo. CONCLUSIONS These findings suggested that the dose of 150mg/kg UDCA improved all histopathological changes of airway remodelling and its beneficial effects might be related to modulating Th-2 derived cytokines and the inhibition of apoptosis of airway epithelial cells.
Collapse
|
12
|
Kuehnel M, Maegel L, Vogel-Claussen J, Robertus JL, Jonigk D. Airway remodelling in the transplanted lung. Cell Tissue Res 2016; 367:663-675. [PMID: 27837271 DOI: 10.1007/s00441-016-2529-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Following lung transplantation, fibrotic remodelling of the small airways has been recognized for almost 5 decades as the main correlate of chronic graft failure and a major obstacle to long-term survival. Mainly due to airway fibrosis, pulmonary allografts currently show the highest attrition rate of all solid organ transplants, with a 5-year survival rate of 58 % on a worldwide scale. The observation that these morphological changes are not just the hallmark of chronic rejection but rather represent a manifestation of a multitude of alloimmune-dependent and -independent injuries was made more recently, as was the discovery that chronic lung allograft dysfunction manifests in different clinical phenotypes of respiratory impairment and corresponding morphological subentities. Although recent years have seen considerable advances in identifying and categorizing these subgroups on the basis of clinical, functional and histomorphological changes, as well as susceptibility to medicinal treatment, this process is far from over. Since the actual pathophysiological mechanisms governing airway remodelling are still only poorly understood, diagnosis and therapy of chronic lung allograft dysfunction presents a major challenge to clinicians, radiologists and pathologists alike. Here, we review and discuss the current state of the literature on chronic lung allograft dysfunction and shed light on classification systems, corresponding clinical and morphological changes, key cellular players and underlying molecular pathways, as well as on emerging diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Mark Kuehnel
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, D-30625, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), The German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Hanover, Germany
| | - Lavinia Maegel
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, D-30625, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), The German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Hanover, Germany
| | | | - Jan Lukas Robertus
- Royal Brompton & Harefield NHS Foundation Trust, Department of Histopathology, Hanover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, D-30625, Hanover, Germany.
| |
Collapse
|
13
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
14
|
Mahmood MQ, Sohal SS, Shukla SD, Ward C, Hardikar A, Noor WD, Muller HK, Knight DA, Walters EH. Epithelial mesenchymal transition in smokers: large versus small airways and relation to airflow obstruction. Int J Chron Obstruct Pulmon Dis 2015; 10:1515-24. [PMID: 26346976 PMCID: PMC4531032 DOI: 10.2147/copd.s81032] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Small airway fibrosis is the main contributor in airflow obstruction in chronic obstructive pulmonary disease. Epithelial mesenchymal transition (EMT) has been implicated in this process, and in large airways, is associated with angiogenesis, ie, Type-3, which is classically promalignant. Objective In this study we have investigated whether EMT biomarkers are expressed in small airways compared to large airways in subjects with chronic airflow limitation (CAL) and what type of EMT is present on the basis of vascularity. Methods We evaluated epithelial activation, reticular basement membrane fragmentation (core structural EMT marker) and EMT-related mesenchymal biomarkers in small and large airways from resected lung tissue from 18 lung cancer patients with CAL and 9 normal controls. Tissues were immunostained for epidermal growth factor receptor (EGFR; epithelial activation marker), vimentin (mesenchymal marker), and S100A4 (fibroblast epitope). Type-IV collagen was stained to demonstrate vessels. Results There was increased expression of EMT-related markers in CAL small airways compared to controls: EGFR (P<0.001), vimentin (P<0.001), S100A4 (P<0.001), and fragmentation (P<0.001), but this was less than that in large airways. Notably, there was no hypervascularity in small airway reticular basement membrane as in large airways. Epithelial activation and S100A4 expression were related to airflow obstruction. Conclusion EMT is active in small airways, but less so than in large airways in CAL, and may be relevant to the key pathologies of chronic obstructive pulmonary disease, small airway fibrosis, and airway cancers.
Collapse
Affiliation(s)
- Malik Quasir Mahmood
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Sukhwinder Singh Sohal
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia ; School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, TAS, Australia
| | - Shakti Dhar Shukla
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Wan Danial Noor
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Hans Konrad Muller
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Eugene Haydn Walters
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Harkness LM, Ashton AW, Burgess JK. Asthma is not only an airway disease, but also a vascular disease. Pharmacol Ther 2014; 148:17-33. [PMID: 25460035 DOI: 10.1016/j.pharmthera.2014.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 12/24/2022]
Abstract
Multiple studies have identified an expansion and morphological dysregulation of the bronchial vascular network in the airways of asthmatics. Increased number, size and density of blood vessels, as well as vascular leakage and plasma engorgement, have been reported in the airways of patients with all grades of asthma from mild to fatal. This neovascularisation is an increasingly commonly reported feature of airway remodelling; however, the pathophysiological impact of the increased vasculature in the bronchial wall and its significance to pulmonary function in asthma are unrecognised at this time. Multiple factors capable of influencing the development and persistence of the vascular network exist within asthmatic airway tissue. These include structural components of the altered extracellular matrix (ECM), imbalance of proteases and their endogenous inhibitors, release of active matrikines and the dysregulated levels of both soluble and matrix sequestered growth factors. This review will explore the features of the asthmatic airway which influence the development and persistence of the increased vascular network, as well as the effect of enhanced tissue perfusion on chronic inflammation and airway dynamics. The response of cells of the airways to the altered vascular profile and the subsequent influence on the features of airway remodelling will also be highlighted. We will explore the failure of current asthma therapeutics in "normalising" this vascular remodelling. Finally, we will summarize the outcomes of recent clinical trials which provide hope that anti-angiogenic therapies may be a potent asthma-resolving class of drugs and provide a new approach to asthma management in the future.
Collapse
Affiliation(s)
- Louise M Harkness
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Anthony W Ashton
- Division of Perinatal Research, Kolling Institute, Sydney, NSW, Australia
| | - Janette K Burgess
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Andrade CF, Fontena E, Cardoso PF, Pereira RB, Grun G, Forgiarini LF, Moreira JS, Felicetti JC. Peritoneal Free Autologous Fat Graft for the Control of Pulmonary Air Leaks in Emphysematous Rat Lungs. Ann Thorac Surg 2014; 98:271-6. [DOI: 10.1016/j.athoracsur.2014.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 11/24/2022]
|
17
|
Alagappan VKT, de Boer WI, Misra VK, Mooi WJ, Sharma HS. Angiogenesis and vascular remodeling in chronic airway diseases. Cell Biochem Biophys 2014; 67:219-34. [PMID: 23975597 DOI: 10.1007/s12013-013-9713-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease remain a global health problem, with increasing morbidity and mortality. Despite differences in the causal agents, both diseases exhibit various degrees of inflammatory changes, structural alterations of the airways leading to airflow limitation. The existence of transient disease phenotypes which overlap both diseases and which progressively decline the lung function has complicated the search for an effective therapy. Important characteristics of chronic airway diseases include airway and vascular remodeling, of which the molecular mechanisms are complex and poorly understood. Recently, we and others have shown that airway smooth muscle (ASM) cells are not only structural and contractile components of airways, rather they bear capabilities of producing large number of pro-inflammatory and mitogenic factors. Increase in size and number of blood vessels both inside and outside the smooth muscle layer as well as hyperemia of bronchial vasculature are contributing factors in airway wall remodeling in patients with chronic airway diseases, proposing for the ongoing mechanisms like angiogenesis and vascular dilatation. We believe that vascular changes directly add to the airway narrowing and hyper-responsiveness by exudation and transudation of proinflammatory mediators, cytokines and growth factors; facilitating trafficking of inflammatory cells; causing oedema of the airway wall and promoting ASM accumulation. One of the key regulators of angiogenesis, vascular endothelial growth factor in concerted action with other endothelial mitogens play pivotal role in regulating bronchial angiogenesis. In this review article we address recent advances in pulmonary angiogenesis and remodelling that contribute in the pathogenesis of chronic airway diseases.
Collapse
|
18
|
Willems-Widyastuti A, Vanaudenaerde BM, Vos R, Dilisen E, Verleden SE, De Vleeschauwer SI, Vaneylen A, Mooi WJ, de Boer WI, Sharma HS, Verleden GM. Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem Biophys 2014; 67:331-9. [PMID: 22205500 DOI: 10.1007/s12013-011-9331-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The airways in asthma and COPD are characterized by an increase in airway smooth muscle (ASM) mass and bronchial vascular changes associated with increased expression of pro-angiogenic growth factors, such as fibroblast growth factors (FGF-1 and FGF-2) and vascular endothelial growth factor (VEGF). We investigated the contribution of FGF-1/-2 in VEGF production in ASM cells and assessed the influence of azithromycin and dexamethasone and their underlying signaling mechanisms. Growth-synchronized human ASM cells were pre-treated with MAPK inhibitors, U0126 for ERK1/2(MAPK) and SB239063 for p38(MAPK) as well as with dexamethasone or azithromycin, 30 min before incubation with FGF-1 or FGF-2. Expression of VEGF (VEGF-A, VEGF121, and VEGF165) was assessed by quantitative PCR, VEGF release by ELISA and MAPK phosphorylation by Western blotting. Both FGF-1 and FGF-2 significantly induced mRNA levels of VEGF-A, VEGF121, and VEGF165. The VEGF protein release was increased 1.8-fold (FGF-1) and 5.5-fold (FGF-2) as compared to controls. Rapid transient increase in ERK1/2(MAPK) and p38(MAPK) phosphorylation and subsequent release of VEGF from FGF-1 or FGF-2-treated ASM cells were inhibited by respective blockers. Furthermore, azithromycin and dexamethasone significantly reduced both the VEGF release and the activation of p38(MAPK) pathway in response to FGF-1 or FGF-2 treatment. Our Results demonstrate that FGF-1 and FGF-2 up-regulate VEGF production via ERK1/2(MAPK) and p38(MAPK) pathways. Both azithromycin and dexamethasone elicited their anti-angiogenic effects via p38(MAPK) pathway in vitro, thereby suggesting a possible therapeutic approach to tackle VEGF-mediated vascular remodeling.
Collapse
|
19
|
Ben-Ami R. Angiogenesis at the mold-host interface: a potential key to understanding and treating invasive aspergillosis. Future Microbiol 2014; 8:1453-62. [PMID: 24199803 DOI: 10.2217/fmb.13.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) in neutropenic patients is characterized by angioinvasion, intravascular thrombosis and tissue infarction, features that lead to sequestration of infected tissue and impaired fungal clearance. Recent research has shown that host angiogenesis, the homeostatic compensatory response to tissue hypoxia, is downregulated by Aspergillus fumigatus secondary metabolites. A. fumigatus metabolites inhibit multiple key angiogenic mediators, notably basic FGF, VEGF and their respective receptors. Moreover, repletion of basic FGF and VEGF enhances angiogenesis at the site of infection, induces trafficking of polymorphonuclear leukocytes into fungal-infected tissue and enhances antifungal drug activity. This review summarizes the emerging roles of vasculopathy and angiogenesis in the pathogenesis of IA, emphasizing the importance of the underlying mode of immunosuppression. Modulation of angiogenesis is a potential target for novel therapeutic strategies against IA.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Medical Center & the Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
20
|
Nitric Oxide Donors Augment Interleukin-1β-Induced Vascular Endothelial Growth Factor in Airway Smooth Muscle Cells. Cell Biochem Biophys 2013; 67:247-54. [DOI: 10.1007/s12013-013-9773-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Kristan SS. Blood specimen biomarkers of inflammation, matrix degradation, angiogenesis, and cardiac involvement: a future useful tool in assessing clinical outcomes of COPD patients in clinical practice? Arch Immunol Ther Exp (Warsz) 2013; 61:469-81. [PMID: 23703244 DOI: 10.1007/s00005-013-0237-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is not fully reversible; this airflow limitation is both progressive and associated with an abnormal inflammatory response of the lung to noxious particles or gasses. COPD is undoubtedly an umbrella term, and it seems unlikely that all patients with COPD have the same underlying disease processes; thus, there is a need for differential treatment of different subgroups. A potential solution is to find modifiable biomarkers that can assist in drug development and distinguish subgroups of COPD. With the exception of lung function tests, there are currently no well-validated biomarkers or surrogate endpoints that can be used to establish the efficacy of a drug for COPD. This article discusses biomarkers of inflammation (fibrinogen, C-reactive protein, pulmonary and activation-regulated chemokine/CC-chemokine ligand-18, serum surfactant protein D, interleukin (IL)-6, IL-8 and tumor necrosis factor α, complement factor C5a), angiogenesis factors as a part of the pathogenetic aspect in this disease (vascular endothelial growth factor, angiogenin, and IL-8), and matrix degradation biomarkers. Troponin and natriuretic peptides are presented as biomarkers of cardiac involvement in the light of COPD comorbidities. Trials based on research on known clinical variables such as FEV1, BODE, and 6MWT in combination with biomarkers from lung and blood specimens will probably clarify part of the prognosis and natural history of the disease. This will also represent an additional step in COPD phenotyping and new treatment possibilities.
Collapse
|
22
|
Igarashi J, Hashimoto T, Shoji K, Yoneda K, Tsukamoto I, Moriue T, Kubota Y, Kosaka H. Dexamethasone induces caveolin-1 in vascular endothelial cells: implications for attenuated responses to VEGF. Am J Physiol Cell Physiol 2013; 304:C790-800. [DOI: 10.1152/ajpcell.00268.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroids exert direct actions on cardiovascular cells, although underlying molecular mechanisms remain incompletely understood. We examined if steroids modulate abundance of caveolin-1, a regulatory protein of cell-surface receptor pathways that regulates the magnitudes of endothelial response to vascular endothelial growth factor (VEGF). Dexamethasone, a synthetic glucocorticoid, induces caveolin-1 at both levels of protein and mRNA in a time- and dose-dependent manner in pharmacologically relevant concentrations in cultured bovine aortic endothelial cells. Aldosterone, a mineralocorticoid, but not the sex steroids 17β-estradiol, testosterone, or progesterone, elicits similar caveolin-1 induction. Caveolin-1 induction by dexamethasone and that by aldosterone were abrogated by RU-486, an inhibitor of glucocorticoid receptor, and by spironolactone, a mineralocorticoid receptor inhibitor, respectively. Dexamethasone attenuates VEGF-induced responses at the levels of protein kinases Akt and ERK1/2, small-G protein Rac1, nitric oxide production, and migration. When induction of caveolin-1 by dexamethasone is attenuated either by genetically by transient transfection with small interfering RNA or pharmacologically by RU-486, kinase responses to VEGF are rescued. Dexamethasone also increases expression of caveolin-1 protein in cultured human umbilical vein endothelial cells, associated with attenuated tube formation responses of these cells when cocultured with normal fibroblasts. Immunohistochemical analyses revealed that intraperitoneal injection of dexamethasone induces endothelial caveolin-1 protein in thoracic aorta and in lung artery in healthy male rats. Thus steroids functionally attenuate endothelial responses to VEGF via caveolin-1 induction at the levels of signal transduction, migration, and tube formation, identifying a novel point of cross talk between nuclear and cell-surface receptor signaling pathways.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Kazuyo Shoji
- Department of Dermatology, Kagawa University, Kagawa, Japan; and
| | - Kozo Yoneda
- Department of Dermatology, Kagawa University, Kagawa, Japan; and
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tetsuya Moriue
- Department of Dermatology, Kagawa University, Kagawa, Japan; and
| | - Yasuo Kubota
- Department of Dermatology, Kagawa University, Kagawa, Japan; and
| | - Hiroaki Kosaka
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| |
Collapse
|
23
|
Vessel-associated transforming growth factor-beta1 (TGF-β1) is increased in the bronchial reticular basement membrane in COPD and normal smokers. PLoS One 2012; 7:e39736. [PMID: 22768115 PMCID: PMC3387255 DOI: 10.1371/journal.pone.0039736] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 05/30/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transforming growth factor-beta1 (TGF-β1) is a multipotential cytokine with angiogenic activity. There are only limited data about its role in airway remodeling in COPD. We have previously shown that the reticular basement membrane (Rbm) is hypervascular in the airways of current smokers either with or without chronic obstructive pulmonary disease (COPD). This study evaluated TGF-β1 immunostaining in the Rbm and its relationship to vascularity in smokers with or without COPD. METHODOLOGY/PRINCIPAL FINDINGS Bronchial biopsies from 15 smokers with normal lung function, 19 current and 14 ex-smokers with COPD were immunostained for TGF-β1 antibody and compared to 17 healthy controls. The percentage area of tissue and also number and area of vessels staining positively for TGF-β1 were measured and compared between groups. Some bronchial biopsies from current smoking COPD subjects were also stained for phosphorylated (active) Smad2/3. Epithelial TGF- β1 staining was not different between COPD current smokers and normal controls. TGF-β1 stained vessels in the Rbm were increased in smokers with normal lung function, current smoking COPD and ex-smokers with COPD compared to controls [median (range) for number of vessels/mm Rbm 2.5 (0.0-12.7), 3.4 (0.0-8.1) and 1.0 (0.0-6.3) vs. 0.0 (0.0-7.0), p<0.05]. Percentage of vessels stained was also increased in these clinical groups. Preliminary data suggest that in current smoking COPD subjects endothelial cells and cells in the Rbm stain positively for phosphorylated Smad2/3 suggesting TGF-β1 is functionally active in this situation. CONCLUSIONS/SIGNIFICANCE Vessel-associated TGF-β1 activity is increased in the bronchial Rbm in smokers and especially those with COPD.
Collapse
|
24
|
Soltani A, Muller HK, Sohal SS, Reid DW, Weston S, Wood-Baker R, Walters EH. Distinctive characteristics of bronchial reticular basement membrane and vessel remodelling in chronic obstructive pulmonary disease (COPD) and in asthma: they are not the same disease. Histopathology 2012; 60:964-70. [PMID: 22320998 PMCID: PMC3465784 DOI: 10.1111/j.1365-2559.2011.04147.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 07/25/2011] [Indexed: 11/26/2022]
Abstract
AIMS This study compared reticular basement membrane (Rbm) and vascular remodelling within the bronchial mucosa of subjects with chronic obstructive pulmonary disease (COPD) with those from patients with asthma, to test the 'Dutch hypothesis' of whether these are essentially the same or different pathological conditions. METHODS AND RESULTS Bronchoscopic biopsies were stained with anti-collagen IV antibody; 18 current smoking COPD, 10 symptomatic asthmatics and 13 healthy non-smoking controls were studied. The Rbm in COPD was fragmented, non-homogeneous, variable in thickness and hypervascular, whereas in asthma the Rbm was compact and homogeneous with no evidence of increased vascularity compared to controls. Length of Rbm splitting presented as percentage of Rbm length was used to measure fragmentation; it was greater in COPD than in controls and asthmatics [median (range) 20.7% (0.4-68.5) versus 5.3% (0.0-21.7) versus 1.5% (0.0-15.1), P < 0.001]. The number of Rbm vessels/mm Rbm [median (range) 10.1 (1.6-23.0) versus 4.5 (0.0-26.4) versus 4.4 (0.4-8.1), P < 0.01] and area of Rbm vessels, μm(2) /mm Rbm [median (range) 953 (115-2456) versus 462 (0-3263) versus 426 (32-2216), P < 0.05] was also increased in COPD compared to normal subjects and asthmatics. CONCLUSIONS The characteristics of Rbm remodelling are quite different in asthma and COPD.
Collapse
Affiliation(s)
- Amir Soltani
- Respiratory Research Group, Menzies Research Institute, University of Tasmania, Hobart, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Kristan SS, Marc MM, Kern I, Flezar M, Suskovic S, Kosnik M, Korosec P. Airway Angiogenesis in Stable and Exacerbated Chronic Obstructive Pulmonary Disease. Scand J Immunol 2011; 75:109-14. [DOI: 10.1111/j.1365-3083.2011.02623.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Abstract
Allergic inflammation is due to a complex interplay between several inflammatory cells, including mast cells, basophils, lymphocytes, dendritic cells, eosinophils, and sometimes neutrophils. These cells produce multiple inflammatory mediators, including lipids, purines, cytokines, chemokines, and reactive oxygen species. Allergic inflammation affects target cells, such as epithelial cells, fibroblasts, vascular cells, and airway smooth muscle cells, which become an important source of inflammatory mediators. Sensory nerves are sensitized and activated during allergic inflammation and produce symptoms. Allergic inflammatory responses are orchestrated by several transcription factors, particularly NF-κB and GATA3. Inflammatory genes are also regulated by epigenetic mechanisms, including DNA methylation and histone modifications. There are several endogenous anti-inflammatory mechanisms, including anti-inflammatory lipids and cytokines, which may be defective in allergic disease, thus amplifying and perpetuating the inflammation. Better understanding of the pathophysiology of allergic inflammation has identified new therapeutic targets but developing effective novel therapies has been challenging. Corticosteroids are highly effective with a broad spectrum of anti-inflammatory effects, including epigenetic modulation of the inflammatory response and suppression of GATA3.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
27
|
Abstract
Arsenic is a wide spread carcinogen associated with several kinds of cancers including skin, lung, bladder, and liver cancers. Lung is one of the major targets of arsenic exposure. Angiogenesis is the pivotal process during carcinogenesis and chronic pulmonary diseases, but the role and mechanism of arsenic in regulating angiogenesis remain to be elucidated. In this study we show that short time exposure of arsenic induces angiogenesis in both human immortalized lung epithelial cells BEAS-2B and adenocarcinoma cells A549. To study the molecular mechanism of arsenic-inducing angiogenesis, we find that arsenic induces reactive oxygen species (ROS) generation, which activates AKT and ERK1/2 signaling pathways and increases the expression of hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF). Inhibition of ROS production suppresses angiogenesis by decreasing AKT and ERK activation and HIF-1 expression. Inhibition of ROS, AKT and ERK1/2 signaling pathways is sufficient to attenuate arsenic-inducing angiogenesis. HIF-1 and VEGF are downstream effectors of AKT and ERK1/2 that are required for arsenic-inducing angiogenesis. These results shed light on the mechanism of arsenic in regulating angiogenesis, and are helpful to develop mechanism-based intervention to prevent arsenic-induced carcinogenesis and angiogenesis in the future.
Collapse
|
28
|
Baarsma HA, Meurs H, Halayko AJ, Menzen MH, Schmidt M, Kerstjens HAM, Gosens R. Glycogen synthase kinase-3 regulates cigarette smoke extract- and IL-1β-induced cytokine secretion by airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 300:L910-9. [PMID: 21421749 DOI: 10.1152/ajplung.00232.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a constitutively active kinase that regulates multiple signaling proteins and transcription factors involved in inflammation. Its role in inflammatory lung diseases, including chronic obstructive pulmonary disease (COPD), is largely unknown. We investigated the role of GSK-3 in the secretion of chemokines and growth factors by human airway smooth muscle cells after exposure to cigarette smoke extract (CSE) or interleukin-1β (IL-1β), important factors involved in the development of COPD. Cultured human airway smooth muscle cells were exposed to increasing concentrations of CSE (1-15%) and IL-1β (0.01-1.0 ng/ml), which induced the secretion of VEGF-A and IL-8, whereas eotaxin secretion was induced by IL-1β only. Inhibition of GSK-3 by the selective inhibitor SB216763 or CHIR/CT99021 attenuated the cytokine and growth factor release induced by CSE and/or IL-1β, without affecting the basal release. Secretion of the cytokines by airway smooth muscle partially depends on NF-κB signaling, and GSK-3 has been implicated in regulating multiple steps in activating the NF-κB signaling pathway. IL-1β treatment induced degradation of the NF-κB inhibitory protein Iκ-Bα followed by nuclear translocation and DNA binding of p65 NF-κB, which were unaffected by inhibition of GSK-3. However, induction of NF-κB-dependent transcriptional activity by IL-1β and CSE was largely reduced upon GSK-3 inhibition by SB216763. Collectively, we demonstrate that CSE and IL-1β activate airway smooth muscle cells to secrete the proinflammatory cytokines IL-8, eotaxin, and VEGF-A. Furthermore, we show that GSK-3 regulates the release of these cytokines induced by CSE and IL-1β by promoting NF-κB-dependent gene transcription.
Collapse
Affiliation(s)
- Hoeke A Baarsma
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
29
|
Zanini A, Chetta A, Imperatori AS, Spanevello A, Olivieri D. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. Respir Res 2010; 11:132. [PMID: 20920222 PMCID: PMC2955663 DOI: 10.1186/1465-9921-11-132] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 09/29/2010] [Indexed: 11/10/2022] Open
Abstract
In recent years, there has been increased interest in the vascular component of airway remodelling in chronic bronchial inflammation, such as asthma and COPD, and in its role in the progression of disease. In particular, the bronchial mucosa in asthmatics is more vascularised, showing a higher number and dimension of vessels and vascular area. Recently, insight has been obtained regarding the pivotal role of vascular endothelial growth factor (VEGF) in promoting vascular remodelling and angiogenesis. Many studies, conducted on biopsies, induced sputum or BAL, have shown the involvement of VEGF and its receptors in the vascular remodelling processes. Presumably, the vascular component of airway remodelling is a complex multi-step phenomenon involving several mediators. Among the common asthma and COPD medications, only inhaled corticosteroids have demonstrated a real ability to reverse all aspects of vascular remodelling. The aim of this review was to analyze the morphological aspects of the vascular component of airway remodelling and the possible mechanisms involved in asthma and COPD. We also focused on the functional and therapeutic implications of the bronchial microvascular changes in asthma and COPD.
Collapse
Affiliation(s)
- Andrea Zanini
- Salvatore Maugeri Foundation, Department of Pneumology, IRCCS Rehabilitation Institute of Tradate, Italy
| | - Alfredo Chetta
- Department of Clinical Sciences, Section of Respiratory Diseases, University of Parma, Italy
| | | | - Antonio Spanevello
- Salvatore Maugeri Foundation, Department of Pneumology, IRCCS Rehabilitation Institute of Tradate, Italy
- Department of Respiratory Disease, University of Insubria, Varese, Italy
| | - Dario Olivieri
- Department of Clinical Sciences, Section of Respiratory Diseases, University of Parma, Italy
| |
Collapse
|
30
|
Detoraki A, Granata F, Staibano S, Rossi FW, Marone G, Genovese A. Angiogenesis and lymphangiogenesis in bronchial asthma. Allergy 2010; 65:946-58. [PMID: 20415716 DOI: 10.1111/j.1398-9995.2010.02372.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neovascularization plays a prominent role in inflammation and tissue remodeling in several chronic inflammatory disorders. Vessel number and size, vascular surface area and vascular leakage are all increased in biopsies from patients with asthma. High levels of VEGF and other angiogenic factors have been detected in tissues and biological samples of patients with asthma and correlate with disease activity and inversely with airway hyper-responsiveness. Inflammation in the lung stimulates the growth of new blood vessels and these contribute to the airway obstruction or airway hyper-responsiveness, or both. Effector cells of inflammation (human lung mast cells, basophils, eosinophils, macrophages, etc.) are major sources of a vast array of angiogenic and lymphangiogenic factors. Inhaled corticosteroids reduce vascularity and growth factor expression and might modulate bronchial vascular remodeling in asthma. Specific antagonists to VEGF and other angiogenic factors and their receptors might help to control chronic airway inflammation and vascular remodeling and offer a novel approach for the treatment of chronic inflammatory lung disorders.
Collapse
Affiliation(s)
- A Detoraki
- Department of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples
| | | | | | | | | | | |
Collapse
|
31
|
Soltani A, Reid DW, Sohal SS, Wood-Baker R, Weston S, Muller HK, Walters EH. Basement membrane and vascular remodelling in smokers and chronic obstructive pulmonary disease: a cross-sectional study. Respir Res 2010; 11:105. [PMID: 20670454 PMCID: PMC2918561 DOI: 10.1186/1465-9921-11-105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 07/30/2010] [Indexed: 12/18/2022] Open
Abstract
Background Little is known about airway remodelling in bronchial biopsies (BB) in smokers and chronic obstructive pulmonary disease (COPD). We conducted an initial pilot study comparing BB from COPD patients with nonsmoking controls. This pilot study suggested the presence of reticular basement membrane (Rbm) fragmentation and altered vessel distribution in COPD. Methods To determine whether Rbm fragmentation and altered vessel distribution in BB were specific for COPD we designed a cross-sectional study and stained BB from 19 current smokers and 14 ex-smokers with mild to moderate COPD and compared these to 15 current smokers with normal lung function and 17 healthy and nonsmoking subjects. Results Thickness of the Rbm was not significantly different between groups; although in COPD this parameter was quite variable. The Rbm showed fragmentation and splitting in both current smoking groups and ex-smoker COPD compared with healthy nonsmokers (p < 0.02); smoking and COPD seemed to have additive effects. Rbm fragmentation correlated with smoking history in COPD but not with age. There were more vessels in the Rbm and fewer vessels in the lamina propria in current smokers compared to healthy nonsmokers (p < 0.05). The number of vessels staining for vascular endothelial growth factor (VEGF) in the Rbm was higher in both current smoker groups and ex-smoker COPD compared to healthy nonsmokers (p < 0.004). In current smoker COPD VEGF vessel staining correlated with FEV1% predicted (r = 0.61, p < 0.02). Conclusions Airway remodelling in smokers and mild to moderate COPD is associated with fragmentation of the Rbm and altered distribution of vessels in the airway wall. Rbm fragmentation was also present to as great an extent in ex-smokers with COPD. These characteristics may have potential physiological consequences.
Collapse
Affiliation(s)
- Amir Soltani
- Respiratory Research Group, Menzies Research Institute, University of Tasmania, 17 Liverpool St, Hobart, 7000, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang Y, Bai C, Wang X. COPD-associated vascular pathology: a future targeting area. Expert Rev Respir Med 2010; 2:297-9. [PMID: 20477192 DOI: 10.1586/17476348.2.3.297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Ribatti D, Puxeddu I, Crivellato E, Nico B, Vacca A, Levi-Schaffer F. Angiogenesis in asthma. Clin Exp Allergy 2010; 39:1815-21. [PMID: 20085597 DOI: 10.1111/j.1365-2222.2009.03385.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by infiltration and activation of inflammatory cells and by structural changes, including subepithelial fibrosis, smooth muscle cells hypertrophy/hyperplasia, epithelial cell metaplasia and angiogenesis. These structural changes are thought to correlate with asthma severity and to account for the development of progressive lung function deterioration. The mechanism underlying airway angiogenesis in asthma and its precise clinical relevance have not yet been completely elucidated. This review provides recent data showing the contribution of allergic inflammation in increased airway vascularity and potential therapeutical approaches in asthma treatment by acting on bronchial microvascular changes.
Collapse
Affiliation(s)
- D Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Yao LC, Baluk P, Feng J, McDonald DM. Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1525-41. [PMID: 20093490 DOI: 10.2353/ajpath.2010.090909] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angiogenesis and lymphangiogenesis participate in many inflammatory diseases, and their reversal is thought to be beneficial. However, the extent of reversibility of vessel remodeling is poorly understood. We exploited the potent anti-inflammatory effects of the corticosteroid dexamethasone to test the preventability and reversibility of vessel remodeling in Mycoplasma pulmonis-infected mice using immunohistochemistry and quantitative RT-PCR. In this model robust immune responses drive rapid and sustained changes in blood vessels and lymphatics. In infected mice not treated with dexamethasone, capillaries enlarged into venules expressing leukocyte adhesion molecules, sprouting angiogenesis and lymphangiogenesis occurred, and the inflammatory cytokines tumor necrosis factor and interleukin-1 increased. Concurrent dexamethasone treatment largely prevented the remodeling of blood vessels and lymphatics. Dexamethasone also significantly reduced cytokine expression, bacterial burden, and leukocyte influx into airways and lungs over 4 weeks of infection. In contrast, when infection was allowed to proceed untreated for 2 weeks and then was treated with dexamethasone for 4 weeks, most blood vessel changes reversed but lymphangiogenesis did not, suggesting that different survival mechanisms apply. Furthermore, dexamethasone significantly reduced the bacterial burden and influx of lymphocytes but not of neutrophils or macrophages or cytokine expression. These findings show that lymphatic remodeling is more resistant than blood vessel remodeling to corticosteroid-induced reversal. We suggest that lymphatic remodeling that persists after the initial inflammatory response has resolved may influence subsequent inflammatory episodes in clinical situations.
Collapse
Affiliation(s)
- Li-Chin Yao
- Department of Anatomy, University of California, 513 Parnassus Ave., Room S1363, San Francisco, CA 94143-0452, USA.
| | | | | | | |
Collapse
|
35
|
Robertson AGN, Griffin SM, Murphy DM, Pearson JP, Forrest IA, Dark JH, Corris PA, Ward C. Targeting allograft injury and inflammation in the management of post-lung transplant bronchiolitis obliterans syndrome. Am J Transplant 2009; 9:1272-8. [PMID: 19459806 DOI: 10.1111/j.1600-6143.2009.02648.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic allograft dysfunction, manifesting as bronchiolitis obliterans syndrome (BOS), is the major cause of morbidity and mortality in human lung transplant recipients. While alloimmunity has a definite role, there is increasing interest in overall allograft injury and subsequent inflammation and remodeling. This review deals with nonalloimmune factors that may potentiate alloimmune injury. We discuss infection and reflux/aspiration as examples of allograft injury, which may lead to chronic loss of graft function and BOS. Surgical and nonsurgical treatments aimed at preventing these insults and improving survival are considered. The need for further evidence, including randomized-controlled trials, to evaluate the role of medical and surgical therapies is emphasized by the current literature.
Collapse
Affiliation(s)
- A G N Robertson
- Northern Oesophago-Gastric Unit, Royal Victoria Infirmary, Newcastle University, Newcastle, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Arias HR, Richards VE, Ng D, Ghafoori ME, Le V, Mousa SA. Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. Int J Biochem Cell Biol 2009; 41:1441-51. [PMID: 19401144 DOI: 10.1016/j.biocel.2009.01.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/17/2009] [Indexed: 12/16/2022]
Abstract
Angiogenesis is a critical physiological process for cell survival and development. Endothelial cells, necessary for the course of angiogenesis, express several non-neuronal nicotinic acetylcholine receptors (AChRs). The most important functional non-neuronal AChRs are homomeric alpha7 AChRs and several heteromeric AChRs formed by a combination of alpha3, alpha5, beta2, and beta4 subunits, including alpha3beta4-containing AChRs. In endothelial cells, alpha7 AChR stimulation indirectly triggers the activation of the integrin alphavbeta3 receptor and an intracellular MAP kinase (ERK) pathway that mediates angiogenesis. Non-selective cholinergic agonists such as nicotine have been shown to induce angiogenesis, enhancing tumor progression. Moreover, alpha7 AChR selective antagonists such as alpha-bungarotoxin and methyllycaconitine as well as the non-specific antagonist mecamylamine have been shown to inhibit endothelial cell proliferation and ultimately blood vessel formation. Exploitation of such pharmacologic properties can lead to the discovery of new specific cholinergic antagonists as anti-cancer therapies. Conversely, the pro-angiogenic effect elicited by specific agonists can be used to treat diseases that respond to revascularization such as diabetic ischemia and atherosclerosis, as well as to accelerate wound healing. In this mini-review we discuss the pharmacological evidence supporting the importance of non-neuronal AChRs in angiogenesis. We also explore potential intracellular mechanisms by which alpha7 AChR activation mediates this vital cellular process.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308-3550, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Kristan SS, Malovrh MM, Silar M, Kern I, Flezar M, Kosnik M, Suskovic S, Korosec P. Airway angiogenesis in patients with rhinitis and controlled asthma. Clin Exp Allergy 2009; 39:354-60. [PMID: 19178538 DOI: 10.1111/j.1365-2222.2008.03170.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Airway angiogenesis may be an important part of structural remodelling in the pathogenesis of asthma. The development of asthma is frequently preceded by rhinitis. OBJECTIVE We sought to determine whether the levels of angiogenesis-related factors are elevated in airways of patients with rhinitis or controlled asthma. METHODS We analysed the induced sputum of 18 rhinitis patients, 16 asthmatic patients, and 15 healthy controls. The concentrations of angiogenin, vascular endothelial growth factor (VEGF), IL-8, fibroblast growth factor (bFGF), and TNF-alpha were measured by cytometric bead arrays. RESULTS We found significantly increased angiogenin and VEGF concentrations in the induced sputum supernatant of both rhinitis and asthma patients compared with that of the healthy control group (P< or =0.0005). With the exception of TNF-alpha, there was no difference in the other angiogenic factors; TNF-alpha levels were higher in the rhinitis group than in the control group (P=0.02). CONCLUSION These in vivo results suggest increased airway angiogenesis in patients with rhinitis without asthma as well as in corticosteroid-treated and well-controlled asthma patients.
Collapse
Affiliation(s)
- S S Kristan
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|