1
|
AlRawashdeh S, Chandrasekaran S, Barakat KH. Structural analysis of hERG channel blockers and the implications for drug design. J Mol Graph Model 2023; 120:108405. [PMID: 36680816 DOI: 10.1016/j.jmgm.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The repolarizing current (Ikr) produced by the hERG potassium channel forms a major component of the cardiac action potential and blocking this current by small molecule drugs can lead to life-threatening cardiotoxicity. Understanding the mechanisms of drug-mediated hERG inhibition is essential to develop a second generation of safe drugs, with minimal cardiotoxic effects. Although various computational tools and drug design guidelines have been developed to avoid binding of drugs to the hERG pore domain, there are many other aspects that are still open for investigation. This includes the use computational modelling to study the implications of hERG mutations on hERG structure and trafficking, the interactions of hERG with hERG chaperone proteins and with membrane-soluble molecules, the mechanisms of drugs that inhibit hERG trafficking and drugs that rescue hERG mutations. The plethora of available experimental data regarding all these aspects can guide the construction of much needed robust computational structural models to study these mechanisms for the rational design of safe drugs.
Collapse
Affiliation(s)
- Sara AlRawashdeh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Lankaputhra M, Voskoboinik A. Congenital Long QT Syndrome: A Clinician's Guide. Intern Med J 2021; 51:1999-2011. [PMID: 34151491 DOI: 10.1111/imj.15437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Congenital long QT syndrome (LQTS) is a familial cardiac ion channelopathy first described over sixty years ago. It is characterised by prolonged ventricular repolarization (long QT on ECG), ventricular arrhythmias and associated syncope or sudden cardiac death. As the most closely studied cardiac channelopathy, over the decades we have gained a deep appreciation of the complex genetic model of LQTS. Variability in genetic expression and incomplete penetrance leads to a heterogenous phenotype that can be challenging to clinically classify. In recent times, progress has been made in diagnostic method, risk stratification and treatment options. This review has been written as a guide for the general cardiologist to understand the basic pathophysiology, diagnosis, and management priorities for the most encountered LQTS subtypes: LQT1, LQT2 and LQT3. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Aleksandr Voskoboinik
- Division of Cardiology, Alfred Health, Melbourne, Australia.,Division of Cardiology Western Health, Monash University & Baker Heart & Diabetes Institute, Melbourne, Australia
| |
Collapse
|
3
|
Mondal T, Sullivan K, Divakaramenon S, Hamilton RM. Antiepileptic rufinamide and QTc interval shortening in a patient with long QT syndrome: case report. Eur Heart J Case Rep 2020; 4:1-4. [PMID: 33442618 PMCID: PMC7793134 DOI: 10.1093/ehjcr/ytaa336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022]
Abstract
Background There is limited pharmacologic therapy to reduce the QT interval in hereditary long QT syndrome (LQTS). Case summary We describe a child with Allan–Herndon–Dudley syndrome, Lennox–Gastaut epileptic syndrome (LGS), and LQTS Type 1 (LQTS1). Rufinamide was added to his antiepileptic medications to improve seizure control and was noted to be associated with a marked improvement in electrocardiogram QT interval. To the best of our knowledge, this is the first reported case of successful pharmacologic shortening of the QT interval in LQTS1. Discussion This case report highlights the potential benefits of rufinamide, a drug associated with mild QT shortening in normal individuals, to markedly reduce and normalize QT duration in a subject with LQTS1.
Collapse
Affiliation(s)
- Tapas Mondal
- Division of Cardiology, Department of Pediatrics, McMaster University, Health Sciences Centre, 3A 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Kristen Sullivan
- Department of Medicine, McMaster University, Health Sciences Centre, 4V33 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Syam Divakaramenon
- Division of Electrophysiology, Department of Cardiology, McMaster University, HHSC, Hamilton General Hospital Site, 502, McMaster Clinic, 237 Barton St. E., Hamilton, ON L8L 2X2, Canada
| | - Robert M Hamilton
- Department of Pediatrics (Cardiology), The Hospital for Sick Children, Room 1725D, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
4
|
Abstract
Kv7 channels (Kv7.1-7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1-5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2-7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2-7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.
Collapse
Affiliation(s)
- Emely Thompson
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
5
|
Wallace E, Howard L, Liu M, O'Brien T, Ward D, Shen S, Prendiville T. Long QT Syndrome: Genetics and Future Perspective. Pediatr Cardiol 2019; 40:1419-1430. [PMID: 31440766 PMCID: PMC6785594 DOI: 10.1007/s00246-019-02151-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/10/2019] [Indexed: 01/19/2023]
Abstract
Long QT syndrome (LQTS) is an inherited primary arrhythmia syndrome that may present with malignant arrhythmia and, rarely, risk of sudden death. The clinical symptoms include palpitations, syncope, and anoxic seizures secondary to ventricular arrhythmia, classically torsade de pointes. This predisposition to malignant arrhythmia is from a cardiac ion channelopathy that results in delayed repolarization of the cardiomyocyte action potential. The QT interval on the surface electrocardiogram is a summation of the individual cellular ventricular action potential durations, and hence is a surrogate marker of the abnormal cellular membrane repolarization. Severely affected phenotypes administered current standard of care therapies may not be fully protected from the occurrence of cardiac arrhythmias. There are 17 different subtypes of LQTS associated with monogenic mutations of 15 autosomal dominant genes. It is now possible to model the various LQTS phenotypes through the generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes. RNA interference can silence or suppress the expression of mutant genes. Thus, RNA interference can be a potential therapeutic intervention that may be employed in LQTS to knock out mutant mRNAs which code for the defective proteins. CRISPR/Cas9 is a genome editing technology that offers great potential in elucidating gene function and a potential therapeutic strategy for monogenic disease. Further studies are required to determine whether CRISPR/Cas9 can be employed as an efficacious and safe rescue of the LQTS phenotype. Current progress has raised opportunities to generate in vitro human cardiomyocyte models for drug screening and to explore gene therapy through genome editing.
Collapse
Affiliation(s)
- Eimear Wallace
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Min Liu
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Deirdre Ward
- Department of Cardiology, Tallaght University Hospital, Dublin, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Terence Prendiville
- Department of Paediatric Cardiology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.
| |
Collapse
|
6
|
Therapeutic effects of a taurine-magnesium coordination compound on experimental models of type 2 short QT syndrome. Acta Pharmacol Sin 2018; 39:382-392. [PMID: 29072257 DOI: 10.1038/aps.2017.86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/19/2017] [Indexed: 01/21/2023]
Abstract
Short QT syndrome (SQTS) is a genetic arrhythmogenic disease that can cause malignant arrhythmia and sudden cardiac death. The current therapies for SQTS have application restrictions. We previously found that Mg· (NH2CH2CH2SO3)2· H2O, a taurine-magnesium coordination compound (TMCC) exerted anti-arrhythmic effects with low toxicity. In this study we established 3 different models to assess the potential anti-arrhythmic effects of TMCC on type 2 short QT syndrome (SQT2). In Langendorff guinea pig-perfused hearts, perfusion of pinacidil (20 μmol/L) significantly shortened the QT interval and QTpeak and increased rTp-Te (P<0.05 vs control). Subsequently, perfusion of TMCC (1-4 mmol/L) dose-dependently increased the QT interval and QTpeak (P<0.01 vs pinacidil). TMCC perfusion also reversed the rTp-Te value to the normal range. In guinea pig ventricular myocytes, perfusion of trapidil (1 mmol/L) significantly shortened the action potential duration at 50% (APD50) and 90% repolarization (APD90), which was significantly reversed by TMCC (0.01-1 mmol/L, P<0.05 vs trapidil). In HEK293 cells that stably expressed the outward delayed rectifier potassium channels (IKs), perfusion of TMCC (0.01-1 mmol/L) dose-dependently inhibited the IKs current with an IC50 value of 201.1 μmol/L. The present study provides evidence that TMCC can extend the repolarization period and inhibit the repolarizing current, IKs, thereby representing a therapeutic candidate for ventricular arrhythmia in SQT2.
Collapse
|
7
|
Antoniou CK, Dilaveris P, Manolakou P, Galanakos S, Magkas N, Gatzoulis K, Tousoulis D. QT Prolongation and Malignant Arrhythmia: How Serious a Problem? Eur Cardiol 2017; 12:112-120. [PMID: 30416582 PMCID: PMC6223357 DOI: 10.15420/ecr.2017:16:1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022] Open
Abstract
QT prolongation constitutes one of the most frequently encountered electrical disorders of the myocardium. This is due not only to the presence of several associated congenital syndrome but also, and mainly, due to the QT-prolonging effects of several acquired conditions, such as ischaemia and heart failure, as well as multiple medications from widely different categories. Propensity of repolarization disturbances to arrhythmia appears to be inherent in the function of and electrophysiology of the myocardium. In the present review the issue of QT prolongation will be addressed in terms of pathophysiology, arrhythmogenesis, treatment and risk stratification approaches. Although already discussed in literature, it is hoped that the mechanistic approach of the present review will assist in improved understanding of the underlying changes in electrophysiology, as well as the rationale for current diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Panagiota Manolakou
- First Department of Cardiology, Korgialenion–Benakion/Hellenic Red Cross HospitalAthens, Greece
| | - Spyridon Galanakos
- First University Department of Cardiology, Hippokration HospitalAthens, Greece
| | - Nikolaos Magkas
- First University Department of Cardiology, Hippokration HospitalAthens, Greece
| | | | - Dimitrios Tousoulis
- First University Department of Cardiology, Hippokration HospitalAthens, Greece
| |
Collapse
|
8
|
Ji Y, Veldhuis MG, Zandvoort J, Romunde FL, Houtman MJC, Duran K, van Haaften G, Zangerl-Plessl EM, Takanari H, Stary-Weinzinger A, van der Heyden MAG. PA-6 inhibits inward rectifier currents carried by V93I and D172N gain-of-function K IR2.1 channels, but increases channel protein expression. J Biomed Sci 2017; 24:44. [PMID: 28711067 PMCID: PMC5513211 DOI: 10.1186/s12929-017-0352-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/11/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The inward rectifier potassium current IK1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased IK1, short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC50 = 14 nM with inside-out patch clamp methodology) and specific IK1 inhibitor that interacts with the cytoplasmic pore region of the KIR2.1 ion channel, encoded by KCNJ2. At 10 μM, PA-6 increases wild-type (WT) KIR2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N KIR2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. METHODS Molecular modelling was performed with the human KIR2.1 closed state homology model using FlexX. WT and mutant KIR2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. KIR2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. RESULTS PA-6 docking in the V93I/D172N double mutant homology model of KIR2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC50 = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC50 = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 μM of PA-6 inhibited outward IK1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 μM, 24 h) increased KIR2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular KIR2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 μM). CONCLUSIONS 1) KCNJ2 gain-of-function mutations V93I and D172N in the KIR2.1 ion channel do not impair PA-6 mediated inhibition of IK1, 2) PA-6 elevates KIR2.1 protein expression and induces intracellular KIR2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marlieke G. Veldhuis
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Jantien Zandvoort
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Fee L. Romunde
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marien J. C. Houtman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Karen Duran
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hiroki Takanari
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | | | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
9
|
Hydrocinnamic Acid Inhibits the Currents of WT and SQT3 Syndrome-Related Mutants of Kir2.1 Channel. J Membr Biol 2017; 250:425-432. [PMID: 28660286 DOI: 10.1007/s00232-017-9964-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 06/01/2017] [Indexed: 01/27/2023]
Abstract
Gain of function in mutations, D172N and E299V, of Kir2.1 will induce type III short QT syndrome. In our previous work, we had identified that a mixture of traditional Chinese medicine, styrax, is a blocker of Kir2.1. Here, we determined a monomer, hydrocinnamic acid (HA), as the effective component from 18 compounds of styrax. Our data show that HA can inhibit the currents of Kir2.1 channel in both excised inside-out and whole-cell patch with the IC50 of 5.21 ± 1.02 and 10.08 ± 0.46 mM, respectively. The time course of HA blockage and washout are 2.3 ± 0.6 and 10.5 ± 2.6 s in the excised inside-out patch. Moreover, HA can also abolish the currents of D172N and E299V with the IC50 of 6.66 ± 0.57 and 5.81 ± 1.10 mM for D172N and E299V, respectively. Molecular docking results determine that HA binds with Kir2.1 at K182, K185, and K188, which are phosphatidylinositol 4,5-bisphosphate (PIP2) binding residues. Our results indicate that HA competes with PIP2 to bind with Kir2.1 and inhibits the currents.
Collapse
|
10
|
Lazzerini PE, Capecchi PL, Laghi-Pasini F, Boutjdir M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat Rev Cardiol 2017; 14:521-535. [PMID: 28470179 DOI: 10.1038/nrcardio.2017.61] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac arrhythmias confer a considerable burden of morbidity and mortality in industrialized countries. Although coronary artery disease and heart failure are the prevalent causes of cardiac arrest, in 5-15% of patients, structural abnormalities at autopsy are absent. In a proportion of these patients, mutations in genes encoding cardiac ion channels are documented (inherited channelopathies), but, to date, the molecular autopsy is negative in nearly 70% of patients. Emerging evidence indicates that autoimmunity is involved in the pathogenesis of cardiac arrhythmias. In particular, several arrhythmogenic autoantibodies targeting specific calcium, potassium, or sodium channels in the heart have been identified. Experimental and clinical studies demonstrate that these autoantibodies can promote conduction disturbances and life-threatening tachyarrhythmias by inducing substantial electrophysiological changes. In this Review, we propose the term 'autoimmune cardiac channelopathies' to define this novel pathogenic mechanism of cardiac arrhythmias, which could be more frequent and clinically relevant than previously appreciated. Indeed, pathogenic autoantibodies against ion channels are detectable not only in patients with manifest autoimmune disease, but also in apparently healthy individuals, which suggests a causal role in some cases of unexplained arrhythmias and cardiac arrest. Considering this possibility and performing specific testing in patients with 'idiopathic' rhythm disturbances could create novel treatment opportunities.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Viale Bracci 16, Siena, 53100, Italy
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Viale Bracci 16, Siena, 53100, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Viale Bracci 16, Siena, 53100, Italy
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, 800 Poly Place, Brooklyn, New York 11209, USA.,SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA.,NYU School of Medicine, 550 1st Avenue, New York, New York 10016, USA
| |
Collapse
|
11
|
Ren S, Pang C, Li J, Huang Y, Zhang S, Zhan Y, An H. Styrax blocks inward and outward current of Kir2.1 channel. Channels (Austin) 2017; 11:46-54. [PMID: 27540685 DOI: 10.1080/19336950.2016.1207022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Kir2.1 plays key roles in setting rest membrane potential and modulation of cell excitability. Mutations of Kir2.1, such as D172N or E299V, inducing gain-of-function, can cause type3 short QT syndrome (SQT3) due to the enlarged outward currents. So far, there is no clinical drug target to block the currents of Kir2.1. Here, we identified a novel blocker of Kir2.1, styrax, which is a kind of natural compound selected from traditional Chinese medicine. Our data show that styrax can abolish the inward and outward currents of Kir2.1. The IC50 of styrax for WT, D172N and E299V are 0.0113 ± 0.00075, 0.0204 ± 0.0048 and 0.0122 ± 0.0012 (in volume), respectively. The results indicate that styrax can serve as a novel blocker for Kir2.1.
Collapse
Affiliation(s)
- Shuxi Ren
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Chunli Pang
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Junwei Li
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Yayue Huang
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Suhua Zhang
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Yong Zhan
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Hailong An
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| |
Collapse
|
12
|
MacKenzie M, Hall R. Pharmacogenomics and pharmacogenetics for the intensive care unit: a narrative review. Can J Anaesth 2016; 64:45-64. [PMID: 27752976 DOI: 10.1007/s12630-016-0748-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/31/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Knowledge of how alterations in pharmacogenomics and pharmacogenetics may affect drug therapy in the intensive care unit (ICU) has received little study. We review the clinically relevant application of pharmacogenetics and pharmacogenomics to drugs and conditions encountered in the ICU. SOURCE We selected relevant literature to illustrate the important concepts contained within. PRINCIPAL FINDINGS Two main approaches have been used to identify genetic abnormalities - the candidate gene approach and the genome-wide approach. Genetic variability in response to drugs may occur as a result of alterations of drug-metabolizing (cytochrome P [CYP]) enzymes, receptors, and transport proteins leading to enhancement or delay in the therapeutic response. Of relevance to the ICU, genetic variation in CYP-450 isoenzymes results in altered effects of midazolam, fentanyl, morphine, codeine, phenytoin, clopidogrel, warfarin, carvedilol, metoprolol, HMG-CoA reductase inhibitors, calcineurin inhibitors, non-steroidal anti-inflammatory agents, proton pump inhibitors, and ondansetron. Changes in cholinesterase enzyme function may affect the disposition of succinylcholine, benzylisoquinoline muscle relaxants, remifentanil, and hydralazine. Genetic variation in transport proteins leads to differences in the response to opioids and clopidogrel. Polymorphisms in drug receptors result in altered effects of β-blockers, catecholamines, antipsychotic agents, and opioids. Genetic variation also contributes to the diversity and incidence of diseases and conditions such as sepsis, malignant hyperthermia, drug-induced hypersensitivity reactions, cardiac channelopathies, thromboembolic disease, and congestive heart failure. CONCLUSION Application of pharmacogenetics and pharmacogenomics has seen improvements in drug therapy. Ongoing study and incorporation of these concepts into clinical decision making in the ICU has the potential to affect patient outcomes.
Collapse
Affiliation(s)
- Meghan MacKenzie
- Pharmacy Department, Nova Scotia Health Authority, Halifax, NS, Canada.,College of Pharmacy, Dalhousie University, Halifax, NS, Canada
| | - Richard Hall
- Departments of Anesthesia, Pain Management and Perioperative Medicine and Critical Care Medicine and Pharmacology, Dalhousie University and the Nova Scotia Health Authority, Halifax, NS, B3H 3A7, Canada.
| |
Collapse
|
13
|
Boutjdir M, Lazzerini PE, Capecchi PL, Laghi-Pasini F, El-Sherif N. Potassium Channel Block and Novel Autoimmune-Associated Long QT Syndrome. Card Electrophysiol Clin 2016; 8:373-84. [PMID: 27261828 DOI: 10.1016/j.ccep.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article reviews advances in the pathogenesis of anti-SSA/Ro antibody-induced corrected QT (QTc) prolongation in patients with autoimmune diseases; particularly connective tissue disease (CTD). Evidence shows that anti-SSA/Ro antibody-positive patients with CTD show QTc prolongation and complex ventricular arrhythmias. Molecular and functional data provide evidence that the human ether-a-go-go-related gene potassium channel conducting the rapidly activating delayed rectifier potassium current is directly inhibited by anti-SSA/Ro antibodies, resulting in action potential duration prolongation leading to QT interval lengthening. Routine electrocardiogram screening in anti-SSA/Ro antibody-positive patients and counseling for patients with other QTc prolonging risk factors is recommended.
Collapse
Affiliation(s)
- Mohamed Boutjdir
- Research and Development Service, VA New York Harbor Healthcare System, 800 Poly Place, Brooklyn, NY 11209, USA; Departments of Medicine, Cell Biology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Department of Medicine, NYU School of Medicine, 550, 1st Avenue, New York, NY 10016, USA
| | - Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Policlinico "Le Scotte", Viale Bracci, Siena 53100, Italy
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Policlinico "Le Scotte", Viale Bracci, Siena 53100, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Policlinico "Le Scotte", Viale Bracci, Siena 53100, Italy
| | - Nabil El-Sherif
- Research and Development Service, VA New York Harbor Healthcare System, 800 Poly Place, Brooklyn, NY 11209, USA; Departments of Medicine, Cell Biology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
14
|
Abstract
In the last decade, there have been considerable advances in the understanding of the pathophysiology of malignant ventricular tachyarrhythmias (VT) and sudden cardiac death (SCD). Over 80% of SCD occurs in patients with organic heart disease. However, approximately 10%-15% of SCD occurs in the presence of structurally normal heart, and the majority of these patients are young. In this group of patients, changes in genes encoding cardiac ion channels produce modifications of the function of the channel resulting in an electrophysiological substrate of VT and SCD. Collectively, these disorders are referred to as cardiac ion channelopathies. The four major syndromes in this group are: the long QT syndrome (LQTS), the Brugada syndrome (BrS), the short QT syndrome (SQTS), and the catecholaminergic polymorphic ventricular tachycardia (CPVT). Each of these syndromes includes multiple subtypes with different and sometimes complex cardiac ion channel genetic abnormalities. Many are associated with other somatic and neurological abnormalities besides the risk of VT and SCD. The current management of cardiac ion channelopathies can be summarized as follows: (1) in symptomatic patients, the implantable cardioverter defibrillator (ICD) is the only viable option; (2) in asymptomatic patients, risk stratification is necessary, followed by either the ICD, pharmacotherapy, or a combination of both. A genotype-specific approach to pharmacotherapy requires a thorough understanding of the molecular-cellular basis of arrhythmogenesis in cardiac ion channelopathies as well as the specific drug profile.
Collapse
|
15
|
Lazzerini PE, Capecchi PL, Laghi-Pasini F. Long QT Syndrome: An Emerging Role for Inflammation and Immunity. Front Cardiovasc Med 2015; 2:26. [PMID: 26798623 PMCID: PMC4712633 DOI: 10.3389/fcvm.2015.00026] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023] Open
Abstract
The long QT syndrome (LQTS), classified as congenital or acquired, is a multi-factorial disorder of myocardial repolarization predisposing to life-threatening ventricular arrhythmias, particularly torsades de pointes. In the latest years, inflammation and immunity have been increasingly recognized as novel factors crucially involved in modulating ventricular repolarization. In the present paper, we critically review the available information on this topic, also analyzing putative mechanisms and potential interplays with the other etiologic factors, either acquired or inherited. Accumulating data indicate inflammatory activation as a potential cause of acquired LQTS. The putative underlying mechanisms are complex but essentially cytokine-mediated, including both direct actions on cardiomyocyte ion channels expression and function, and indirect effects resulting from an increased central nervous system sympathetic drive on the heart. Autoimmunity represents another recently arising cause of acquired LQTS. Indeed, increasing evidence demonstrates that autoantibodies may affect myocardial electric properties by directly cross-reacting with the cardiomyocyte and interfering with specific ion currents as a result of molecular mimicry mechanisms. Intriguingly, recent data suggest that inflammation and immunity may be also involved in modulating the clinical expression of congenital forms of LQTS, possibly triggering or enhancing electrical instability in patients who already are genetically predisposed to arrhythmias. In this view, targeting immuno-inflammatory pathways may in the future represent an attractive therapeutic approach in a number of LQTS patients, thus opening new exciting avenues in antiarrhythmic therapy.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| |
Collapse
|
16
|
Modulation of the QT interval duration in hypertension with antihypertensive treatment. Hypertens Res 2015; 38:447-54. [DOI: 10.1038/hr.2015.30] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/27/2014] [Accepted: 11/12/2014] [Indexed: 11/08/2022]
|
17
|
Lazzerini PE, Capecchi PL, Boutjdir M, Laghi-Pasini F. Comment on "absence of an association between anti-Ro antibodies and prolonged QTc interval in systemic sclerosis: a multicenter study of 689 patients". Semin Arthritis Rheum 2014; 44:e16-e17. [PMID: 25455682 DOI: 10.1016/j.semarthrit.2014.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Policlinico "Le Scotte," Viale Bracci, Siena, Italy.
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Policlinico "Le Scotte," Viale Bracci, Siena, Italy
| | - Mohamed Boutjdir
- Research Department, VA New York Harbor Healthcare System, New York, NY; Department of Medicine, State University of New York at Downstate Medical Center, New York, NY; Department of Cell Biology, State University of New York at Downstate Medical Center, New York, NY; Department of Pharmacology, State University of New York at Downstate Medical Center, New York, NY; NYU School of Medicine, New York, NY
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Policlinico "Le Scotte," Viale Bracci, Siena, Italy
| |
Collapse
|
18
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
19
|
Mehta A, Sequiera GL, Ramachandra CJA, Sudibyo Y, Chung Y, Sheng J, Wong KY, Tan TH, Wong P, Liew R, Shim W. Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes. Cardiovasc Res 2014; 102:497-506. [PMID: 24623279 DOI: 10.1093/cvr/cvu060] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Long QT syndrome 2 (LQTS2) caused by missense mutations in hERG channel is clinically associated with abnormally prolonged ventricular repolarization and sudden cardiac deaths. Modelling monogenic arrhythmogenic diseases using human-induced pluripotent stem cells (hiPSCs) offers unprecedented mechanistic insights into disease pathogenesis. We utilized LQTS2-hiPSC-derived cardiomyocytes (CMs) to elucidate pathological changes and to demonstrate reversal of LQTS2 phenotype in a therapeutic intervention using a pharmacological agent, (N-[N-(N-acetyl-l-leucyl)-l-leucyl]-l-norleucine) (ALLN). METHODS AND RESULTS We generated LQTS2-specific CMs (A561V missense mutation in KCNH2) from iPSCs using the virus-free reprogramming method. These CMs recapitulate dysfunction of hERG potassium channel with diminished IKr currents, prolonged repolarization durations, and elevated arrhythmogenesis due to reduced membrane localization of glycosylated/mature hERG. Dysregulated expression of folding chaperones and processing proteasomes coupled with sequestered hERG in the endoplasmic reticulum confirmed trafficking-induced disease manifestation. Treatment with ALLN, not only increased membrane localization of mature hERG but also reduced repolarization, increased IKr currents and reduced arrhythmogenic events. Diverged from biophysical interference of hERG channel, our results show that modulation of chaperone proteins could be therapeutic in LQTS2 treatment. CONCLUSION Our in vitro study shows an alternative approach to rescue diseased LQTS2 phenotype via corrective re-trafficking therapy using a small chemical molecule, such as ALLN. This potentially novel approach may have ramifications in other clinically relevant trafficking disorders.
Collapse
Affiliation(s)
- Ashish Mehta
- Research and Development Unit, National Heart Centre Singapore, Singapore National Heart Research Institute Singapore, Singapore
| | | | | | - Yuliansa Sudibyo
- Research and Development Unit, National Heart Centre Singapore, Singapore
| | - Yingying Chung
- Research and Development Unit, National Heart Centre Singapore, Singapore
| | - Jingwei Sheng
- Research and Development Unit, National Heart Centre Singapore, Singapore
| | - Keng Yean Wong
- Department of Paediatrics, KK Women's and Children Hospital, Singapore
| | - Teng Hong Tan
- Department of Paediatrics, KK Women's and Children Hospital, Singapore
| | - Philip Wong
- Department of Cardiology, National Heart Centre Singapore, Singapore Cardiovascular and Metabolic Disorders Program, DUKE-NUS, Singapore
| | - Reginald Liew
- Department of Cardiology, National Heart Centre Singapore, Singapore Cardiovascular and Metabolic Disorders Program, DUKE-NUS, Singapore
| | - Winston Shim
- Research and Development Unit, National Heart Centre Singapore, Singapore National Heart Research Institute Singapore, Singapore Cardiovascular and Metabolic Disorders Program, DUKE-NUS, Singapore
| |
Collapse
|
20
|
Abstract
Late I Na is an integral part of the sodium current, which persists long after the fast-inactivating component. The magnitude of the late I Na is relatively small in all species and in all types of cardiomyocytes as compared with the amplitude of the fast sodium current, but it contributes significantly to the shape and duration of the action potential. This late component had been shown to increase in several acquired or congenital conditions, including hypoxia, oxidative stress, and heart failure, or due to mutations in SCN5A, which encodes the α-subunit of the sodium channel, as well as in channel-interacting proteins, including multiple β subunits and anchoring proteins. Patients with enhanced late I Na exhibit the type-3 long QT syndrome (LQT3) characterized by high propensity for the life-threatening ventricular arrhythmias, such as Torsade de Pointes (TdP), as well as for atrial fibrillation. There are several distinct mechanisms of arrhythmogenesis due to abnormal late I Na, including abnormal automaticity, early and delayed after depolarization-induced triggered activity, and dramatic increase of ventricular dispersion of repolarization. Many local anesthetic and antiarrhythmic agents have a higher potency to block late I Na as compared with fast I Na. Several novel compounds, including ranolazine, GS-458967, and F15845, appear to be the most selective inhibitors of cardiac late I Na reported to date. Selective inhibition of late I Na is expected to be an effective strategy for correcting these acquired and congenital channelopathies.
Collapse
|
21
|
Lieu DK, Turnbull IC, Costa KD, Li RA. Engineered human pluripotent stem cell-derived cardiac cells and tissues for electrophysiological studies. ACTA ACUST UNITED AC 2012; 9:e209-e217. [PMID: 29422934 DOI: 10.1016/j.ddmod.2012.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human cardiomyocytes (CMs) do not proliferate in culture and are difficult to obtain for practical reasons. As such, our understanding of the mechanisms that underlie the physiological and pathophysiological development of the human heart is mostly extrapolated from studies of the mouse and other animal models or heterologus expression of defective gene product(s) in non-human cells. Although these studies provided numerous important insights, much of the exact behavior in human cells remains unexplored given that significant species differences exist. With the derivation of human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSCs) from patients with underlying heart disease, a source of human CMs for disease modeling, cardiotoxicity screening and drug discovery is now available. In this review, we focus our discussion on the use of hESC/ iPSC-derived cardiac cells and tissues for studying various heart rhythm disorders and the associated pro-arrhythmogenic properties in relation to advancements in electrophysiology and tissue engineering.
Collapse
Affiliation(s)
- Deborah K Lieu
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, United States
| | - Irene C Turnbull
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States
| | - Kevin D Costa
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States
| | - Ronald A Li
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States.,Stem Cell & Regenerative Medicine Consortium, University of Hong Kong, Pokfulam, Hong Kong.,Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
22
|
Abstract
The coordinated generation and propagation of action potentials within cardiomyocytes creates the intrinsic electrical stimuli that are responsible for maintaining the electromechanical pump function of the human heart. The synchronous opening and closing of cardiac Na(+), Ca(2+), and K(+) channels corresponds with the activation and inactivation of inward depolarizing (Na(+) and Ca(2+)) and outward repolarizing (K(+)) currents that underlie the various phases of the cardiac action potential (resting, depolarization, plateau, and repolarization). Inherited mutations in pore-forming α subunits and accessory β subunits of cardiac K(+) channels can perturb the atrial and ventricular action potential and cause various cardiac arrhythmia syndromes, including long QT syndrome, short QT syndrome, Brugada syndrome, and familial atrial fibrillation. In this Review, we summarize the current understanding of the molecular and cellular mechanisms that underlie K(+)-channel-mediated arrhythmia syndromes. We also describe translational advances that have led to the emerging role of genetic testing and genotype-specific therapy in the diagnosis and clinical management of individuals who harbor pathogenic mutations in genes that encode α or β subunits of cardiac K(+) channels.
Collapse
|
23
|
Supplemental Studies for Cardiovascular Risk Assessment in Safety Pharmacology: A Critical Overview. Cardiovasc Toxicol 2011; 11:285-307. [DOI: 10.1007/s12012-011-9133-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Staniforth A, Denning C. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J 2011; 32:952-62. [PMID: 21367833 PMCID: PMC3076668 DOI: 10.1093/eurheartj/ehr073] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Congenital long QT syndromes (LQTSs) are associated with prolonged ventricular repolarization and sudden cardiac death. Limitations to existing clinical therapeutic management strategies prompted us to develop a novel human in vitro drug-evaluation system for LQTS type 2 (LQT2) that will complement the existing in vitro and in vivo models. METHODS AND RESULTS Skin fibroblasts from a patient with a KCNH2 G1681A mutation (encodes I(Kr) potassium ion channel) were reprogrammed to human induced pluripotent stem cells (hiPSCs), which were subsequently differentiated to functional cardiomyocytes. Relative to controls (including the patient's mother), multi-electrode array and patch-clamp electrophysiology of LQT2-hiPSC cardiomyocytes showed prolonged field/action potential duration. When LQT2-hiPSC cardiomyocytes were exposed to E4031 (an I(Kr) blocker), arrhythmias developed and these presented as early after depolarizations (EADs) in the action potentials. In contrast to control cardiomyocytes, LQT2-hiPSC cardiomyocytes also developed EADs when challenged with the clinically used stressor, isoprenaline. This effect was reversed by β-blockers, propranolol, and nadolol, the latter being used for the patient's therapy. Treatment of cardiomyocytes with experimental potassium channel enhancers, nicorandil and PD118057, caused action potential shortening and in some cases could abolish EADs. Notably, combined treatment with isoprenaline (enhancers/isoprenaline) caused EADs, but this effect was reversed by nadolol. CONCLUSIONS Findings from this paper demonstrate that patient LQT2-hiPSC cardiomyocytes respond appropriately to clinically relevant pharmacology and will be a valuable human in vitro model for testing experimental drug combinations.
Collapse
Affiliation(s)
- Elena Matsa
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Sun Y, Quan XQ, Fromme S, Cox RH, Zhang P, Zhang L, Guo D, Guo J, Patel C, Kowey PR, Yan GX. A novel mutation in the KCNH2 gene associated with short QT syndrome. J Mol Cell Cardiol 2011; 50:433-41. [DOI: 10.1016/j.yjmcc.2010.11.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 11/28/2022]
|
26
|
Cruz Cañete M, Rus Mansilla C, Gómez Lara A, Gavilán Expósito ML, Calleja Cabezas P, Gavilán Pérez M. [Usefulness of electrocardiographic screening in a neonatal population]. An Pediatr (Barc) 2011; 74:303-8. [PMID: 21342797 DOI: 10.1016/j.anpedi.2010.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 11/16/2010] [Accepted: 12/19/2010] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Congenital long QT syndrome is a rare disease, but is responsible for nearly 10% of Sudden Infant Death Syndrome. It is characterized by an abnormal prolonged QT interval in the basal electrocardiogram (ECG) with life-threatening arrhythmias which occur in previously asymptomatic patients and are preventable with an appropriate treatment. AIMS The impact of introducing ECG-screening in newborns is studied and main ECG-measurements are described in our population. MATERIAL AND METHODS Twelve-lead ECG was carried out. MEASUREMENTS RR, PR and QT interval, heart rate corrected QT interval, R wave voltage in V1, AVR and AVL, Q wave in I and AVL, P amplitude and voltage, right bundle branch block and ST elevation (Brugada pattern) and delta wave. It was considered pathological: QTc >0.44 or <0.30 seconds; R >12 in V1 and >8mm in AVR; R >7.5mm in AVL; Q >25% QRS in I and AVL; Brugada pattern; delta wave. RESULTS A total of 1061 healthy children were born in our hospital between 29 May 2007 and 12 December 2008, of which 50.3% were males. An ECG was performed on 1006 (94.8%). Five ECG were pathological (0.5%): 2 long QT interval, 2 Wolf-Parkinson-White, 1 pathological Q-wave. A second ECG confirmed except for 2 long QT. No structural heart disease was found. CONCLUSIONS ECG-screening in newborns is an innocuous, low-cost and parent-well-accepted test that allows us to diagnose asymptomatic but potentially lethal and preventable heart disease; main intervals and waves in our population are describes in this study.
Collapse
Affiliation(s)
- M Cruz Cañete
- Unidad de Pediatría, Línea de procesos Materno-Infantiles. Hospital Alto Guadalquivir, Empresa Pública Hospital Alto Guadalquivir, Andújar, Jaén, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011; 471:225-9. [DOI: 10.1038/nature09747] [Citation(s) in RCA: 834] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 12/14/2010] [Indexed: 02/06/2023]
|
28
|
|
29
|
|
30
|
Smithburger PL, Seybert AL, Armahizer MJ, Kane-Gill SL. QT prolongation in the intensive care unit: commonly used medications and the impact of drug–drug interactions. Expert Opin Drug Saf 2010; 9:699-712. [DOI: 10.1517/14740331003739188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Farkas AS, Nattel S. Minimizing Repolarization-Related Proarrhythmic Risk in Drug Development and Clinical Practice. Drugs 2010; 70:573-603. [DOI: 10.2165/11535230-000000000-00000] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, Kanters JK, Corfield VA, Christiansen M. The genetic basis of long QT and short QT syndromes: A mutation update. Hum Mutat 2009; 30:1486-511. [DOI: 10.1002/humu.21106] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Pugsley MK, Authier S, Towart R, Gallacher DJ, Curtis MJ. Beyond the safety assessment of drug-mediated changes in the QT interval... what's next? J Pharmacol Toxicol Methods 2009; 60:24-7. [PMID: 19616107 DOI: 10.1016/j.vascn.2009.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Assessing drug-induced changes (particularly prolongation) in the QT interval has been the major preoccupation of safety pharmacology since its inception, under the assumption that QT widening represents a surrogate biomarker for torsades de pointes (TdeP) liability. While evidence of changes in QT remains a bane to the development of novel therapeutic agents, non-clinical and clinical methods have been developed (with a certain amount of validation) to limit this potential liability of a new chemical entity (NCE). Because of the associated withdrawal of numerous drugs from clinical use, determining whether or not a drug development candidate exhibits a TdeP liability has been the motivation in the implementation of discussions between 'pharmaceutical companies', academicians, clinicians and regulatory authorities worldwide that has led to the development of the ICHS7A and ICHS7B guidance documents (Anon, 2001, 2005). Simultaneously, it has resulted in the firm establishment of safety pharmacology as a standalone discipline within the drug development scheme (Pugsley et al., 2008). As far as TdeP liability is concerned, QT widening remains the most poignant issue, in that QT widening in humans is immediately regarded as a cause for concern, yet QT widening in preclinical models (and indeed in man) is not a quantitative predictor of TdeP liability (and indeed may not even be a qualitative predictor by itself (Pugsley et al., 2008). The present focused issue of the journal returns to safety pharmacology, and contains papers arising from the 8th annual SPS Meeting that was held in Madison, WI in 2008. Indeed, so many papers have arisen from the meeting that this issue of the Journal is only part 1. Part 2 will be published as the next issue of the Journal. Some topics which have been addressed include whether an assessment method for drugs that produce a shortened QT interval is needed, what the role of the slow component of the delayed rectifier K current (I(Ks)) should be in a safety assessment and whether safety pharmacology endpoints can or should be added to repeat dose Toxicology studies.
Collapse
Affiliation(s)
- Michael K Pugsley
- Global Preclinical Toxicology/Pathology, Johnson & Johnson PR&D, 1000 Route 202 South, Raritan, New Jersey 00869, USA.
| | | | | | | | | |
Collapse
|
34
|
Hothi SS, Thomas G, Killeen MJ, Grace AA, Huang CLH. Empirical correlation of triggered activity and spatial and temporal re-entrant substrates with arrhythmogenicity in a murine model for Jervell and Lange-Nielsen syndrome. Pflugers Arch 2009; 458:819-35. [PMID: 19430811 PMCID: PMC2719739 DOI: 10.1007/s00424-009-0671-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 11/23/2022]
Abstract
KCNE1 encodes the β-subunit of the slow component of the delayed rectifier K+ current. The Jervell and Lange-Nielsen syndrome is characterized by sensorineural deafness, prolonged QT intervals, and ventricular arrhythmogenicity. Loss-of-function mutations in KCNE1 are implicated in the JLN2 subtype. We recorded left ventricular epicardial and endocardial monophasic action potentials (MAPs) in intact, Langendorff-perfused mouse hearts. KCNE1−/− but not wild-type (WT) hearts showed not only triggered activity and spontaneous ventricular tachycardia (VT), but also VT provoked by programmed electrical stimulation. The presence or absence of VT was related to the following set of criteria for re-entrant excitation for the first time in KCNE1−/− hearts: Quantification of APD90, the MAP duration at 90% repolarization, demonstrated alterations in (1) the difference, ∆APD90, between endocardial and epicardial APD90 and (2) critical intervals for local re-excitation, given by differences between APD90 and ventricular effective refractory period, reflecting spatial re-entrant substrate. Temporal re-entrant substrate was reflected in (3) increased APD90 alternans, through a range of pacing rates, and (4) steeper epicardial and endocardial APD90 restitution curves determined with a dynamic pacing protocol. (5) Nicorandil (20 µM) rescued spontaneous and provoked arrhythmogenic phenomena in KCNE1−/− hearts. WTs remained nonarrhythmogenic. Nicorandil correspondingly restored parameters representing re-entrant criteria in KCNE1−/− hearts toward values found in untreated WTs. It shifted such values in WT hearts in similar directions. Together, these findings directly implicate triggered electrical activity and spatial and temporal re-entrant mechanisms in the arrhythmogenesis observed in KCNE1−/− hearts.
Collapse
Affiliation(s)
- Sandeep S Hothi
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | | | | | | | | |
Collapse
|
35
|
Schimpf R, Antzelevitch C, Haghi D, Giustetto C, Pizzuti A, Gaita F, Veltmann C, Wolpert C, Borggrefe M. To the Editor Response. Heart Rhythm 2008. [DOI: 10.1016/j.hrthm.2008.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|