1
|
Hirata Y, Ferreri C, Yamada Y, Inoue A, Sansone A, Vetica F, Suzuki W, Takano S, Noguchi T, Matsuzawa A, Chatgilialoglu C. Geometrical isomerization of arachidonic acid during lipid peroxidation interferes with ferroptosis. Free Radic Biol Med 2023:S0891-5849(23)00461-6. [PMID: 37257700 DOI: 10.1016/j.freeradbiomed.2023.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Geometrical mono-trans isomers of arachidonic acid (mtAA) are endogenous products of free radical-induced cis-trans double bond isomerization occurring to natural fatty acids during cell metabolism, including lipid peroxidation (LPO). Very little is known about the functional roles of mtAA and in general on the effects of mono-trans isomers of polyunsaturated fatty acids (mtPUFA) in various types of programmed cell death, including ferroptosis. Using HT1080 and MEF cell cultures, supplemented with 20 μM PUFA (i.e., AA, EPA or DHA) and their mtPUFA congeners, ferroptosis occurred in the presence of RSL3 (a direct inhibitor of glutathione peroxidase 4) only with the PUFA in their natural cis configuration, whereas mtPUFA showed an anti-ferroptotic effect. By performing the fatty acid-based membrane lipidome analyses, substantial differences emerged in the membrane fatty acid remodeling of the two different cell fates. In particular, during ferroptosis mtPUFA formation and their incorporation, together with the enrichment of SFA, occurred. This opens new perspectives in the role of the membrane composition for a ferroptotic outcome. While pre-treatment with AA promoted cell death for treatment with H2O2 and RSL3, mtAA did not. Cell death by AA supplementation was suppressed also in the presence of either ferroptosis inhibitors, such as the lipophilic antioxidant ferrostatin-1, or NADPH oxidase (NOX) inhibitors, including diphenyleneiodonium chloride and apocynin. Our results confirm a more complex scenario for ferroptosis than actually believed. While LPO processes are active, the importance of environmental lipid levels, balance among SFA, MUFA and PUFA in lipid pools and formation of mtPUFA influence the membrane phospholipid turnover, with crucial effects in the occurrence of cell death by ferroptosis.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Yuto Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Fabrizio Vetica
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Saya Takano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan.
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy; Center for Advanced Technologies, Adam Mickiewicz University, 61-614, Poznan, Poland.
| |
Collapse
|
2
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
3
|
Yamashima T, Ota T, Mizukoshi E, Nakamura H, Yamamoto Y, Kikuchi M, Yamashita T, Kaneko S. Intake of ω-6 Polyunsaturated Fatty Acid-Rich Vegetable Oils and Risk of Lifestyle Diseases. Adv Nutr 2020; 11:1489-1509. [PMID: 32623461 PMCID: PMC7666899 DOI: 10.1093/advances/nmaa072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
Although excessive consumption of deep-fried foods is regarded as 1 of the most important epidemiological factors of lifestyle diseases such as Alzheimer's disease, type 2 diabetes, and obesity, the exact mechanism remains unknown. This review aims to discuss whether heated cooking oil-derived peroxidation products cause cell degeneration/death for the occurrence of lifestyle diseases. Deep-fried foods cooked in ω-6 PUFA-rich vegetable oils such as rapeseed (canola), soybean, sunflower, and corn oils, already contain or intrinsically generate "hydroxynonenal" by peroxidation. As demonstrated previously, hydroxynonenal promotes carbonylation of heat-shock protein 70.1 (Hsp70.1), with the resultant impaired ability of cells to recycle damaged proteins and stabilize the lysosomal membrane. Until now, the implication of lysosomal/autophagy failure due to the daily consumption of ω-6 PUFA-rich vegetable oils in the progression of cell degeneration/death has not been reported. Since the "calpain-cathepsin hypothesis" was formulated as a cause of ischemic neuronal death in 1998, its relevance to Alzheimer's neuronal death has been suggested with particular attention to hydroxynonenal. However, its relevance to cell death of the hypothalamus, liver, and pancreas, especially related to appetite/energy control, is unknown. The hypothalamus senses information from both adipocyte-derived leptin and circulating free fatty acids. Concentrations of circulating fatty acid and its oxidized form, especially hydroxynonenal, are increased in obese and/or aged subjects. As overactivation of the fatty acid receptor G-protein coupled receptor 40 (GPR40) in response to excessive or oxidized fatty acids in these subjects may lead to the disruption of Ca2+ homeostasis, it should be evaluated whether GPR40 overactivation contributes to diverse cell death. Here, we describe the molecular implication of ω-6 PUFA-rich vegetable oil-derived hydroxynonenal in lysosomal destabilization leading to cell death. By oxidizing Hsp70.1, both the dietary PUFA- (exogenous) and the membrane phospholipid- (intrinsic) peroxidation product "hydroxynonenal," when combined, may play crucial roles in the occurrence of diverse lifestyle diseases including Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Yasuhiko Yamamoto
- Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | |
Collapse
|
4
|
Torreggiani A, Tinti A, Jurasekova Z, Capdevila M, Saracino M, Di Foggia M. Structural Lesions of Proteins Connected to Lipid Membrane Damages Caused by Radical Stress: Assessment by Biomimetic Systems and Raman Spectroscopy. Biomolecules 2019; 9:E794. [PMID: 31783702 PMCID: PMC6995617 DOI: 10.3390/biom9120794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Model systems constituted by proteins and unsaturated lipid vesicles were used to gain more insight into the effects of the propagation of an initial radical damage on protein to the lipid compartment. The latter is based on liposome technology and allows measuring the trans unsaturated fatty acid content as a result of free radical stress on proteins. Two kinds of sulfur-containing proteins were chosen to connect their chemical reactivity with membrane lipid transformation, serum albumins and metallothioneins. Biomimetic systems based on radiation chemistry were used to mimic the protein exposure to different kinds of free radical stress and Raman spectroscopy to shed light on protein structural changes caused by the free radical attack. Among the amino acid residues, Cys is one of the most sensitive residues towards the attack of free radicals, thus suggesting that metal-Cys clusters are good interceptors of reactive species in metallothioneins, together with disulfides moieties in serum albumins. Met is another important site of the attack, in particular under reductive conditions. Tyr and Phe are sensitive to radical stress too, leading to electron transfer reactions or radical-induced modifications of their structures. Finally, modifications in protein folding take place depending on reactive species attacking the protein.
Collapse
Affiliation(s)
| | - Anna Tinti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, via Belmeloro 8/2, 40126 Bologna, Italy; (A.T.); (M.D.F.)
| | - Zuzana Jurasekova
- Department of Biophysics, Faculty of Science, P.J. Safarik University, Jesenna 5, 04001 Kosice, Slovakia;
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University, Jesenna 5, 04001 Kosice, Slovakia
| | - Mercè Capdevila
- Departament de Quimica, Facultat de ciencies, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain;
| | - Michela Saracino
- Istituto I.S.O.F. (C.N.R.), via P. Gobetti 101, 40129 Bologna, Italy;
| | - Michele Di Foggia
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, via Belmeloro 8/2, 40126 Bologna, Italy; (A.T.); (M.D.F.)
| |
Collapse
|
5
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
6
|
Baliño P, Gómez-Cadenas A, López-Malo D, Romero FJ, Muriach M. Is There A Role for Abscisic Acid, A Proven Anti-Inflammatory Agent, in the Treatment of Ischemic Retinopathies? Antioxidants (Basel) 2019; 8:E104. [PMID: 30999583 PMCID: PMC6523110 DOI: 10.3390/antiox8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ischemic retinopathies (IRs) are the main cause of severe visual impairment and sight loss, and are characterized by loss of blood vessels, accompanied by hypoxia, and neovascularization. Actual therapies, based on anti-vascular endothelial growth factor (VEGF) strategies, antioxidants or anti-inflammatory therapies are only partially effective or show some adverse side effects. Abscisic acid (ABA) is a phytohormone present in vegetables and fruits that can be naturally supplied by the dietary intake and has been previously studied for its benefits to human health. It has been demonstrated that ABA plays a key role in glucose metabolism, inflammation, memory and tumor growth. This review focuses on a novel and promising role of ABA as a potential modulator of angiogenesis, oxidative status and inflammatory processes in the retina, which are the most predominant characteristics of the IRs. Thus, this nutraceutical compound might shed some light in new therapeutic strategies focused in the prevention or amelioration of IRs-derived pathologies.
Collapse
Affiliation(s)
- Pablo Baliño
- Unitat predepartamental de Medicina, Universitat Jaume I, 12071 Castellón de la Plana, Spain.
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castellón de la Plana, Spain.
| | - Daniel López-Malo
- Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, 46010 Valencia, Spain.
| | - Francisco Javier Romero
- Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, 46010 Valencia, Spain.
| | - María Muriach
- Universitat Jaume I, Unitat predepartamental de Medicina, Avda/Sos Baynat, S/N, 12071 Castellón de la Plana, Spain.
| |
Collapse
|
7
|
Ischemic Retinopathies: Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3940241. [PMID: 29410732 PMCID: PMC5749295 DOI: 10.1155/2017/3940241] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity (ROP), diabetic retinopathy (DR), and (in many cases) age-related macular degeneration (AMD), are ocular disorders characterized by an initial phase of microvascular changes that results in ischemia, followed by a second phase of abnormal neovascularization that may culminate into retinal detachment and blindness. IRs are complex retinal conditions in which several factors play a key role during the development of the different pathological stages of the disease. Increasing evidence reveals that oxidative stress and inflammatory processes are important contributors to the pathogenesis of IRs. Despite the beneficial effects of the photocoagulation and anti-VEGF therapy during neovascularization phase, the need to identify novel targets to prevent initial phases of these ocular pathologies is still needed. In this review, we provide an update on the involvement of oxidative stress and inflammation in the progression of IRs and address some therapeutic interventions by using antioxidants and anti-inflammatory agents.
Collapse
|
8
|
Rivera JC, Madaan A, Zhou TE, Chemtob S. Review of the mechanisms and therapeutic avenues for retinal and choroidal vascular dysfunctions in retinopathy of prematurity. Acta Paediatr 2016; 105:1421-1433. [PMID: 27620714 DOI: 10.1111/apa.13586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/04/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022]
Abstract
Retinopathy of prematurity (ROP) is a multifactorial disease and the main cause of visual impairment and blindness in premature neonates. The inner retina has been considered the primary region affected in ROP, but choroidal vascular degeneration and progressive outer retinal dysfunctions have also been observed. This review focuses on observations regarding neurovascular dysfunctions in both the inner and outer immature retina, the mechanisms and the neuronal-derived factors implicated in the development of ROP, as well potential therapeutic avenues for this disorder. CONCLUSION Alterations in the neurovascular integrity of the inner and outer retina contribute to the development of ROP.
Collapse
Affiliation(s)
- José Carlos Rivera
- Department of Pediatrics, Ophthalmology and Pharmacology; Centre Hospitalier Universitaire Sainte-Justine Research Center; Montréal QC Canada
- Department of Ophthalmology; Maisonneuve-Rosemont Hospital Research Center; University of Montréal; Montréal QC Canada
| | - Ankush Madaan
- Department of Pediatrics, Ophthalmology and Pharmacology; Centre Hospitalier Universitaire Sainte-Justine Research Center; Montréal QC Canada
- Department of Pharmacology and Therapeutics; McGill University; Montréal QC Canada
| | - Tianwei Ellen Zhou
- Department of Ophthalmology; Maisonneuve-Rosemont Hospital Research Center; University of Montréal; Montréal QC Canada
- Department of Pharmacology and Therapeutics; McGill University; Montréal QC Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology and Pharmacology; Centre Hospitalier Universitaire Sainte-Justine Research Center; Montréal QC Canada
- Department of Ophthalmology; Maisonneuve-Rosemont Hospital Research Center; University of Montréal; Montréal QC Canada
| |
Collapse
|
9
|
Shahidi F, de Camargo AC. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int J Mol Sci 2016; 17:E1745. [PMID: 27775605 PMCID: PMC5085773 DOI: 10.3390/ijms17101745] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
Edible oils are the major natural dietary sources of tocopherols and tocotrienols, collectively known as tocols. Plant foods with low lipid content usually have negligible quantities of tocols. However, seeds and other plant food processing by-products may serve as alternative sources of edible oils with considerable contents of tocopherols and tocotrienols. Tocopherols are among the most important lipid-soluble antioxidants in food as well as in human and animal tissues. Tocopherols are found in lipid-rich regions of cells (e.g., mitochondrial membranes), fat depots, and lipoproteins such as low-density lipoprotein cholesterol. Their health benefits may also be explained by regulation of gene expression, signal transduction, and modulation of cell functions. Potential health benefits of tocols include prevention of certain types of cancer, heart disease, and other chronic ailments. Although deficiencies of tocopherol are uncommon, a continuous intake from common and novel dietary sources of tocopherols and tocotrienols is advantageous. Thus, this contribution will focus on the relevant literature on common and emerging edible oils as a source of tocols. Potential application and health effects as well as the impact of new cultivars as sources of edible oils and their processing discards are presented. Future trends and drawbacks are also briefly covered.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Adriano Costa de Camargo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil.
| |
Collapse
|
10
|
Hung WL, Sun Hwang L, Shahidi F, Pan MH, Wang Y, Ho CT. Endogenous formation of trans fatty acids: Health implications and potential dietary intervention. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11
|
Hsu BY, Hung WL, Ho CT, Cheng IH, Hwang LS. Protective effects of sesamol and ferulic acid on the formation of endogenous trans-arachidonic acid in hAPP J20 mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Dual effects of the non-esterified fatty acid receptor ‘GPR40’ for human health. Prog Lipid Res 2015; 58:40-50. [DOI: 10.1016/j.plipres.2015.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022]
|
13
|
Tzeng YZ, Hu CH. Radical-induced Cis-Trans isomerization of fatty acids: a theoretical study. J Phys Chem A 2014; 118:4554-64. [PMID: 24911614 DOI: 10.1021/jp502434t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trans fatty acids (TFAs) create deleterious effects; thus their existence in humans is a great health concern. TFAs can be obtained through diet, or they can be formed endogenously by radical-induced cis to trans isomerization. The mechanism of isomerization of fatty acid catalyzed by radicals including nitrogen dioxide (NO2(•)), thiyl (RS(•)), and peroxide (ROO(•)) radicals were investigated using density functional theory. With linoleic acid, a fatty acid consisting of two homoconjugated C═C bonds, we found that the radical addition mechanism is more favorable than the hydrogen abstraction mechanism. For all investigated radicals, the isomerization catalyzed by RS(•) radical involves the smallest reaction barrier. We found that NO2(•) reactions through the N-terminus are more favorable than reactions through the O-terminus. The reaction barriers for NO2(•) catalyzed isomerizations were found to be lowered to a larger extent in polar solvent. β-carotene and lycopene were shown to protect fatty acids from isomerization by intercepting the isomerization-causing radicals.
Collapse
Affiliation(s)
- Yu-Zan Tzeng
- Department of Chemistry, National Changhua University of Education , Changhua 50058, Taiwan
| | | |
Collapse
|
14
|
Chatgilialoglu C, Ferreri C, Melchiorre M, Sansone A, Torreggiani A. Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 2013; 114:255-84. [PMID: 24050531 DOI: 10.1021/cr4002287] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteomics 2013; 92:110-31. [PMID: 23770299 DOI: 10.1016/j.jprot.2013.06.004] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 11/23/2022]
Abstract
Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
|
16
|
Honoré JC, Kooli A, Hamel D, Alquier T, Rivera JC, Quiniou C, Hou X, Kermorvant-Duchemin E, Hardy P, Poitout V, Chemtob S. Fatty acid receptor Gpr40 mediates neuromicrovascular degeneration induced by transarachidonic acids in rodents. Arterioscler Thromb Vasc Biol 2013; 33:954-61. [PMID: 23520164 DOI: 10.1161/atvbaha.112.300943] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Nitro-oxidative stress exerts a significant role in the genesis of hypoxic-ischemic (HI) brain injury. We previously reported that the ω-6 long chain fatty acids, transarachidonic acids (TAAs), which are nitrative stress-induced nonenzymatically generated arachidonic acid derivatives, trigger selective microvascular endothelial cell death in neonatal neural tissue. The primary molecular target of TAAs remains unidentified. GPR40 is a G protein-coupled receptor activated by long chain fatty acids, including ω-6; it is highly expressed in brain, but its functions in this tissue are largely unknown. We hypothesized that TAAs play a significant role in neonatal HI-induced cerebral microvascular degeneration through GPR40 activation. APPROACH AND RESULTS Within 24 hours of a HI insult to postnatal day 7 rat pups, a cerebral infarct and a 40% decrease in cerebrovascular density was observed. These effects were associated with an increase in nitrative stress markers (3-nitrotyrosine immunoreactivity and TAA levels) and were reduced by treatment with nitric oxide synthase inhibitor. GPR40 was expressed in rat pup brain microvasculature. In vitro, in GPR40-expressing human embryonic kidney (HEK)-293 cells, [(14)C]-14E-AA (radiolabeled TAA) bound specifically, and TAA induced calcium transients, extracellular signal-regulated kinase 1/2 phosphorylation, and proapoptotic thrombospondin-1 expression. In vivo, intracerebroventricular injection of TAAs triggered thrombospondin-1 expression and cerebral microvascular degeneration in wild-type mice, but not in GPR40-null congeners. Additionally, HI-induced neurovascular degeneration and cerebral infarct were decreased in GPR40-null mice. CONCLUSIONS GPR40 emerges as the first identified G protein-coupled receptor conveying actions of nonenzymatically generated nitro-oxidative products, specifically TAAs, and is involved in (neonatal) HI encephalopathy.
Collapse
Affiliation(s)
- Jean-Claude Honoré
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Souabni H, Thoma V, Bizouarn T, Chatgilialoglu C, Siafaka-Kapadai A, Baciou L, Ferreri C, Houée-Levin C, Ostuni M. trans Arachidonic acid isomers inhibit NADPH-oxidase activity by direct interaction with enzyme components. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2314-24. [DOI: 10.1016/j.bbamem.2012.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
18
|
Sakuma S, Kitamura T, Kuroda C, Takeda K, Nakano S, Hamashima T, Kohda T, Wada SI, Arakawa Y, Fujimoto Y. All-trans Arachidonic acid generates reactive oxygen species via xanthine dehydrogenase/xanthine oxidase interconversion in the rat liver cytosol in vitro. J Clin Biochem Nutr 2012; 51:55-60. [PMID: 22798714 PMCID: PMC3391864 DOI: 10.3164/jcbn.11-97] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/27/2011] [Indexed: 01/10/2023] Open
Abstract
We previously reported that the all-cis isomer of arachidonic acid, the most naturally occurring isoform of this fatty acid, reduced cuprous copper ion-induced conversion of xanthine dehydrogenase into its reactive oxygen species generating form, xanthine oxidase. In the present study, the effects of all-trans isomer of arachidonic acid, in comparison with cis isomer of arachidonic acid, on the xanthine dehydrogenase/xanthine oxidase interconversion were explored. cis isomer of arachidonic acid alone did not have any significant effect on the activities of xanthine dehydrogenase and xanthine oxidase, but it inhibited the cuprous copper ion-induced conversion of xanthine dehydrogenase to xanthine oxidase in rat liver cytosol in vitro. In contrast, trans isomer of arachidonic acid elicited an increase in xanthine oxidase activity concomitant with a decrease in xanthine dehydrogenase activity, and further potentiated the cuprous copper ion-induced xanthine dehydrogenase/xanthine oxidase interconversion. In primary rat hepatocyte cultures, trans isomer of arachidonic acid increased 2',7'-dichlorofluorescein-fluorescence intensity in the cytosolic fraction from 2',7'-dichlorodihydrofluorescein, an indicator of reactive oxygen species generation. The pretreatment of allopurinol, an xanthine oxidase inhibitor, diminished the trans isomer of arachidonic acid-induced increase in the 2',7'-dichlorofluorescein-fluorescence intensity, indicating the role of xanthine dehydrogenase/xanthine oxidase in mediating trans isomer of arachidonic acid-induced reactive oxygen species generation. These observations suggest that, in contrast to all-cis arachidonic acid, all-trans arachidonic acid has the potential to enhance reactive oxygen species generation via xanthine dehydrogenase/xanthine oxidase interconversion in the liver cytosol in vitro.
Collapse
Affiliation(s)
- Satoru Sakuma
- Laboratory of Physiological Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lenaz G. Mitochondria and reactive oxygen species. Which role in physiology and pathology? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:93-136. [PMID: 22399420 DOI: 10.1007/978-94-007-2869-1_5] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress is among the major causes of toxicity due to interaction of Reactive Oxygen Species (ROS) with cellular macromolecules and structures and interference with signal transduction pathways. The mitochondrial respiratory chain, specially from Complexes I and III, is considered the main origin of ROS particularly under conditions of high membrane potential, but several other sources may be important for ROS generation, such as mitochondrial p66(Shc), monoamine oxidase, α-ketoglutarate dehydogenase, besides redox cycling of redox-active molecules. ROS are able to oxidatively modify lipids, proteins, carbohydrates and nucleic acids in mitochondria and to activate/inactivate signalling pathways by oxidative modification of redox-active factors. Cells are endowed with several defence mechanisms including repair or removal of damaged molecules, and antioxidant systems, either enzymatic or non-enzymatic. Oxidative stress is at the basis of ageing and many pathological disorders, such as ischemic diseases, neurodegenerative diseases, diabetes, and cancer, although the underlying mechanisms are not always completely understood.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy.
| |
Collapse
|
20
|
Melchiorre M, Torreggiani A, Chatgilialoglu C, Ferreri C. Lipid markers of "geometrical" radical stress: synthesis of monotrans cholesteryl ester isomers and detection in human plasma. J Am Chem Soc 2011; 133:15184-90. [PMID: 21851063 DOI: 10.1021/ja205903h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heteroatom-centered free radicals are able to transform cis unsaturated fatty acids to the thermodynamically more stable, but unnatural, trans configuration. The "geometrical" radical stress can be estimated in biological samples using trans fatty acid isomers as lipid markers. Regioselectivity is an important feature of the "geometrical" radical stress, because the supramolecular organization of the polyunsaturated fatty acid moieties of phospholipids can lead to preferential monotrans isomer formation. The regioisomer recognition is a crucial step, which is helped by appropriate molecular libraries available through radical-based synthetic methodologies. Cholesteryl linoleate and arachidonate esters are interesting targets for their biochemical connection with membrane phospholipid turnover and their well-known roles in cardiovascular health. The synthesis of monotrans isomers of PUFA cholesteryl esters was achieved by a thiyl radical-catalyzed cis-trans isomerization. Valuable NMR, IR, and Raman spectroscopic data have been collected for promising application in metabolomics and lipidomics. The identification of monotrans cholesteryl ester isomers was carried out in human plasma by GC, Raman, and IR analyses, demonstrating for the first time the presence of specific regiosiomers connected to free radical stress. This work helps to highlight the chemical biology approach for the access to molecular libraries applicable to biomarker development, and the cis-trans isomerization as a relevant process to be integrated in the puzzling scenario of free radical-mediated lipid modifications.
Collapse
|
21
|
Hung WL, Ho CT, Hwang LS. Inhibitory activity of natural occurring antioxidants on Thiyl radical-induced trans-arachidonic acid formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1968-1973. [PMID: 21291247 DOI: 10.1021/jf1036307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
trans-Fatty acids in humans not only may be obtained exogenously from food intake but also could be generated endogenously in tissues. The endogenous generation of trans-fatty acids, especially in the cell membranes induced by radical stress, is an inevitable source for the living species. Thiyl radicals generated from thiols act as the catalyst for the cis-trans isomerization of fatty acids. Arachidonic acid (5c,8c,11c,14c-20:4) with only two of the four double bonds deriving from linoleic acid in the diet can be used to differentiate the exogenous or endogenous formation of double bonds. The aim of this study is to evaluate the effective compounds in preventing thiyl radical-induced trans-arachidonic acid formation during UV irradiation in vitro. The trans-arachidonic acids were found to be 75% after 30 min UV irradiation of all-cis-arachidonic acid. Myricetin, luteolin, and quercetin had the highest thiyl radical scavenging activities, whereas sesamol, gallic acid, and vitamins A, C, and E had the lowest. The structures of flavonoids with higher thiyl radical scavenging activities were a 3',4'-o-dihydroxyl group in the B ring and a 2,3-double bond combined with a 4-keto group in the C ring. These effective compounds found in the present work may be used as lead compounds for the potential inhibitors in the formation of trans-fatty acids in vivo.
Collapse
Affiliation(s)
- Wei-Lun Hung
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
22
|
Abstract
Understanding the role of ontogeny in the disposition and actions of medicines is the most fundamental prerequisite for safe and effective pharmacotherapeutics in the pediatric population. The maturational process represents a continuum of growth, differentiation, and development, which extends from the very small preterm newborn infant through childhood, adolescence, and to young adulthood. Developmental changes in physiology and, consequently, in pharmacology influence the efficacy, toxicity, and dosing regimen of medicines. Relevant periods of development are characterized by changes in body composition and proportion, developmental changes of physiology with pathophysiology, exposure to unique safety hazards, changes in drug disposition by major organs of metabolism and elimination, ontogeny of drug targets (e.g., enzymes, transporters, receptors, and channels), and environmental influences. These developmental components that result in critical windows of development of immature organ systems that may lead to permanent effects later in life interact in a complex, nonlinear fashion. The ontogeny of these physiologic processes provides the key to understanding the added dimension of development that defines the essential differences between children and adults. A basic understanding of the developmental dynamics in pediatric pharmacology is also essential to delineating the future directions and priority areas of pediatric drug research and development.
Collapse
MESH Headings
- Adolescent
- Body Composition/physiology
- Child
- Child, Preschool
- Drug-Related Side Effects and Adverse Reactions
- Female
- Human Development/physiology
- Humans
- Infant
- Infant, Newborn/physiology
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/physiopathology
- Infant, Premature/physiology
- Infant, Premature, Diseases/drug therapy
- Infant, Premature, Diseases/physiopathology
- Male
- Pediatrics
- Pharmaceutical Preparations/metabolism
- Pharmacokinetics
- Pharmacological Phenomena/physiology
Collapse
Affiliation(s)
- Hannsjörg W Seyberth
- Klinik fur Kinder- und Jugendmedizin, Philipps-Universität Marburg, Baldingerstraße, 35043 Marburg, Germany.
| | | |
Collapse
|
23
|
Salzano AM, Renzone G, Scaloni A, Torreggiani A, Ferreri C, Chatgilialoglu C. Human serum albumin modifications associated with reductive radical stress. ACTA ACUST UNITED AC 2011; 7:889-98. [DOI: 10.1039/c0mb00223b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Rivera JC, Sapieha P, Joyal JS, Duhamel F, Shao Z, Sitaras N, Picard E, Zhou E, Lachapelle P, Chemtob S. Understanding retinopathy of prematurity: update on pathogenesis. Neonatology 2011; 100:343-53. [PMID: 21968165 DOI: 10.1159/000330174] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinopathy of prematurity (ROP), an ocular disease characterized by the onset of vascular abnormalities in the developing retina, is the major cause of visual impairment and blindness in premature neonates. ROP is a complex condition in which various factors participate at different stages of the disease leading to microvascular degeneration followed by neovascularization, which in turn predisposes to retinal detachment. Current ablative therapies (cryotherapy and laser photocoagulation) used in the clinic for the treatment of ROP have limitations and patients can still have long-term effects even after successful treatment. New treatment modalities are still emerging. The most promising are the therapies directed against VEGF; more recently the use of preventive dietary supplementation with ω-3 polyunsaturated fatty acid may also be promising. Other than pharmacologic and nutritional approaches, cell-based strategies for vascular repair are likely to arise from advances in regenerative medicine using stem cells. In addition to all of these, a greater understanding of other factors involved in regulating pathologic retinal angiogenesis continues to emerge, suggesting potential targets for therapeutic approaches. This review summarizes an update on the current state of knowledge on ROP from our and other laboratories, with particular focus on the role of nitro-oxidative stress and notably trans-arachidonic acids in microvascular degeneration, semaphorin 3 operating as vasorepulsive molecules in the avascular hypoxic retina and in turn impairing revascularization, succinate and its receptor GPR91 in neuron-mediated retinal neovascularization, and ω-3 lipids as modulators of preretinal neovascularization.
Collapse
Affiliation(s)
- José Carlos Rivera
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Qué., Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sapieha P, Joyal JS, Rivera JC, Kermorvant-Duchemin E, Sennlaub F, Hardy P, Lachapelle P, Chemtob S. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest 2010; 120:3022-32. [PMID: 20811158 DOI: 10.1172/jci42142] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a major complication of preterm birth. It encompasses a spectrum of pathologies that affect vision, from mild disease that resolves spontaneously to severe disease that causes retinal detachment and subsequent blindness. The pathologies are characterized by an arrest in normal retinal vascular development associated with microvascular degeneration. The resulting ischemia and retinal hypoxia lead to excessive abnormal compensatory blood vessel growth. However, this neovascularization can lead to fibrous scar formation and culminate in retinal detachment. Present therapeutic modalities to limit the adverse consequences of aberrant neovascularization are invasive and/or tissue-destructive. In this Review, we discuss current concepts on retinal microvascular degeneration, neovascularization, and available treatments, as well as present future perspectives toward more profound elucidation of the pathogenesis of ROP.
Collapse
Affiliation(s)
- Przemyslaw Sapieha
- Department of Ophthalmology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Consumption of industrially produced trans-fatty acids (TFA) is associated with substantial risk of coronary heart disease (CHD). The magnitude of this relationship, as well as emerging associations with end points such as diabetes and sudden cardiac death, cannot be fully explained by the well-established adverse effects of TFA on serum lipids. We review the evidence for effects of TFA intake on nonlipid risk factors. Based on evidence from randomized controlled trials, observational studies, animal experiments, and in vitro studies, these include effects on systemic inflammation, endothelial dysfunction, visceral adiposity, insulin resistance, and arrhythmic risk. The types and strength of evidence for each of these nonlipid effects varies, but the overall constellation of findings is qualitatively and quantitatively unique among dietary fats. The multiple adverse effects and implicated pathways are consistent with the observed strong associations of TFA consumption with CHD risk. These nonlipid effects also explain why TFA consumption may adversely impact other non-CHD diseases and end points.
Collapse
Affiliation(s)
- Sarah K Wallace
- Department of Epidemiology, Harvard School of Public Health, Division of Cardiovascular Medicine and Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Building 2-315, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Jain K, Siddam A, Marathi A, Roy U, Falck JR, Balazy M. The mechanism of oleic acid nitration by *NO(2). Free Radic Biol Med 2008; 45:269-83. [PMID: 18457679 DOI: 10.1016/j.freeradbiomed.2008.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/31/2008] [Accepted: 04/03/2008] [Indexed: 12/27/2022]
Abstract
Fatty acid nitration is a recently discovered process that generates biologically active nitro lipids; however, its mechanism has not been fully characterized. For example, some structural details such as vinyl and allyl isomers of the nitro fatty acids have not been established. To characterize lipids that originated from a biomimetic reaction of *NO(2) with oleic acid, we synthesized several isomers of nitro oleic acids and studied their chromatography and mass spectra by various techniques of mass spectrometry. LC/MS analysis performed on a high resolution micro column detected molecular carboxylic anions of various oleic acid nitro isomers (NO(2)OA). Esterification of NO(2)OA with pentafluorobenzyl bromide and diisopropylethylamine as a catalyst produced a unique isoxazole ester derivative exclusively from allyl NO(2)OA isomers via dehydration of the nitro group at ambient temperatures. This new analytical procedure revealed that *NO(2) generated two vinyl and two allyl isomers of NO(2)OA. The vinyl isomers showed high regioselectivity with the 1.8:1 preference for the 10-NO(2)OA isomer that was absent among allylic isomers. The nitration also generated elaidic acid via cis-trans isomerization and diatereoisomers of vicinal nitro hydroxy, nitro keto and alpha-nitro epoxy stearic acids with high stereo and regioselectivity. Nitration of small unilamelar phospholipid vesicles resulted in several phospholipids containing nitro lipids and elaidic acid amenable to hydrolysis by phospholipase A(2).
Collapse
Affiliation(s)
- Kavita Jain
- New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|