1
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
2
|
Nociti V, Romozzi M. The Role of BDNF in Multiple Sclerosis Neuroinflammation. Int J Mol Sci 2023; 24:ijms24098447. [PMID: 37176155 PMCID: PMC10178984 DOI: 10.3390/ijms24098447] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and degenerative disease of the central nervous system (CNS). Inflammation is observed in all stages of MS, both within and around the lesions, and can have beneficial and detrimental effects on MS pathogenesis. A possible mechanism for the neuroprotective effect in MS involves the release of brain-derived neurotrophic factor (BDNF) by immune cells in peripheral blood and inflammatory lesions, as well as by microglia and astrocytes within the CNS. BDNF is a neurotrophic factor that plays a key role in neuroplasticity and neuronal survival. This review aims to analyze the current understanding of the role that inflammation plays in MS, including the factors that contribute to both beneficial and detrimental effects. Additionally, it explores the potential role of BDNF in MS, as it may modulate neuroinflammation and provide neuroprotection. By obtaining a deeper understanding of the intricate relationship between inflammation and BDNF, new therapeutic strategies for MS may be developed.
Collapse
Affiliation(s)
- Viviana Nociti
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Centro Sclerosi Multipla, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marina Romozzi
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
Wang L, Wei X. T Cell-Mediated Autoimmunity in Glaucoma Neurodegeneration. Front Immunol 2022; 12:803485. [PMID: 34975917 PMCID: PMC8716691 DOI: 10.3389/fimmu.2021.803485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Glaucoma as the leading neurodegenerative disease leads to blindness in 3.6 million people aged 50 years and older worldwide. For many decades, glaucoma therapy has primarily focused on controlling intraocular pressure (IOP) and sound evidence supports its role in delaying the progress of retinal ganglial cell (RGC) damage and protecting patients from vision loss. Meanwhile, accumulating data point to the immune-mediated attack of the neural retina as the underlying pathological process behind glaucoma that may come independent of raised IOP. Recently, some scholars have suggested autoimmune aspects in glaucoma, with autoreactive T cells mediating the chief pathogenic process. This autoimmune process, as well as the pathological features of glaucoma, largely overlaps with other neurodegenerative diseases in the central nervous system (CNS), including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In addition, immune modulation therapy, which is regarded as a potential solution for glaucoma, has been boosted in trials in some CNS neurodegenerative diseases. Thus, novel insights into the T cell-mediated immunity and treatment in CNS neurodegenerative diseases may serve as valuable inspirations for ophthalmologists. This review focuses on the role of T cell-mediated immunity in the pathogenesis of glaucoma and discusses potential applications of relevant findings of CNS neurodegenerative diseases in future glaucoma research.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, Shangjin Nanfu Hospital, Chengdu, China
| |
Collapse
|
4
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
5
|
Dizaji Asl K, Velaei K, Rafat A, Tayefi Nasrabadi H, Movassaghpour AA, Mahdavi M, Nozad Charoudeh H. The role of KIR positive NK cells in diseases and its importance in clinical intervention. Int Immunopharmacol 2021; 92:107361. [PMID: 33429335 DOI: 10.1016/j.intimp.2020.107361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells are essential for the elimination of the transformed and cancerous cells. Killer cell immunoglobulin-like receptors (KIRs) which expressed by T and NK cells, are key regulator of NK cell function. The KIR and their ligands, MHC class I (HLA-A, B and C) molecules, are highly polymorphic and their related genes are located on 19 q13.4 and 6 q21.3 chromosomes, respectively. It is clear that particular interaction between the KIRs and their related ligands can influence on the prevalence, progression and outcome of several diseases, like complications of pregnancy, viral infection, autoimmune diseases, and hematological malignancies. The mechanisms of immune signaling in particular NK cells involvement in causing pathological conditions are not completely understood yet. Therefore, better understanding of the molecular mechanism of KIR-MHC class I interaction could facilitate the treatment strategy of diseases. The present review focused on the main characteristics and functional details of various KIR and their combination with related ligands in diseases and also highlights ongoing efforts to manipulate the key checkpoints in NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Khadijeh Dizaji Asl
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
6
|
Vijapur SM, Yang Z, Barton DJ, Vaughan L, Awan N, Kumar RG, Oh BM, Berga SL, Wang KK, Wagner AK. Anti-Pituitary and Anti-Hypothalamus Autoantibody Associations with Inflammation and Persistent Hypogonadotropic Hypogonadism in Men with Traumatic Brain Injury. J Neurotrauma 2020; 37:1609-1626. [PMID: 32111134 DOI: 10.1089/neu.2019.6780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and can lead to persistent hypogonadotropic hypogonadism (PHH) and poor outcomes. We hypothesized that autoimmune and inflammatory mechanisms contribute to PHH pathogenesis. Men with moderate-to-severe TBI (n = 143) were compared with healthy men (n = 39). The TBI group provided blood samples 1-12 months post-injury (n = 1225). TBI and healthy control (n = 39) samples were assayed for testosterone (T) and luteinizing hormone (LH) to adjudicate PHH status. TBI samples 1-6 months post-injury and control samples were assayed for immunoglobulin M (IgM)/immunoglobulin G (IgG) anti-pituitary autoantibodies (APA) and anti-hypothalamus autoantibodies (AHA). Tissue antigen specificity for APA and AHA was confirmed via immunohistochemistry (IHC). IgM and IgG autoantibodies for glial fibrillary acid protein (GFAP) (AGA) were evaluated to gauge APA and AHA production as a generalized autoimmune response to TBI and to evaluate the specificity of APA and AHA to PHH status. An inflammatory marker panel was used to assess relationships to autoantibody profiles and PHH status. Fifty-one men with TBI (36%) had PHH. An age-related decline in T levels by both TBI and PHH status were observed. Injured men had higher APA IgM, APA IgG, AHA IgM, AHA IgG, AGA IgM, and AGA IgG than controls (p < 0.0001 all comparisons). However, only APA IgM (p = 0.03) and AHA IgM (p = 0.03) levels were lower in the PHH than in the non-PHH group in multivariate analysis. There were no differences in IgG levels by PHH status. Multiple inflammatory markers were positively correlated with IgM autoantibody production. PHH was associated with higher soluble tumor-necrosis-factor receptors I/II, (sTNFRI, sTNFRII), regulated on activation, normal T-cell expressed and secreted (RANTES) and soluble interleukin-2-receptor-alpha (sIL-2Rα) levels. Higher IgM APA, and AHA, but not AGA, in the absence of PHH may suggest a beneficial or reparative role for neuroendocrine tissue-specific IgM autoantibody production against PHH development post-TBI.
Collapse
Affiliation(s)
- Sushupta M Vijapur
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida / South Georgia Veterans Health System, Gainesville, Florida, USA.,Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - David J Barton
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Leah Vaughan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nabil Awan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Raj G Kumar
- Mount Sinai, Icahn School of Medicine, New York, New York, USA
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University, Seoul, South Korea
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Kevin K Wang
- Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA.,Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Dixon GA, Pérez CA. Multiple Sclerosis and the Choroid Plexus: Emerging Concepts of Disease Immunopathophysiology. Pediatr Neurol 2020; 103:65-75. [PMID: 31780202 DOI: 10.1016/j.pediatrneurol.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The coexistence of multiple sclerosis and intracranial neoplasms is very rare, and whether this occurrence can be explained by a causal relationship or by coincidence remains a matter of debate. Possible roles of the choroid plexus as a site of tumor cell invasion and lymphocyte infiltration into the central nervous system have been hypothesized in recent studies. METHODS We describe a 13-year-old boy with concurrent multiple sclerosis and choroid plexus papilloma, then review the published literature with a focus on the pathophysiologic mechanisms of neuroinflammation in multiple sclerosis and the potential role of the choroid plexus in this process. RESULTS A growing body of evidence suggests that both physical and functional dysregulation of the choroid plexus may be a common mechanism underlying the pathophysiology of central nervous system inflammation. CONCLUSIONS In multiple sclerosis, the choroid plexus could act as a gateway for lymphocyte entry from the peripheral blood into the central nervous system at its earlier stages. However, future studies are needed to identify whether structural alterations of the choroid plexus play a role in the pathophysiology of multiple sclerosis and to provide suitable models to determine their consequences.
Collapse
Affiliation(s)
- Grant A Dixon
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Carlos A Pérez
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
8
|
Varghese S, Cotter M, Chevot F, Fergus C, Cunningham C, Mills KH, Connon SJ, Southern JM, Kelly VP. In vivo modification of tRNA with an artificial nucleobase leads to full disease remission in an animal model of multiple sclerosis. Nucleic Acids Res 2017; 45:2029-2039. [PMID: 28204548 PMCID: PMC5389723 DOI: 10.1093/nar/gkw847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/10/2016] [Accepted: 09/03/2016] [Indexed: 01/07/2023] Open
Abstract
Queuine is a modified pyrrolopyrimidine nucleobase derived exclusively from bacteria. It post-transcriptionally replaces guanine 34 in transfer RNA isoacceptors for Asp, Asn, His and Tyr, in almost all eukaryotic organisms, through the activity of the ancient tRNA guanine transglycosylase (TGT) enzyme. tRNA hypomodification with queuine is a characteristic of rapidly-proliferating, non-differentiated cells. Autoimmune diseases, including multiple sclerosis, are characterised by the rapid expansion of T cells directed to self-antigens. Here, we demonstrate the potential medicinal relevance of targeting the modification of tRNA in the treatment of a chronic multiple sclerosis model—murine experimental autoimmune encephalomyelitis. Administration of a de novo designed eukaryotic TGT substrate (NPPDAG) led to an unprecedented complete reversal of clinical symptoms and a dramatic reduction of markers associated with immune hyperactivation and neuronal damage after five daily doses. TGT is essential for the therapeutic effect, since animals deficient in TGT activity were refractory to therapy. The data suggest that exploitation of the eukaryotic TGT enzyme is a promising approach for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Sreeja Varghese
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Ireland
| | - Michelle Cotter
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Ireland
| | - Franciane Chevot
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Ireland
| | - Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Ireland
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Ireland
| | - Kingston H Mills
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Ireland
| | - John M Southern
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Ireland
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Ireland
| |
Collapse
|
9
|
Singh K, Trivedi R, Verma A, D'souza MM, Koundal S, Rana P, Baishya B, Khushu S. Altered metabolites of the rat hippocampus after mild and moderate traumatic brain injury - a combined in vivo and in vitro 1 H-MRS study. NMR IN BIOMEDICINE 2017; 30:e3764. [PMID: 28759166 DOI: 10.1002/nbm.3764] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 05/13/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Traumatic brain injury (TBI) has been shown to affect hippocampus-associated learning, memory and higher cognitive functions, which may be a consequence of metabolic alterations. Hippocampus-associated disorders may vary depending on the severity of injury [mild TBI (miTBI) and moderate TBI (moTBI)] and time since injury. The underlying hippocampal metabolic irregularities may provide an insight into the pathological process following TBI. In this study, in vivo and in vitro proton magnetic resonance spectroscopy (1 H-MRS) data were acquired from the hippocampus region of controls and TBI groups (miTBI and moTBI) at D0 (pre-injury), 4 h, Day 1 and Day 5 post-injury (PI). In vitro MRS results indicated trauma-induced changes in both miTBI and moTBI; however, in vivo MRS showed metabolic alterations in moTBI only. miTBI and moTBI showed elevated levels of osmolytes indicating injury-induced edema. Altered levels of citric acid cycle intermediates, glutamine/glutamate and amino acid metabolism indicated injury-induced aberrant bioenergetics, excitotoxicity and oxidative stress. An overall similar pattern of pathological process was observed in both miTBI and moTBI, with the distinction of depleted N-acetylaspartate levels (indicating neuronal loss) at 4 h and Day 1 and enhanced lactate production (indicating heightened energy depletion leading to the commencement of the anaerobic pathway) at Day 5 in moTBI. To the best of our knowledge, this is the first study to investigate the hippocampus metabolic profile in miTBI and moTBI simultaneously using in vivo and in vitro MRS.
Collapse
Affiliation(s)
- Kavita Singh
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Richa Trivedi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ajay Verma
- Centre for Biomedical Magnetic Resonance (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Maria M D'souza
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sunil Koundal
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Bikash Baishya
- Centre for Biomedical Magnetic Resonance (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
10
|
Gasco S, Rando A, Zaragoza P, García-Redondo A, Calvo AC, Osta R. Hematopoietic stem and progenitor cells as novel prognostic biomarkers of longevity in a murine model for amyotrophic lateral sclerosis. Am J Physiol Cell Physiol 2016; 311:C910-C919. [PMID: 27681176 DOI: 10.1152/ajpcell.00081.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a difficult diagnosis and prognosis. In this regard, new and more reliable biomarkers for the disease are needed. We propose peripheral blood, and, more specifically, the hematopoietic stem and progenitor cells (HSPCs) as potential prognostic biomarkers in the SOD1G93A murine model of ALS. We accurately and serially studied three HSPCs-hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs)-in both control and SOD1G93A mice along the disease's progression by RT-PCR and flow cytometry analysis. We found interesting differences for every HSPC type in the transgenic mice compared with the control mice at every time point selected, as well as differences along the disease course. The results showed a maintained compensatory increase of HSCs along disease progression. However, the downregulated levels of CLPs and CMPs suggested an exit of these cell populations to the peripheral tissues, probably due to their supporting role to the damaged tissues. In addition, a positive correlation of the percentage of CLPs and CMPs with the longevity was found, as well as a positive correlation of HSCs and CMPs with motor function and weight, thus reinforcing the idea that HSPCs play a relevant role in the longevity of the SOD1G93A mice. On the basis of these results, both CLPs and CMPs could be considered prognostic biomarkers of longevity in this animal model, opening the door to future studies in human patients for their potential clinical use.
Collapse
Affiliation(s)
- Samanta Gasco
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Amaya Rando
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Alberto García-Redondo
- Biochemistry Department, Centre for Biomedical Network Research on Rare Diseases, Health Research Institute, October 12th Hospital, Madrid, Spain
| | - Ana Cristina Calvo
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Rosario Osta
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| |
Collapse
|
11
|
Tseng CH, Chen JH, Lin CL, Kao CH. Decreased risk of intracerebral hemorrhage among patients with milder allergic rhinitis. QJM 2016; 109:161-5. [PMID: 26025692 DOI: 10.1093/qjmed/hcv104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND This study investigated whether allergic rhinitis (AR) increases the risk of intracerebral hemorrhage (ICH). METHODS Using Taiwanese insurance outpatient claims data, 52,870 patients with new diagnoses of AR between 2000 and 2010 were identified, and 105,680 age- and sex-frequency matched people without AR were chosen randomly as controls. Risks of ICH were correlated with AR and comorbidities, such as diabetes, hypertension, coronary artery disease, hyperlipidemia, disease and chronic kidney disease, and were estimated by the end of 2011. RESULTS The risk of ICH was lower in the AR cohort than in the comparison cohort, with an adjusted hazard ratio (aHR) of 0.58 (95% confidence interval [CI] = 0.50-0.66), assessed using the multivariable Cox model. Age-specific analysis demonstrated that the aHR for ICH in the AR patients increased with age, with an aHR of 0.53 (95% CI = 0.39-0.71) in the ≤49-year age group, which increased to 0.72 (95% CI = 0.59-0.89) in the elderly age group. The risk of ICH increased with the severity of AR, from an aHR of 0.47 (95% CI = 0.40-0.56) in mild AR patients to 2.55 (95% CI = 1.88-3.47) in severe ones. For patients without comorbidities, the risk of ICH was 0.46 times (95% CI = 0.34-0.63) lower in the AR cohort than in the comparison cohort. CONCLUSION This study showed for the first time that milder AR is correlated with a reduction in the risk of ICH, particularly for elderly patients.
Collapse
Affiliation(s)
- C-H Tseng
- From the Department of Neurology, China Medical University Hospital, School of Medicine, China Medical University College of Medicine
| | - J-H Chen
- School of Medicine, China Medical University College of Medicine, Department of Internal Medicine, China Medical University Hospital
| | - C-L Lin
- School of Medicine, China Medical University College of Medicine, Management Office for Health Data, China Medical University Hospital
| | - C-H Kao
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University and Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Tseng CH, Muo CH, Lin MC, Kao CH. Association Between Reduced Risk of Intracerebral Hemorrhage and Pelvic Inflammatory Disease. Medicine (Baltimore) 2016; 95:e2726. [PMID: 26844517 PMCID: PMC4748934 DOI: 10.1097/md.0000000000002726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study examines whether pelvic inflammatory disease (PID) facilitates the development of intracerebral hemorrhage (ICH).By using outpatient claims data from the National Health Insurance Research Database (NHIRD) of Taiwan, we included the data of 25,508 patients who were newly diagnosed with PID between 1999 and 2004, and also from the Taiwan NHIRD, we randomly selected 102,032 women without PID, who were frequency-matched by age and entry-year and with 4 times the number of the PID patients, as the control cohort. We measured ICH risks associated with PID and comorbidities, including hyperlipidemia, diabetes, hypertension, ischemic heart disease, and atrial fibrillation, by the end of 2011.In comparison with the controls, the ICH hazard was less in the PID group with an adjusted hazard ratio (aHR) of 0.67 (95% confidence interval [CI]:0.50-0.90), which was noted by calculation with the Cox proportional regression model. The ICH risk in the PID patients reduced progressively with the advance of age, with aHRs of 0.75 (95% CI:0.41-1.39) and 0.50 (95% CI:0.29-0.88), respectively, in the age <35-year and age ≥50-year groups. ICH risk lowered gradually with the progress of PID severity, from mild PID with an aHR of 0.72 (95% CI:0.53-0.98) to severe PID with that of 0.30 (95% CI:0.10-0.92). PID patients without any comorbidites had lower ICH risk (aHR = 0.63, 95% CI:0.42-0.94) than the controls without any comorbidites did.Our findings revealed that PID is associated with reduced ICH development, especially for older patients.
Collapse
Affiliation(s)
- Chun-Hung Tseng
- From the Department of Neurology, China Medical University Hospital (C-HT); School of Medicine, China Medical University (C-HT, C-HM); Management Office for Health Data, China Medical University Hospital, Taichung (C-HM); Department of Nuclear Medicine, E-Da Hospital and I-Shou University, Kaohsiung (M-GL); Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (C-HK); and Department of Nuclear Medicine and PET Center, China Medical University Hospital (C-HK), Taichung, Taiwan
| | | | | | | |
Collapse
|
13
|
Gendelman HE, Mosley RL. A Perspective on Roles Played by Innate and Adaptive Immunity in the Pathobiology of Neurodegenerative Disorders. J Neuroimmune Pharmacol 2015; 10:645-50. [PMID: 26520433 PMCID: PMC4662620 DOI: 10.1007/s11481-015-9639-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Aberrant innate and adaptive immune responses are neurodegenerative disease effectors. Disease is heralded by a generalized, but subtle immune activation orchestrated by the release of extracellular prion-like aggregated and oxidized or otherwise modified proteins. These are responsible for an inflammatory neurotoxic cascade. The perpetrators of such events include effector T cells and activated microglia. What ensues are Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis and stroke with changed frequencies of effector T cell and reduced numbers or function of regulatory lymphocytes. The control of such immune responses could lead to new therapeutic strategies and the means to effectively combat a composite of diseases that have quite limited therapeutic options.
Collapse
Affiliation(s)
- Howard E Gendelman
- Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, 68198-5880, USA.
| | - R Lee Mosley
- Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, 68198-5880, USA
| |
Collapse
|
14
|
D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun Rev 2015; 14:1097-110. [PMID: 26226413 DOI: 10.1016/j.autrev.2015.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heterogeneity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpredictable response to therapies. The major focus of the research on MS is the identification of biomarkers in biological fluids, such as cerebrospinal fluid or blood, to guide patient management reliably. Because of the difficulties in obtaining spinal fluid samples and the necessity for lumbar puncture to make a diagnosis has reduced, the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However, currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkers could radically alter the management of MS at critical phases of the disease spectrum, allowing for intervention strategies that may prevent evolution to long-term neurological disability. This article provides an overview of this research field and focuses on recent advances in blood-based biomarker research.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Pontecorvo
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Tania Colasanti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Zamboni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ada Francia
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Paola Margutti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
15
|
Song W, Huang P, Zhang C. Neuroprotective therapies for glaucoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1469-79. [PMID: 25792807 PMCID: PMC4362661 DOI: 10.2147/dddt.s80594] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glaucoma is the second leading cause for blindness worldwide. It is mainly caused by glaucomatous optic neuropathy (GON) characterized by retinal ganglion cell loss, which leads to visual field defect and blindness. Up to now, the main purpose of antiglaucomatous therapies has been to lower intraocular pressure (IOP) through surgeries and medications. However, it has been found that progressive GON is still present in some patients with effective IOP decrease. Therefore, risk factors other than IOP elevation, like neurotrophin deprivation and excitotoxicity, contribute to progressive GON. Novel approaches of neuroprotection may be more effective for preserving the function of the optic nerve.
Collapse
Affiliation(s)
- Wei Song
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Ping Huang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
16
|
Enhanced expression of neurotrophic factors in the injured spinal cord through vaccination with myelin basic protein-derived peptide pulsed dendritic cells. Spine (Phila Pa 1976) 2015; 40:95-101. [PMID: 25569526 DOI: 10.1097/brs.0000000000000694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Vaccination of spinal cord injury (SCI) mice with myelin basic protein-derived peptide (A91) pulsed dendritic cells (DC) to enhance brain-derived neurotrophic factor and neurotrophin-3 (NT-3) expression in injured spinal cord. OBJECTIVE To investigate the effect of A91-pulsed DC (A91-DC) on expression of neurotrophic factor in injured spinal cord. SUMMARY OF BACKGROUND DATA SCI leads to progressive secondary tissue degeneration, and no satisfactory treatment is currently available. Accumulating evidence indicates that administration of neurotrophic factors to injured spinal cord is partially successful at promoting nerve tissue repair. However, most of strategy can cause secondary injury and limiting their wide clinical application. METHODS Proliferation of T cells and the capability of CD4 T cells to secret neurotrophic factors were first measured in vitro to demonstrate the stimulus action of the A91-DC. In SCI mice model, enzyme-linked immunosorbent assay and immunofluorescence was employed to investigate the brain-derived neurotrophic factor and NT-3 expression in injured spinal cord. Furthermore, the neuroprotective effect of A91-DC in injured spinal cord was examined through histology measurement. RESULTS In this study, we demonstrated that A91-DC promoted the capability of T cells to secret neurotrophic factors and in the subacute phase of SCI. Moreover, vaccination with A91-DC enhanced the expression level of brain-derived neurotrophic factor and NT-3 and exerted neuroprotective effect in injured spinal cord. CONCLUSION The findings of study demonstrate that the therapeutic strategy of vaccination A91-DC is a potential minimally invasive approach that could provide strong neurotrophic factor support after SCI.
Collapse
|
17
|
Fakhoury M. Role of Immunity and Inflammation in the Pathophysiology of Neurodegenerative Diseases. NEURODEGENER DIS 2015; 15:63-9. [PMID: 25591815 DOI: 10.1159/000369933] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 11/19/2022] Open
Abstract
Neurodegenerative diseases are the result of progressive loss of neurons and axons in the central nervous system (CNS), which can lead to cognition and motor dysfunction. It is well known that CNS inflammation and immune activation play a major role in the pathophysiology of neurodegenerative diseases. Although the blood-brain barrier (BBB) is able to protect the CNS from immune activation, it becomes more permeable during inflammation, which renders the brain vulnerable to infections. A better understanding of the interaction between inflammatory mediators, such as cytokines, and the activated immune response, including astrocytes and microglia, is critical for the development of new therapeutic strategies for neurodegenerative diseases. This review first describes the role of innate immune activation in neurodegenerative diseases and illustrates the factors that contribute to the communication between the CNS and the immune system. A closer look is given at the role of the BBB in inflammation and immunity, as well as at the animal models used to study inflammation in neurodegenerative diseases. Finally, this review outlines the key pathways and biological mechanisms involved in CNS diseases, with a particular focus on multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, Que., Canada
| |
Collapse
|
18
|
Liu J, Ma Y, Tian S, Zhang L, Zhao M, Zhang Y, Xu D. T cells promote the regeneration of neural precursor cells in the hippocampus of Alzheimer's disease mice. Neural Regen Res 2014; 9:1541-7. [PMID: 25317172 PMCID: PMC4192972 DOI: 10.4103/1673-5374.139481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2014] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present, the role of T cells in neuronal regeneration in the brain is unknown. We injected amyloid-beta 1–42 peptide into the hippocampus of six BALB/c wild-type mice and six BALB/c-nude mice with T-cell immunodeficiency to establish an animal model of Alzheimer's disease. A further six mice of each genotype were injected with same volume of normal saline. Immunohistochemistry revealed that the number of regenerated neural progenitor cells in the hippocampus of BALB/c wild-type mice was significantly higher than that in BALB/c-nude mice. Quantitative fluorescence PCR assay showed that the expression levels of peripheral T cell-associated cytokines (interleukin-2, interferon-γ) and hippocampal microglia-related cytokines (interleukin-1β, tumor necrosis factor-α) correlated with the number of regenerated neural progenitor cells in the hippocampus. These results indicate that T cells promote hippocampal neurogenesis in Alzheimer's disease and T-cell immunodeficiency restricts neuronal regeneration in the hippocampus. The mechanism underlying the promotion of neuronal regeneration by T cells is mediated by an increased expression of peripheral T cells and central microglial cytokines in Alzheimer's disease mice. Our findings provide an experimental basis for understanding the role of T cells in Alzheimer's disease.
Collapse
Affiliation(s)
- Jing Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China ; Department of Human Anatomy, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yuxin Ma
- Department of Human Anatomy, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Sumin Tian
- Department of Human Anatomy, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Li Zhang
- Department of Human Anatomy, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Mengmeng Zhao
- Department of Human Anatomy, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yaqiong Zhang
- Department of Human Anatomy, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Dachuan Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Urra X, Miró F, Chamorro A, Planas AM. Antigen-specific immune reactions to ischemic stroke. Front Cell Neurosci 2014; 8:278. [PMID: 25309322 PMCID: PMC4162361 DOI: 10.3389/fncel.2014.00278] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 12/24/2022] Open
Abstract
Brain proteins are detected in the cerebrospinal fluid (CSF) and blood of stroke patients and their concentration is related to the extent of brain damage. Antibodies against brain antigens develop after stroke, suggesting a humoral immune response to the brain injury. Furthermore, induced immune tolerance is beneficial in animal models of cerebral ischemia. The presence of circulating T cells sensitized against brain antigens, and antigen presenting cells (APCs) carrying brain antigens in draining lymphoid tissue of stroke patients support the notion that stroke might induce antigen-specific immune responses. After stroke, brain proteins that are normally hidden from the periphery, inflammatory mediators, and danger signals can exit the brain through several efflux routes. They can reach the blood after leaking out of the damaged blood-brain barrier (BBB) or following the drainage of interstitial fluid to the dural venous sinus, or reach the cervical lymph nodes through the nasal lymphatics following CSF drainage along the arachnoid sheaths of nerves across the nasal submucosa. The route and mode of access of brain antigens to lymphoid tissue could influence the type of response. Central and peripheral tolerance prevents autoimmunity, but the actual mechanisms of tolerance to brain antigens released into the periphery in the presence of inflammation, danger signals, and APCs, are not fully characterized. Stroke does not systematically trigger autoimmunity, but under certain circumstances, such as pronounced systemic inflammation or infection, autoreactive T cells could escape the tolerance controls. Further investigation is needed to elucidate whether antigen-specific immune events could underlie neurological complications impairing recovery from stroke.
Collapse
Affiliation(s)
- Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic Barcelona, Spain ; August Pi i Sunyer Biomedical Research Institute (IDIBAPS) Barcelona, Spain
| | - Francesc Miró
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) Barcelona, Spain
| | - Angel Chamorro
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic Barcelona, Spain ; August Pi i Sunyer Biomedical Research Institute (IDIBAPS) Barcelona, Spain
| | - Anna M Planas
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) Barcelona, Spain ; Department of Brain Ischemia and Neurodegeneration, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, Spain
| |
Collapse
|
20
|
Fakharzadeh S, Sahraian MA, Hafizi M, Kalanaky S, Masoumi Z, Mahdavi M, Kamalian N, Minagar A, Nazaran MH. The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/BL6 mice. Int J Nanomedicine 2014; 9:3841-53. [PMID: 25143732 PMCID: PMC4137990 DOI: 10.2147/ijn.s64630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose Currently approved therapies for multiple sclerosis (MS) at best only slow down its progression. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In the present study, for the first time we evaluated the therapeutic potential of MSc1 nanocomplex, which was designed based on novel nanochelating technology. Materials and methods MSc1 cell-protection capacity, with and without iron bond, was evaluated against hydrogen peroxide (H2O2)-induced oxidative stress in cultured rat pheochromocytoma-12 cells. The ability of MSc1 to maintain iron bond at pH ranges of 1–7 was evaluated. Nanocomplex toxicity was examined by estimating the intraperitoneal median lethal dose (LD50). Experimental autoimmune encephalomyelitic mice were injected with MSc1 14 days after disease induction, when the clinical symptoms appeared. The clinical score, body weight, and disease-induced mortality were monitored until day 54. In the end, after collecting blood samples for assessing hemoglobin and red blood cell count, the brains and livers of the mice were isolated for hematoxylin and eosin staining and analysis of iron content, respectively. Results The results showed that MSc1 prevented H2O2-induced cell death even after binding with iron, and it preserved its bond with iron constant at pH ranges 1–7. The nanocomplex intraperitoneal LD50 was 1,776.59 mg/kg. MSc1 prompted therapeutic behavior and improved the disabling features of experimental autoimmune encephalomyelitis, which was confirmed by decreased clinical scores versus increased body mass and 100% survival probability. It did not cause any adverse effects on hemoglobin or red blood cell count. Histopathological studies showed no neural loss or lymphocyte infiltration in MSc1-treated mice, while the hepatic iron content was also normal. Conclusion These results demonstrate that MSc1 could be a promising beneficial novel agent and has the capacity to be evaluated in further studies.
Collapse
Affiliation(s)
- Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Zahra Masoumi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Nasser Kamalian
- Department of Pathology, Medical School of Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Minagar
- Department of Neurology, LSU Health Sciences Centre, Shreveport, LA, USA
| | | |
Collapse
|
21
|
Graber JJ, Dhib-Jalbut S. Biomarkers of Interferon Beta Therapy in Multiple Sclerosis. J Interferon Cytokine Res 2014; 34:600-4. [DOI: 10.1089/jir.2013.0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jerome J. Graber
- Department of Neurology, Montefiore-Einstein Medical Center, Bronx, New York
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
22
|
Increasing serum levels of vitamin A, D and E are associated with alterations of different inflammation markers in patients with multiple sclerosis. J Neuroimmunol 2014; 271:60-5. [DOI: 10.1016/j.jneuroim.2014.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/20/2014] [Accepted: 03/17/2014] [Indexed: 12/27/2022]
|
23
|
Nau R, Ribes S, Djukic M, Eiffert H. Strategies to increase the activity of microglia as efficient protectors of the brain against infections. Front Cell Neurosci 2014; 8:138. [PMID: 24904283 PMCID: PMC4033068 DOI: 10.3389/fncel.2014.00138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/30/2014] [Indexed: 12/24/2022] Open
Abstract
In healthy individuals, infections of the central nervous system (CNS) are comparatively rare. Based on the ability of microglial cells to phagocytose and kill pathogens and on clinical findings in immunocompromised patients with CNS infections, we hypothesize that an intact microglial function is crucial to protect the brain from infections. Phagocytosis of pathogens by microglial cells can be stimulated by agonists of receptors of the innate immune system. Enhancing this pathway to increase the resistance of the brain to infections entails the risk of inducing collateral damage to the nervous tissue. The diversity of microglial cells opens avenue to selectively stimulate sub-populations responsible for the defence against pathogens without stimulating sub-populations which are responsible for collateral damage to the nervous tissue. Palmitoylethanolamide (PEA), an endogenous lipid, increased phagocytosis of bacteria by microglial cells in vitro without a measurable proinflammatory effect. It was tested clinically apparently without severe side effects. Glatiramer acetate increased phagocytosis of latex beads by microglia and monocytes, and dimethyl fumarate enhanced elimination of human immunodeficiency virus from infected macrophages without inducing a release of proinflammatory compounds. Therefore, the discovery of compounds which stimulate the elimination of pathogens without collateral damage of neuronal structures appears an achievable goal. PEA and, with limitations, glatiramer acetate and dimethyl fumarate appear promising candidates.
Collapse
Affiliation(s)
- Roland Nau
- Department of Neuropathology, University Medical Centre Göttingen Göttingen, Germany ; Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende Göttingen, Germany
| | - Sandra Ribes
- Department of Neuropathology, University Medical Centre Göttingen Göttingen, Germany
| | - Marija Djukic
- Department of Neuropathology, University Medical Centre Göttingen Göttingen, Germany ; Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende Göttingen, Germany
| | - Helmut Eiffert
- Department of Clinical Microbiology, University Medical Centre Göttingen Göttingen, Germany
| |
Collapse
|
24
|
Bettencourt A, Silva AM, Carvalho C, Leal B, Santos E, Costa PP, Silva BM. The role of KIR2DS1 in multiple sclerosis--KIR in Portuguese MS patients. J Neuroimmunol 2014; 269:52-5. [PMID: 24529855 DOI: 10.1016/j.jneuroim.2014.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 12/13/2022]
Abstract
Killer Immunoglobulin-like Receptor (KIR) genes may influence both resistance and susceptibility to different autoimmune diseases, but their role in the pathogenesis of Multiple Sclerosis (MS) is still unclear. We investigated the influence of KIR genes on MS susceptibility in 447 MS Portuguese patients, and also whether genetic interactions between specific KIR genes and their HLA class I ligands could contribute to the pathogenesis of MS. We observed a negative association between the activating KIR2DS1 gene and MS (adjusted OR=0.450, p=0.030) independently from the presence of HLA-DRB1*15 allele. The activating KIR2DS1 receptor seems to confer protection against MS most probably through modulation of autoreactive T cells by Natural Killer cells.
Collapse
Affiliation(s)
- Andreia Bettencourt
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal.
| | - Ana Martins Silva
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal; Neurology Department, Centro Hospitalar do Porto - Hospital de Santo António (CHP-HSA), Porto, Portugal
| | - Cláudia Carvalho
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal
| | - Bárbara Leal
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal
| | - Ernestina Santos
- Neurology Department, Centro Hospitalar do Porto - Hospital de Santo António (CHP-HSA), Porto, Portugal
| | - Paulo P Costa
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Porto, Portugal
| | - Berta M Silva
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal
| |
Collapse
|
25
|
Huang Z, Ha G, Petitto J. Reversal of Neuronal Atrophy: Role of Cellular Immunity in Neuroplasticity and Aging. ACTA ACUST UNITED AC 2014; 2. [PMID: 25505790 DOI: 10.4172/2329-6895.1000170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging evidence indicates that neuroimmunological changes in the brain can modify intrinsic brain processes that are involved in regulating neuroplasticity. Increasing evidence suggests that in some forms of motor neuron injury, many neurons do not die, but reside in an atrophic state for an extended period of time. In mice, facial motor neurons in the brain undergo a protracted period of degeneration or atrophy following resection of their peripheral axons. Reinjuring the proximal nerve stump of the chronically resected facial nerve stimulates a robust reversal of motor neuron atrophy which results in marked increases in both the number and size of injured motor neurons in the facial motor nucleus. In this brief review, we describe research from our lab which indicates that the reversal of atrophy in this injury model is dependent on normal cellular immunity. The role of T cells in this unique form of neuroplasticity following injury and in brain aging, are discussed. The potential role of yet undiscover intrinsic actions of recombination activating genes in the brain are considered. Further research using the facial nerve reinjury model could identify molecular signals involved in neuroplasticity, and lead to new ways to stimulate neuroregenerative processes in neurotrauma and other forms of brain insult and disease.
Collapse
Affiliation(s)
- Zhi Huang
- Departments of Neuroscience and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Grace Ha
- Departments of Neuroscience and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - John Petitto
- Departments of Neuroscience and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Qian S, Tang Y, Cheng L, Sun X, Tian J, Zhou C. Interaction of copolymer-1-activated T cells and microglia in retinal ganglion cell protection. Clin Exp Ophthalmol 2013; 41:881-90. [PMID: 23566072 DOI: 10.1111/ceo.12110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 03/14/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Shaohong Qian
- Department of Ophthalmology; EENT Hospital of Fudan University; Shanghai China
| | - Yating Tang
- Department of Ophthalmology; EENT Hospital of Fudan University; Shanghai China
| | - Lina Cheng
- Department of Ophthalmology; no. 2 Hospital of Xi'an; Shanxi China
| | - Xinghuai Sun
- Department of Ophthalmology; EENT Hospital of Fudan University; Shanghai China
| | - Jie Tian
- Central Lab; EENT Hospital of Fudan University; Shanghai China
| | - Chuandi Zhou
- Department of Ophthalmology; EENT Hospital of Fudan University; Shanghai China
| |
Collapse
|
27
|
Gupta RK, Przekwas A. Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects. Front Neurol 2013; 4:59. [PMID: 23755039 PMCID: PMC3667273 DOI: 10.3389/fneur.2013.00059] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/09/2013] [Indexed: 01/13/2023] Open
Abstract
Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI.
Collapse
Affiliation(s)
- Raj K Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command , Fort Detrick, MD , USA
| | | |
Collapse
|
28
|
Scheetz TE, Fingert JH, Wang K, Kuehn MH, Knudtson KL, Alward WLM, Boldt HC, Russell SR, Folk JC, Casavant TL, Braun TA, Clark AF, Stone EM, Sheffield VC. A genome-wide association study for primary open angle glaucoma and macular degeneration reveals novel Loci. PLoS One 2013; 8:e58657. [PMID: 23536807 PMCID: PMC3594156 DOI: 10.1371/journal.pone.0058657] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/07/2013] [Indexed: 11/22/2022] Open
Abstract
Glaucoma and age-related macular degeneration (AMD) are the two leading causes of visual loss in the United States. We utilized a novel study design to perform a genome-wide association for both primary open angle glaucoma (POAG) and AMD. This study design utilized a two-stage process for hypothesis generation and validation, in which each disease cohort was utilized as a control for the other. A total of 400 POAG patients and 400 AMD patients were ascertained and genotyped at 500,000 loci. This study identified a novel association of complement component 7 (C7) to POAG. Additionally, an association of central corneal thickness, a known risk factor for POAG, was found to be associated with ribophorin II (RPN2). Linked monogenic loci for POAG and AMD were also evaluated for evidence of association, none of which were found to be significantly associated. However, several yielded putative associations requiring validation. Our data suggest that POAG is more genetically complex than AMD, with no common risk alleles of large effect.
Collapse
Affiliation(s)
- Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Meola D, Huang Z, Ha GK, Petitto JM. Loss of Neuronal Phenotype and Neurodegeneration: Effects of T Lymphocytes and Brain Interleukin-2. ACTA ACUST UNITED AC 2013; Suppl 10. [PMID: 24058743 DOI: 10.4172/2161-0460.s10-003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of neuronal phenotype and reversal of neuronal atrophy have been demonstrated in different models of central nervous system (CNS) injury. These processes may be generalizable to different types of brain neurons and circuitry. The idea that some injured neurons may lose their phenotype and/or atrophy with the potential to rejuvenate is a remarkable and potentially promising form of neuronal plasticity that is not well understood. In this paper, we present some of our laboratory's basic neuroimmunology research showing that peripheral T cells entering the CNS, and brain-derived interleukin-2 (IL-2), play significant roles in these intriguing processes. Our findings suggest, for example, that T cell immunosenesence could be involved in related processes of brain aging and contribute to neurodegenerative disease. Neuroimmunological approaches may provide new insights into yet undiscovered factors and brain mechanisms that regulate changes in neuronal integrity associated with aging and disease. Such findings could have important implications for discovering more effective strategies for treating patients with neurotrauma and neurodegenerative diseases (e.g., Alzheimer's disease).
Collapse
Affiliation(s)
- Danielle Meola
- Departments of Psychiatry, Neuroscience, Pharmacology and Therapeutics, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
30
|
Wang Y, Wang K, Chao R, Li J, Zhou L, Ma J, Yan J. Neuroprotective Effect of Vaccination with Autoantigen-Pulsed Dendritic Cells After Spinal Cord Injury. J Surg Res 2012; 176:281-92. [DOI: 10.1016/j.jss.2011.06.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 05/15/2011] [Accepted: 06/27/2011] [Indexed: 12/17/2022]
|
31
|
Seledtsov V, Seledtsova G. A balance between tissue-destructive and tissue-protective immunities: A role of toll-like receptors in regulation of adaptive immunity. Immunobiology 2012; 217:430-5. [PMID: 22099351 DOI: 10.1016/j.imbio.2011.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
|
32
|
Palumbo ML, Trinchero MF, Zorrilla-Zubilete MA, Schinder AF, Genaro AM. Glatiramer acetate reverts stress-induced alterations on adult neurogenesis and behavior. Involvement of Th1/Th2 balance. Brain Behav Immun 2012; 26:429-38. [PMID: 22200600 DOI: 10.1016/j.bbi.2011.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 01/15/2023] Open
Abstract
Long-term exposure to stressful situations has deleterious effects on adult neurogenesis, behavior, and the immune system. We have previously shown that stressed BALB/c mice show poor learning performance, which correlates with an increase in the T helper 1/T helper 2 (Th1/Th2) cytokine balance. Glatiramer acetate (GA) can stimulate autoreactive T cells. In this work we investigated the effects of GA treatment on BALB/c mice exposed to chronic mild stress (CMS). Stressed mice exhibited a significant decline in their performance in the open field and Y-maze tasks, which was accompanied by a reduction in dentate gyrus neurogenesis and an altered Th1/Th2 balance. Interestingly, after 6 weeks of CMS exposure administration of GA reestablished normal levels of adult neurogenesis, restored the Th1/Th2 balance, and improved learning performance. These results demonstrate that GA treatment can reverse the learning impairment induced by stress through a mechanism that likely involves the regulation of the cytokine balance and adult neurogenesis.
Collapse
Affiliation(s)
- María Laura Palumbo
- CEFYBO-CONICET, 1ª, Cátedra de Farmacología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
33
|
McCombe PA, Henderson RD. The Role of immune and inflammatory mechanisms in ALS. Curr Mol Med 2011; 11:246-54. [PMID: 21375489 PMCID: PMC3182412 DOI: 10.2174/156652411795243450] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/25/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe progressive neurodegenerative disease. The cause is unknown, but genetic abnormalities have been identified in subjects with familial ALS and also in subjects with sporadic ALS. Environmental factors such as occupational exposure have been shown to be risk factors for the development of ALS. Patients differ in their clinical features and differ in the clinical course of disease. Immune abnormalities have been found in the central nervous system by pathological studies and also in the blood and CSF of subjects with ALS. Inflammation and immune abnormalities are also found in animals with a model of ALS due to mutations in the SOD1 gene. Previously it has been considered that immune abnormalities might contribute to the pathogenesis of disease. However more recently it has become apparent that an immune response can occur as a response to damage to the nervous system and this can be protective.
Collapse
Affiliation(s)
- P A McCombe
- The University of Queensland, UQ Centre for Clinical Research, Australia.
| | | |
Collapse
|
34
|
Graber JJ, Dhib-Jalbut S. Biomarkers of disease activity in multiple sclerosis. J Neurol Sci 2011; 305:1-10. [DOI: 10.1016/j.jns.2011.03.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/15/2022]
|
35
|
Abstract
Inflammation of the central nervous system (CNS) (neuroinflammation) is now recognized to be a feature of all neurological disorders. In multiple sclerosis, there is prominent infiltration of various leukocyte subsets into the CNS. Even when there is no significant inflammatory infiltrates, such as in Parkinson or Alzheimer disease, there is intense activation of microglia with resultant elevation of many inflammatory mediators within the CNS. An extensive dataset describes neuroinflammation to have detrimental consequences, but results emerging largely over the past decade have indicated that aspects of the inflammatory response are beneficial for CNS outcomes. Benefits of neuroinflammation now include neuroprotection, the mobilization of neural precursors for repair, remyelination, and even axonal regeneration. The findings that neuroinflammation can be beneficial should not be surprising as a properly directed inflammatory response in other tissues is a natural healing process after an insult. In this article, we review the data that highlight the dual aspects of neuroinflammation in being a hindrance on the one hand but also a significant help for recovery of the CNS on the other. We consider how the inflammatory response may be beneficial or injurious, and we describe strategies to harness the beneficial aspects of neuroinflammation.
Collapse
Affiliation(s)
- V Wee Yong
- University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
36
|
Garay PA, McAllister AK. Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front Synaptic Neurosci 2010; 2:136. [PMID: 21423522 PMCID: PMC3059681 DOI: 10.3389/fnsyn.2010.00136] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022] Open
Abstract
Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Paula A Garay
- Laboratory of Dr. A.K. McAllister, Department of Neurobiology, Physiology, and Behavior, Center for Neuroscience, University of California Davis, CA, USA
| | | |
Collapse
|
37
|
Overlapping and distinct mechanisms of action of multiple sclerosis therapies. Clin Neurol Neurosurg 2010; 112:583-91. [DOI: 10.1016/j.clineuro.2010.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/27/2010] [Accepted: 05/04/2010] [Indexed: 11/18/2022]
|
38
|
Polazzi E, Monti B. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 2010; 92:293-315. [PMID: 20609379 DOI: 10.1016/j.pneurobio.2010.06.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 12/12/2022]
Abstract
Microglia are the main immune cells in the brain, playing a role in both physiological and pathological conditions. Microglial involvement in neurodegenerative diseases is well-established, being microglial activation and neuroinflammation common features of these neuropathologies. Microglial activation has been considered harmful for neurons, but inflammatory state is not only associated with neurotoxic consequences, but also with neuroprotective effects, such as phagocytosis of dead neurons and clearance of debris. This brought to the idea of protective autoimmunity in the brain and to devise immunomodulatory therapies, aimed to specifically increase neuroprotective aspects of microglia. During the last years, several data supported the intrinsic neuroprotective function of microglia through the release of neuroprotective molecules. These data led to change the traditional view of microglia in neurodegenerative diseases: from the idea that these cells play an detrimental role for neurons due to a gain of their inflammatory function, to the proposal of a loss of microglial neuroprotective function as a causing factor in neuropathologies. This "microglial dysfunction hypothesis" points at the importance of understanding the mechanisms of microglial-mediated neuroprotection to develop new therapies for neurodegenerative diseases. In vitro models are very important to clarify the basic mechanisms of microglial-mediated neuroprotection, mainly for the identification of potentially effective neuroprotective molecules, and to design new approaches in a gene therapy set-up. Microglia could act as both a target and a vehicle for CNS gene delivery of neuroprotective factors, endogenously produced by microglia in physiological conditions, thus strengthening the microglial neuroprotective phenotype, even in a pathological situation.
Collapse
|
39
|
Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, Sriramula S, Francis J, Sumners C, Raizada MK. Brain microglial cytokines in neurogenic hypertension. Hypertension 2010; 56:297-303. [PMID: 20547972 DOI: 10.1161/hypertensionaha.110.150409] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates a key role of inflammation in hypertension and cardiovascular disorders. However, the role of inflammatory processes in neurogenic hypertension remains to be determined. Thus, our objective in the present study was to test the hypothesis that activation of microglial cells and the generation of proinflammatory cytokines in the paraventricular nucleus (PVN) contribute to neurogenic hypertension. Intracerebroventricular infusion of minocycline, an anti-inflammatory antibiotic, caused a significant attenuation of mean arterial pressure, cardiac hypertrophy, and plasma norepinephrine induced by chronic angiotensin II infusion. This was associated with decreases in the numbers of activated microglia and mRNAs for interleukin (IL) 1beta, IL-6, and tumor necrosis factor-alpha, and an increase in the mRNA for IL-10 in the PVN. Overexpression of IL-10 induced by recombinant adenoassociated virus-mediated gene transfer in the PVN mimicked the antihypertensive effects of minocycline. Furthermore, acute application of a proinflammatory cytokine, IL-1beta, into the left ventricle or the PVN in normal rats resulted in a significant increase in mean arterial pressure. Collectively, this indicates that angiotensin II induced hypertension involves activation of microglia and increases in proinflammatory cytokines in the PVN. These data have significant implications on the development of innovative therapeutic strategies for the control of neurogenic hypertension.
Collapse
Affiliation(s)
- Peng Shi
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra and intracellular accumulation of misfolded proteins, the hallmarks of many neurodegenerative proteinopathies. Major basic processes include abnormal protein dynamics due to deficiency of the ubiquitin-proteosome-autophagy system, oxidative stress and free radical formation, mitochondrial dysfunction, impaired bioenergetics, dysfunction of neurotrophins, 'neuroinflammatory' processes and (secondary) disruptions of neuronal Golgi apparatus and axonal transport. These interrelated mechanisms lead to programmed cell death is a long run over many years. Neurodegenerative disorders are classified according to known genetic mechanisms or to major components of protein deposits, but recent studies showed both overlap and intraindividual diversities between different phenotypes. Synergistic mechanisms between pathological proteins suggest common pathogenic mechanisms. Animal models and other studies have provided insight into the basic neurodegeneration and cell death programs, offering new ways for future prevention/treatment strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse, Vienna, Austria.
| |
Collapse
|
41
|
Li SC, Zhong JF. Twisting immune responses for allogeneic stem cell therapy. World J Stem Cells 2009; 1:30-5. [PMID: 20975985 PMCID: PMC2958105 DOI: 10.4252/wjsc.v1.i1.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 02/06/2023] Open
Abstract
Stem cell-derived tissues and organs have the potential to change modern clinical science. However, rejection of allogeneic grafts by the host's immune system is an issue which needs to be addressed before embryonic stem cell-derived cells or tissues can be used as medicines. Mismatches in human leukocyte class I antigens and minor histocompatibility antigens are the central factors that are responsible for various graft-versus-host diseases. Traditional strategies usually involve suppressing the whole immune systems with drugs. There are many side effects associated with these methods. Here, we discuss an emerging strategy for manipulating the central immune tolerance by naturally "introducing" donor antigens to a host so a recipient can acquire tolerance specifically to the donor cells or tissues. This strategy has two distinct stages. The first stage restores the thymic function of adult patients with sex steroid inhibitory drugs (LHRH-A), keratinocyte growth factor (KGF), interleukin 7 (IL-7) and FMS-like tyrosine kinase 3 (FLT3). The second stage introduces hematopoietic stem cells and their downstream progenitors to the restored thymus by direct injection. Hematopoietic stem cells are used to introduce donor antigens because they have priority access to the thymus. We also review several clinical cases to explain this new strategy.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Shengwen Calvin Li, CHOC Children's Hospital Research Institute, University of California Irvine, 455 South Main Street, Orange, California, CA 92868, United States
| | | |
Collapse
|
42
|
De Santi L, Annunziata P, Sessa E, Bramanti P. Brain-derived neurotrophic factor and TrkB receptor in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neurol Sci 2009; 287:17-26. [DOI: 10.1016/j.jns.2009.08.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/24/2009] [Accepted: 08/27/2009] [Indexed: 01/31/2023]
|
43
|
The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 2009; 17:1083-91. [DOI: 10.1038/cdd.2009.179] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
44
|
Immune senescence and brain aging: can rejuvenation of immunity reverse memory loss? Trends Neurosci 2009; 32:367-75. [PMID: 19520437 DOI: 10.1016/j.tins.2009.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 02/19/2009] [Accepted: 03/02/2009] [Indexed: 12/11/2022]
Abstract
The factors that determine brain aging remain a mystery. Do brain aging and memory loss reflect processes occurring only within the brain? Here, we present a novel view, linking aging of adaptive immunity to brain senescence and specifically to spatial memory deterioration. Inborn immune deficiency, in addition to sudden imposition of immune malfunction in young animals, results in cognitive impairment. As a corollary, immune restoration at adulthood or in the elderly results in a reversal of memory loss. These results, together with the known deterioration of adaptive immunity in the elderly, suggest that memory loss does not solely reflect chronological age; rather, it is an outcome of the gap between an increasing demand for maintenance (age-related risk-factor accumulation) and the reduced ability of the immune system to meet these needs.
Collapse
|
45
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|