1
|
Tan W, Ma J, Fu J, Wu B, Zhu Z, Huang X, Du M, Wu C, Balawi E, Zhou Q, Zhang J, Liao Z. Transcriptomic and bioinformatics analysis of the mechanism by which erythropoietin promotes recovery from traumatic brain injury in mice. Neural Regen Res 2024; 19:171-179. [PMID: 37488864 PMCID: PMC10479836 DOI: 10.4103/1673-5374.374135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/04/2023] [Accepted: 03/11/2023] [Indexed: 07/26/2023] Open
Abstract
Recent studies have found that erythropoietin promotes the recovery of neurological function after traumatic brain injury. However, the precise mechanism of action remains unclear. In this study, we induced moderate traumatic brain injury in mice by intraperitoneal injection of erythropoietin for 3 consecutive days. RNA sequencing detected a total of 4065 differentially expressed RNAs, including 1059 mRNAs, 92 microRNAs, 799 long non-coding RNAs, and 2115 circular RNAs. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses revealed that the coding and non-coding RNAs that were differentially expressed after traumatic brain injury and treatment with erythropoietin play roles in the axon guidance pathway, Wnt pathway, and MAPK pathway. Constructing competing endogenous RNA networks showed that regulatory relationship between the differentially expressed non-coding RNAs and mRNAs. Because the axon guidance pathway was repeatedly enriched, the expression of Wnt5a and Ephb6, key factors in the axonal guidance pathway, was assessed. Ephb6 expression decreased and Wnt5a expression increased after traumatic brain injury, and these effects were reversed by treatment with erythropoietin. These findings suggest that erythropoietin can promote recovery of nerve function after traumatic brain injury through the axon guidance pathway.
Collapse
Affiliation(s)
- Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Ma
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ehab Balawi
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengbu Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current Evidence on the Protective Effects of Recombinant Human Erythropoietin and Its Molecular Variants against Pathological Hallmarks of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13120424. [PMID: 33255969 PMCID: PMC7760199 DOI: 10.3390/ph13120424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence in the literature demonstrates the pleiotropic effects of the administration of recombinant human erythropoietin (rhEPO) and its molecular variants in different tissues and organs, including the brain. Some of these reports suggest that the chemical properties of this molecule by itself or in combination with other agents (e.g., growth factors) could provide the necessary pharmacological characteristics to be considered a potential protective agent in neurological disorders such as Alzheimer’s disease (AD). AD is a degenerative disorder of the brain, characterized by an aberrant accumulation of amyloid β (Aβ) and hyperphosphorylated tau (tau-p) proteins in the extracellular and intracellular space, respectively, leading to inflammation, oxidative stress, excitotoxicity, and other neuronal alterations that compromise cell viability, causing neurodegeneration in the hippocampus and the cerebral cortex. Unfortunately, to date, it lacks an effective therapeutic strategy for its treatment. Therefore, in this review, we analyze the evidence regarding the effects of exogenous EPOs (rhEPO and its molecular variants) in several in vivo and in vitro Aβ and tau-p models of AD-type neurodegeneration, to be considered as an alternative protective treatment to this condition. Particularly, we focus on analyzing the differential effect of molecular variants of rhEPO when changes in doses, route of administration, duration of treatment or application times, are evaluated for the improved cellular alterations generated in this disease. This narrative review shows the evidence of the effectiveness of the exogenous EPOs as potential therapeutic molecules, focused on the mechanisms that establish cellular damage and clinical manifestation in the AD.
Collapse
Affiliation(s)
- José J. Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Martha C. Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM-Juriquilla, Querétaro 76230, Mexico;
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Ciudad de Mexico 07360, Mexico;
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| | - Carlos Beas-Zárate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| |
Collapse
|
3
|
Kochanek PM, Jackson TC, Jha RM, Clark RS, Okonkwo DO, Bayır H, Poloyac SM, Wagner AK, Empey PE, Conley YP, Bell MJ, Kline AE, Bondi CO, Simon DW, Carlson SW, Puccio AM, Horvat CM, Au AK, Elmer J, Treble-Barna A, Ikonomovic MD, Shutter LA, Taylor DL, Stern AM, Graham SH, Kagan VE, Jackson EK, Wisniewski SR, Dixon CE. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision. J Neurotrauma 2020; 37:2353-2371. [PMID: 30520681 PMCID: PMC7698994 DOI: 10.1089/neu.2018.6203] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip E. Empey
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children's National Medical Center, Washington, DC, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Christopher M. Horvat
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Amery Treble-Barna
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A. Shutter
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew M. Stern
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven H. Graham
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen R. Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Potential Efficacy of Erythropoietin on Reducing the Risk of Mortality in Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7563868. [PMID: 33178833 PMCID: PMC7644316 DOI: 10.1155/2020/7563868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 01/28/2023]
Abstract
Objective The objective of this study is to assess the effectiveness of erythropoietin (EPO) on mortality, neurological outcomes, and adverse event in the treatment of traumatic brain injury (TBI). Methods We searched databases including PubMed, OVID, and the Cochrane Library from inception until October 18, 2019 for randomized controlled trials (RCTs) to compare EPO treatment group and placebo in patients with TBI. Two authors independently processed the data and evaluated the quality of inclusion studies. Statistical analysis was performed with heterogeneity test with I 2 and chi-square tests. We summarized the mortality, prognosis of neurological function, and deep vein thrombosis (DVT) outcomes and presented as risk ratio (RR) or risk difference (RD) with a 95% CI. Results Seven RCTs accounting for 1180 patients were included after meeting the inclusion criteria. Compared with placebo, the overall mortality of EPO-treated patients was significantly reduced (RR 0.68 [95% CI 0.50-0.93]; p = 0.02). EPO therapy did not improve neurological prognosis (RR 1.21 [95% CI 0.93-1.15]; p = 0.16) or increase the occurrence of DVT (RR 0.83 [95% CI 0.61-1.13]; p = 0.242), which showed no significant difference. Conclusions The results showed that the administration of EPO may reduce the risk of mortality without enhancing the occurrence of DVT in TBI patients. However, the effect of EPO on neurological outcome remains indistinct. Through subgroup analysis, we demonstrated that the dose of EPO may be a potential factor affecting the heterogeneity in neurological function and that the follow-up duration may influence the stability of the result.
Collapse
|
5
|
Katiyar V, Chaturvedi A, Sharma R, Gurjar HK, Goda R, Singla R, Ganeshkumar A. Meta-Analysis with Trial Sequential Analysis on the Efficacy and Safety of Erythropoietin in Traumatic Brain Injury: A New Paradigm. World Neurosurg 2020; 142:465-475. [PMID: 32450313 DOI: 10.1016/j.wneu.2020.05.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Erythropoietin (EPO) has been shown to be beneficial in traumatic brain injury (TBI). We have attempted to quantitatively synthesize the findings of current randomized controlled trials (RCTs) in this meta-analysis and analyzed the need for further trials using trial sequential analysis (TSA). METHODS A systematic search was performed in PubMed, the Cochrane Library databases, and Google Scholar for RCTs until December 2019 evaluating the role of EPO in patients with TBI. Seven RCTs were finally included in the quantitative analysis. TSA was done to evaluate the need for further studies. RESULTS The pooled estimate demonstrated that EPO significantly reduced mortality at 6 months (odds ratio [OR], 0.65; 95% confidence interval [CI], 0.43-0.97; P = 0.04) but not in hospital mortality (OR, 0.84; 95% CI, 0.31-2.32; P = 0.74). There was no significant difference in the rate of favorable outcomes with EPO (OR, 1.58; 95% CI, 0.84-2.99; P = 0.16). The rate of deep vein thrombosis (RD, -0.02; 95% CI, -0.06 to 0.02; P =0.41) was also not found to be significantly different in the 2 groups. TSA showed that the accrued information is insufficient to make any definitive conclusions. CONCLUSIONS EPO seems to be beneficial in terms of reducing 6-month mortality, however, its effect on in-hospital mortality, neurologic outcomes, and risk of deep vein thrombosis fails to reach statistical significance. TSA suggests a need for large trials to evaluate the role of EPO in patients with TBI in a more systematic way.
Collapse
Affiliation(s)
- Varidh Katiyar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aprajita Chaturvedi
- Department of Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Hitesh Kumar Gurjar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Revanth Goda
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Raghav Singla
- Department of Neurosurgery, Post Graduate Institute for Medical Education and Research, Chandigarh, India
| | - Akshay Ganeshkumar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Tanaka T, Murata H, Miyazaki R, Yoshizumi T, Sato M, Ohtake M, Tateishi K, Kim P, Yamamoto T. Human recombinant erythropoietin improves motor function in rats with spinal cord compression-induced cervical myelopathy. PLoS One 2019; 14:e0214351. [PMID: 31821342 PMCID: PMC6903714 DOI: 10.1371/journal.pone.0214351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023] Open
Abstract
Objective Erythropoietin (EPO) is a clinically available hematopoietic cytokine. EPO has shown beneficial effects in the context of spinal cord injury and other neurological conditions. The aim of this study was to evaluate the effect of EPO on a rat model of spinal cord compression-induced cervical myelopathy and to explore the possibility of its use as a pharmacological treatment. Methods To develop the compression-induced cervical myelopathy model, an expandable polymer was implanted under the C5-C6 laminae of rats. EPO administration was started 8 weeks after implantation of a polymer. Motor function of rotarod performance and grip strength was measured after surgery, and motor neurons were evaluated with H-E, NeuN and choline acetyltransferase staining. Apoptotic cell death was assessed with TUNEL and Caspase-3 staining. The 5HT, GAP-43 and synaptophysin were evaluated to investigate the protection and plasticity of axons. Amyloid beta precursor protein (APP) was assessed to evaluate axonal injury. To assess transfer of EPO into spinal cord tissue, the EPO levels in spinal cord tissue were measured with an ELISA for each group after subcutaneous injection of EPO. Results High-dose EPO maintained motor function in the compression groups. EPO significantly prevented the loss of motor neurons and significantly decreased neuronal apoptotic cells. Expression of 5HT and synaptophysin was significantly preserved in the EPO group. APP expression was partly reduced in the EPO group. The EPO levels in spinal cord tissue were significantly higher in the high-dose EPO group than other groups. Conclusion EPO improved motor function in rats with compression-induced cervical myelopathy. EPO suppressed neuronal cell apoptosis, protected motor neurons, and induced axonal protection and plasticity. The neuroprotective effects were produced following transfer of EPO into the spinal cord tissue. These findings suggest that EPO has high potential as a treatment for degenerative cervical myelopathy.
Collapse
Affiliation(s)
- Takahiro Tanaka
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- * E-mail:
| | - Ryohei Miyazaki
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Mitsuru Sato
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Ohtake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Phyo Kim
- Department of Neurosurgery, Dokkyo Medical University, Tochigi, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
7
|
Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med 2019; 142:113-122. [PMID: 31039399 DOI: 10.1016/j.freeradbiomed.2019.04.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/10/2023]
Abstract
Perinatal asphyxia-induced brain injury may present as hypoxic-ischemic encephalopathy in the neonatal period, and disability including cerebral palsy in the long term. The brain injury is secondary to both the hypoxic-ischemic event and the reoxygenation-reperfusion following resuscitation. Early events in the cascade of brain injury can be classified as either inflammation or oxidative stress through the generation of free radicals. The objective of this paper is to present efforts that have been made to limit the oxidative stress associated with hypoxic-ischemic encephalopathy. In the acute phase of ischemia/hypoxia and reperfusion/reoxygenation, the outcomes of asphyxiated infants can be improved by optimizing the initial delivery room stabilization. Interventions include limiting oxygen exposure, and shortening the time to return of spontaneous circulation through improved methods for supporting hemodynamics and ventilation. Allopurinol, melatonin, noble gases such as xenon and argon, and magnesium administration also target the acute injury phase. Therapeutic hypothermia, N-acetylcysteine2-iminobiotin, remote ischemic postconditioning, cannabinoids and doxycycline target the subacute phase. Erythropoietin, mesenchymal stem cells, topiramate and memantine could potentially limit injury in the repair phase after asphyxia. To limit the injurious biochemical processes during the different stages of brain injury, determination of the stage of injury in any particular infant remains essential. Currently, therapeutic hypothermia is the only established treatment in the subacute phase of asphyxia-induced brain injury. The effects and side effects of oxidative stress reducing/limiting medications may however be difficult to predict in infants during therapeutic hypothermia. Future neuroprotection in asphyxiated infants may indeed include a combination of therapies. Challenges include timing, dosing and administration route for each neuroprotectant.
Collapse
Affiliation(s)
- A L Solevåg
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - G M Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - P-Y Cheung
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Suryaningtyas W, Arifin M, Rantam FA, Bajamal AH, Dahlan YP, Dewa Gede Ugrasena I, Maliawan S. Erythropoietin protects the subventricular zone and inhibits reactive astrogliosis in kaolin-induced hydrocephalic rats. Childs Nerv Syst 2019; 35:469-476. [PMID: 30661113 DOI: 10.1007/s00381-019-04063-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE To elucidate the potential role of erythropoietin (EPO) as a neuroprotective agent against reactive astrogliosis and reducing the thinning rate of subventricular zone (SVZ) in kaolin-induced hydrocephalic rats. METHOD Thirty-six ten-week-old Sprague-Dawley rats were used in this study. Hydrocephalus was induced with 20% kaolin suspension injected into the cistern of thirty rats and leaving the six rats as normal group. The hydrocephalic rats were randomly divided into hydrocephalic and treatment group. The treatment group received daily dose of recombinant human erythropoietin (rhEPO) from day 7 to day 21 after induction. The animals were sacrificed at 7 (only for hydrocephalic group) and 14 or 21 (for both groups) days after induction. Brain was removed and was prepared for histological analysis by hematoxylin and eosin staining as well as immunohistochemistry for 4-HNE, GFAP, Iba-1, and Ki-67. RESULTS Histopathological analysis showed that animals treated with rhEPO had a reduced astrocyte reactivity displayed by lower GFAP expression. Hydrocephalic rats received rhEPO also displayed reduced microglial activation shown by lower Iba-1 protein expression. Exogenous rhEPO exerted its protective action in reducing astrogliosis by inhibiting lipid peroxidation that was documented in this study as lower expression of 4-HNE than non-treated group. The SVZ thickness was progressively declining in hydrocephalus group, while the progression rate could be reduced by rhEPO. CONCLUSION Erythropoietin has a potential use for inhibiting lipid peroxidation, and reactive astrogliosis in hydrocephalic animal model. The reduced thinning rate of SVZ demonstrated that EPO also had effect in reducing the hydrocephalus progressivity. Further research is warranted to explore its efficacy and safety to use in clinical setting.
Collapse
Affiliation(s)
- Wihasto Suryaningtyas
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Hospital, Gedung Pusat Diagnostik Terpadu (GDC) Lantai 5, RSUD Dr. Soetomo, Jl. Mayjen Prof Moestopo 6-8, Surabaya, Indonesia.
| | - Muhammad Arifin
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Hospital, Gedung Pusat Diagnostik Terpadu (GDC) Lantai 5, RSUD Dr. Soetomo, Jl. Mayjen Prof Moestopo 6-8, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Department of Veterinary Microbiology - Faculty of Veterinary Medicine And Laboratory for Stem Cell Research - Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Hospital, Gedung Pusat Diagnostik Terpadu (GDC) Lantai 5, RSUD Dr. Soetomo, Jl. Mayjen Prof Moestopo 6-8, Surabaya, Indonesia
| | - Yoes Prijatna Dahlan
- Department of Parasitology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - I Dewa Gede Ugrasena
- Department of Child Health, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Sri Maliawan
- Department of Neurosurgery, Faculty of Medicine Universitas Udayana - Sanglah General Hospital, Denpasar, Indonesia
| |
Collapse
|
9
|
ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability. Shock 2018; 46:390-7. [PMID: 27172159 DOI: 10.1097/shk.0000000000000606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. METHODS ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. RESULTS In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. DISCUSSION ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.
Collapse
|
10
|
Liu WC, Wen L, Xie T, Wang H, Gong JB, Yang XF. Therapeutic effect of erythropoietin in patients with traumatic brain injury: a meta-analysis of randomized controlled trials. J Neurosurg 2017; 127:8-15. [DOI: 10.3171/2016.4.jns152909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEErythropoietin (EPO) exerts a neuroprotective effect in animal models of traumatic brain injury (TBI). However, its effectiveness in human patients with TBI is unclear. In this study, the authors conducted the first meta-analysis to assess the effectiveness and safety of EPO in patients with TBI.METHODSIn December 2015, a systematic search was performed of PubMed, Web of Science, MEDLINE, Embase, the Cochrane Library databases, and Google Scholar. Only English-language publications of randomized controlled trials (RCTs) using EPO in patients with TBI were selected for analysis. The assessed outcomes included mortality, favorable neurological outcome, hospital stay, and associated adverse effects. Continuous variables were presented as mean difference (MD) with a 95% confidence interval (CI). Dichotomous variables were presented as risk ratio (RR) or risk difference (RD) with a 95% CI. Statistical heterogeneity was examined using both I2 and chi-square tests.RESULTSOf the 346 studies identified in the search, 5 RCTs involving 915 patients met the inclusion criteria. The overall results demonstrated that EPO significantly reduced mortality (RR 0.69, 95% CI 0.49–0.96, p = 0.03) and shortened the hospitalization time (MD −7.59, 95% CI −9.71 to −5.46, p < 0.0001) for patients with TBI. Pooled results of favorable outcome (RR 1.00, 95% CI 0.88–1.15, p = 0.97) and deep vein thrombosis (DVT; RD 0.00, 95% CI −0.05 to 0.05, p = 1.00) did not show a significant difference.CONCLUSIONSThe authors suggested that EPO is beneficial for patients with TBI in terms of reducing mortality and shortening hospitalization time without increasing the risk of DVT. However, its effect on improving favorable neurological outcomes did not reach statistical significance. Therefore, more well-designed RCTs are necessary to ascertain the optimum dosage and time window of EPO treatment for patients with TBI.
Collapse
Affiliation(s)
- Wen-Chao Liu
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| | - Liang Wen
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| | - Tao Xie
- 2Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Wang
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| | - Jiang-Biao Gong
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| | - Xiao-Feng Yang
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| |
Collapse
|
11
|
Wu S, Yang C, Xu N, Wang L, Liu Y, Wang J, Shen X. The Protective Effects of Helix B Surface Peptide on Experimental Acute Liver Injury Induced by Carbon Tetrachloride. Dig Dis Sci 2017; 62:1537-1549. [PMID: 28365917 DOI: 10.1007/s10620-017-4553-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND To investigate the protective effects of helix B surface peptide (HBSP) on acute liver injury induced by carbon tetrachloride (CCl4). METHODS HBSP (8 nmol/kg) was intraperitoneally injected into C57 BL/6 mice 2 h after CCl4 administration. Serum and liver tissue samples were collected 24 h after injury. Liver function and histological injuries were evaluated. Inflammatory cell infiltration and cytokines were examined and hepatocytes apoptosis was measured. The human liver cell line LO2 and murine primary hepatocytes were stimulated by CCl4 with and without HBSP treatment and glutathione peroxidase activity, cell survival, and apoptosis were evaluated. In addition, we examined the PI3K/Akt/mTORC1 pathway to elucidate the mechanism underlying HBSP-mediated protection in acute liver injury. RESULTS HBSP significantly decreased serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and pro-inflammatory cytokines in liver tissues after CCl4 injection compared with those in the control group. Immunohistochemical staining indicated that the number of CD3-, CD8-, and CD68-positive cells and the expression of cleaved caspase-3 were significantly decreased by HBSP treatment. Additionally, HBSP reduced apoptosis in vivo. In an in vitro study, the glutathione peroxidase activity and survival rate increased, while the total apoptotic rate was reduced in the HBSP-treated group compared with that in the control group after CCl4 treatment. HBSP activated the PI3K/Akt/mTORC1 pathway, which was confirmed by the PI3K inhibitor LY294002 both in vivo and in vitro. Furthermore, HBSP increased the survival of mice with acute liver injury, and this effect was abolished by LY294002. CONCLUSIONS HBSP is a potential therapeutic agent against acute liver injury induced by CCl4.
Collapse
Affiliation(s)
- Shengdi Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Nuo Xu
- Department of Respiration, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lingyan Wang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yun Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiyao Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Department of Internal Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Diseases, Shanghai, 200032, China. .,Key Laboratory of Medical Molecule Virology, Ministry of Education and Health, Shanghai, 200032, China.
| |
Collapse
|
12
|
Kalemci O, Aydin HE, Kizmazoglu C, Kaya I, Yılmaz H, Arda NM. Effects of Quercetin and Mannitol on Erythropoietin Levels in Rats Following Acute Severe Traumatic Brain Injury. J Korean Neurosurg Soc 2017; 60:355-361. [PMID: 28490163 PMCID: PMC5426445 DOI: 10.3340/jkns.2016.0505.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/27/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Objective The aim of this study to investigate the normal values of erythropoietin (EPO) and neuroprotective effects of quercetin and mannitol on EPO and hematocrit levels after acute severe traumatic brain injury (TBI) in rat model. Methods A weight-drop impact acceleration model of TBI was used on 40 male Wistar rats. The animals were divided into sham (group I), TBI (group II), TBI+quercetin (50 mg/kg intravenously) (group III), and TBI+mannitol (1 mg/kg intravenously) (group IV) groups. The malondialdehyde, glutathione peroxidase, catalase, EPO, and hematocrit levels were measured 1 and 4 hour after injury. Two-way repeated measures analysis of variance and Tukey’s test were used for statistical analysis. Results The malondialdehyde levels decreased significantly after administration of quercetin and mannitol compared with those in group II. Catalase and glutathione peroxidase levels increased significantly in groups III and IV. Serum EPO levels decreased significantly after mannitol but not after quercetin administration. Serum hematocrit levels did not change significantly after quercetin and mannitol administration 1 hour after trauma. However, mannitol administration decreased serum hematocrit levels significantly after 4 hour. Conclusion This study suggests that quercetin may be a good alternative treatment for TBI, as it did not decrease the EPO levels.
Collapse
Affiliation(s)
- Orhan Kalemci
- Department of Neurosurgery, School of Medicine and Hospital, Dokuz Eylul University, Izmir, Turkey
| | - Hasan Emre Aydin
- Department of Pharmacology, Eskisehir Osmangazi University, Eskisehir, Turkey.,Department of Neurosurgery, School of Medicine and Hospital, Dumlupınar University, Kutahya, Turkey
| | - Ceren Kizmazoglu
- Department of Neurosurgery, School of Medicine and Hospital, Dokuz Eylul University, Izmir, Turkey
| | - Ismail Kaya
- Department of Neurosurgery, Kilis State Hospital, Kilis, Turkey
| | - Hulya Yılmaz
- Department of Biostatistics and Medical Informatics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nuri M Arda
- Department of Neurosurgery, School of Medicine and Hospital, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
13
|
Lv HY, Wu SJ, Wang QL, Yang LH, Ren PS, Qiao BJ, Wang ZY, Li JH, Gu XL, Li LX. Effect of erythropoietin combined with hypothermia on serum tau protein levels and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy. Neural Regen Res 2017; 12:1655-1663. [PMID: 29171431 PMCID: PMC5696847 DOI: 10.4103/1673-5374.217338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy, many neonatal patients die or suffer from severe neurological dysfunction. Erythropoietin is considered one of the most promising neuroprotective agents. We hypothesized that erythropoietin combined with hypothermia will improve efficacy of neonatal hypoxic-ischemic encephalopathy treatment. In this study, 41 neonates with moderate/severe hypoxic-ischemic encephalopathy were randomly divided into a control group (hypothermia alone for 72 hours, n = 20) and erythropoietin group (hypothermia + erythropoietin 200 IU/kg for 10 days, n = 21). Our results show that compared with the control group, serum tau protein levels were lower and neonatal behavioral neurological assessment scores higher in the erythropoietin group at 8 and 12 days. However, neurodevelopmental outcome was similar between the two groups at 9 months of age. These findings suggest that erythropoietin combined with hypothermia reduces serum tau protein levels and improves neonatal behavioral neurology outcome but does not affect long-term neurodevelopmental outcome.
Collapse
Affiliation(s)
- Hong-Yan Lv
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province; Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Su-Jing Wu
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Qiu-Li Wang
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Li-Hong Yang
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Peng-Shun Ren
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Bao-Jun Qiao
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Zhi-Ying Wang
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Jia-Hong Li
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Xiu-Ling Gu
- Department of Children's Rehabilitation, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Lian-Xiang Li
- Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province; Department of Neural Development and Neural Pathology, Hebei University of Engineering School of Medicine, Handan, Hebei Province, China
| |
Collapse
|
14
|
Khaksari M, Mehrjerdi FZ, Rezvani ME, Safari F, Mirgalili A, Niknazar S. The role of erythropoietin in remote renal preconditioning on hippocampus ischemia/reperfusion injury. J Physiol Sci 2017; 67:163-171. [PMID: 27099131 PMCID: PMC10717085 DOI: 10.1007/s12576-016-0451-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/11/2016] [Indexed: 11/24/2022]
Abstract
Remote ischemic preconditioning (RIPC) is an intriguing approach which exposes a remote organ/tissue to a non-lethal transient ischemia/reperfusion (I/R) in order to potentiate the resistance of the desired organ/tissue against the next unwanted I/R. It has been suggested that RIPC exerts its effect through neuronal and hormonal pathways. The underlying mechanisms of RIPC are obscure and should be elucidated. In this study, we induced RIPC in mice using 3 cycles of 5 min ischemia alternating with 5 min reperfusion of the left renal artery. Renal failure was induced in mice by intra-peritoneal (i.p.) injection of 200 mg/kg body weight of gentamicin twice per day for 4 consecutive days. Global hippocampal ischemia reperfusion (I/R) was performed by bilateral carotid artery occlusion for 20 min followed by reperfusion for 72 h. Moreover, the retention trial of passive avoidance test was determined 72 h after global ischemia. Histopathological changes of hippocampus neurons were observed using Nissl staining to detect neuronal loss. Finally, terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) was performed to assess the status of apoptotic cells in the hippocampus. The results of this study suggest that renal ischemic preconditioning is a good candidate for prevention of I/R-induced hippocampal injury. However, RRPC (remote renal preconditioning) failed to exert a neuroprotective effect in mice with renal failure (RF), indicating the probable role of a humoral factor which is released from kidneys in response to ischemia. In agreement with this hypothesis, treatment of mice with rhEPO (5000 IU/kg intraperitoneal) before induction of RRPC restored the neuroprotective effects of RRPC in RF mice. Accordingly, it is plausible to expect that erythropoietin is released from kidneys to act as a mediator for RRPC-induced neuroprotective effects. Renal ischemic preconditioning prevents I/R-induced hippocampal injury. In contrast, renal failure hampers protective effects of RRPC, while exogenous administration of erythropoietin (EPO) significantly prevents the inhibiting effects of renal failure.
Collapse
Affiliation(s)
- Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Zare Mehrjerdi
- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Fatemeh Safari
- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aghdas Mirgalili
- Department of Anatomy, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Garrigue P, Hache G, Bennis Y, Brige P, Stalin J, Pellegrini L, Velly L, Orlandi F, Castaldi E, Dignat-George F, Sabatier F, Guillet B. Erythropoietin Pretreatment of Transplanted Endothelial Colony-Forming Cells Enhances Recovery in a Cerebral Ischemia Model by Increasing Their Homing Ability: A SPECT/CT Study. J Nucl Med 2016; 57:1798-1804. [PMID: 27609786 DOI: 10.2967/jnumed.115.170308] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/20/2016] [Indexed: 12/13/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are promising candidates for cell therapy of ischemic diseases, as less than 10% of patients with an ischemic stroke are eligible for thrombolysis. We previously reported that erythropoietin priming of ECFCs increased their in vitro and in vivo angiogenic properties in mice with hindlimb ischemia. The present study used SPECT/CT to evaluate whether priming of ECFCs with erythropoietin could enhance their homing to the ischemic site after transient middle cerebral artery occlusion (MCAO) followed by reperfusion in rats and potentiate their protective or regenerative effect on blood-brain barrier (BBB) disruption, cerebral apoptosis, and cerebral blood flow (CBF). METHODS Rats underwent a 1-h MCAO followed by reperfusion and then 1 d after MCAO received an intravenous injection of either PBS (control, n = 10), PBS-primed ECFCs (ECFCPBS, n = 13), or erythropoietin-primed ECFCs (ECFCEPO, n = 10). ECFC homing and the effect on BBB disruption, cerebral apoptosis, and CBF were evaluated by SPECT/CT up to 14 d after MCAO. The results were expressed as median ± interquartile range for ipsilateral-to-contralateral ratio of the activity in middle cerebral artery-vascularized territories in each hemisphere. Histologic evaluation of neuronal survival and astrocytic proliferation was performed on day 14. RESULTS Erythropoietin priming increased homing of ECFCs to the ischemic hemisphere (ECFCPBS, 111.0% ± 16.0%; ECFCEPO, 146.5% ± 13.3%). BBB disruption was significantly reduced (control, 387% ± 153%; ECFCPBS, 151% ± 46% [P < 0.05]; ECFCEPO, 112% ± 9% [P < 0.001]) and correlated negatively with ECFC homing (Pearson r = -0.6930, P = 0.0002). Cerebral apoptosis was significantly reduced (control, 161% ± 10%; ECFCPBS, 141% ± 9% [P < 0.05]; ECFCEPO,118% ± 5% [P < 0.001]) and correlated negatively with ECFC homing (r = -0.7251, P < 0.0001). CBF was significantly restored with ECFCs and almost totally so with erythropoietin priming (control, 72% ± 2%; ECFCPBS, 90% ± 4% [P < 0.01]; ECFCEPO, 99% ± 4% [P < 0.001]) and correlated positively with ECFC homing (r = 0.7348, P < 0.0001). Immunoblocking against the CD146 receptor on ECFCs highlighted its notable role in ECFC homing with erythropoietin priming (ECFCEPO, 147% ± 14%, n = 4; ECFCEPO with antibody against CD146, 101% ± 12%, n = 4 [P < 0.05]). CONCLUSION Priming with erythropoietin before cell transplantation is an efficient strategy to amplify the migratory and engraftment capacities of ECFCs and their beneficial impact on BBB disruption, apoptosis, and CBF.
Collapse
Affiliation(s)
- Philippe Garrigue
- UMR_S 1076, INSERM, Aix Marseille Univ., Marseille, France.,CERIMED, Aix Marseille Univ., Marseille, France.,Service Radiopharmacie, Hôpital Nord, APHM, Marseille, France
| | | | - Youssef Bennis
- UMR_S 1076, INSERM, Aix Marseille Univ., Marseille, France
| | | | - Jimmy Stalin
- UMR_S 1076, INSERM, Aix Marseille Univ., Marseille, France
| | | | - Lionel Velly
- Département Anesthésie-Réanimation Adulte, APHM, Marseille, France
| | | | - Elena Castaldi
- Advanced Accelerator Applications, Colleretto-Giacosa, Italy
| | - Françoise Dignat-George
- UMR_S 1076, INSERM, Aix Marseille Univ., Marseille, France.,Service d'Hématologie, Hôpital Conception, APHM, Marseille, France; and
| | - Florence Sabatier
- UMR_S 1076, INSERM, Aix Marseille Univ., Marseille, France.,Laboratoire de Culture et Thérapie Cellulaire, Hôpital Conception, APHM, Marseille, France
| | - Benjamin Guillet
- UMR_S 1076, INSERM, Aix Marseille Univ., Marseille, France .,CERIMED, Aix Marseille Univ., Marseille, France.,Service Radiopharmacie, Hôpital Nord, APHM, Marseille, France
| |
Collapse
|
16
|
Jiang CJ, Wang ZJ, Zhao YJ, Zhang ZY, Tao JJ, Ma JY. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging. Neural Regen Res 2016; 11:1450-1455. [PMID: 27857749 PMCID: PMC5090848 DOI: 10.4103/1673-5374.191219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 11/23/2022] Open
Abstract
Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Chun-juan Jiang
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhong-juan Wang
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yan-jun Zhao
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhui-yang Zhang
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jing-jing Tao
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jian-yong Ma
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| |
Collapse
|
17
|
Gatto R, Chauhan M, Chauhan N. Anti-edema effects of rhEpo in experimental traumatic brain injury. Restor Neurol Neurosci 2016; 33:927-41. [PMID: 26484701 DOI: 10.3233/rnn-150577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) is one of the leading causes of disability and death which begins with the formation of edema as the persistent primary causative factor in TBI. Although medical management of cerebral edema by hypothermia, ventriculostomy, mannitol or hypertonic saline have been effective in treating edema, many of these therapies end up with some neurologic deficits, necessitating novel treatment options for treating post-TBI edema. This study investigated edema reducing effects of recombinant human Erythropoietin (rhEPO) in reducing acute brain edema in the CCI mouse model of TBI. METHODS Anti-edema effects of rhEpo in reducing acute brain edema after injury in the CCI mouse model of TBI were assessed by T2 weighted magnetic resonance imaging (T2wMRI) as the accurate detector of brain edema in correlation with Western blot analysis of cerebral aquaporin 4 (AQP4) index as the critical marker of edema. RESULTS Results show that rhEpo treatment significantly reduced brain edema with concomitant reduction in AQP4 immunoexpression in the CCI mouse model of TBI. CONCLUSION Current results emphasize clinical utility of rhEpo in treating post-TBI edema.
Collapse
Affiliation(s)
- Rodolfo Gatto
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Neelima Chauhan
- Neuroscience Research, R&D, Jesse Brown VA Medical Center, Chicago, IL, USA.,Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Carbamylated erythropoietin enhances mice ventilatory responses to changes in O2 but not CO2 levels. Respir Physiol Neurobiol 2016; 232:1-12. [PMID: 27317882 DOI: 10.1016/j.resp.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022]
Abstract
Erythropoietin (EPO) has beneficial tissue-protective effects in several diseases but erythrocytosis may cause deleterious effects in EPO-treated patients. Thus carbamylated-EPO (C-EPO) and other derivatives retaining tissue-protective but lacking bone marrow-stimulating actions have been developed. Although EPO modulates ventilatory responses, the effects of C-EPO on ventilation have not been investigated. Here, basal breathing and respiratory chemoreflexes were measured by plethysmography after acute and chronic treatments with recombinant human C-EPO (rhC-EPO; 15,000 IU/kg during 5days) or saline (control group). Hematocrit, plasma and brainstem rhC-EPO levels were also quantified. Chronic rhC-EPO significantly elevated tissue rhC-EPO levels but not hematocrit. None of the drug regimen altered basal ventilation (normoxia). Chronic but not acute rhC-EPO enhanced hyperoxic ventilatory depression, and sustained the hypoxic ventilatory response mainly via a reduction of the roll-off phase. By contrast, rhC-EPO did not blunt the ventilatory response to hypercapnia. Thus, chronic C-EPO may be a promising therapy to improve breathing during hypoxia while minimizing adverse effects on cardiovascular function.
Collapse
|
19
|
Zhao H, Yun W, Zhang Q, Cai X, Li X, Hui G, Zhou X, Ni J. Mobilization of Circulating Endothelial Progenitor Cells by dl-3-n-Butylphthalide in Acute Ischemic Stroke Patients. J Stroke Cerebrovasc Dis 2016; 25:752-60. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/01/2015] [Accepted: 11/14/2015] [Indexed: 01/01/2023] Open
|
20
|
Millet A, Bouzat P, Trouve-Buisson T, Batandier C, Pernet-Gallay K, Gaide-Chevronnay L, Barbier EL, Debillon T, Fontaine E, Payen JF. Erythropoietin and Its Derivates Modulate Mitochondrial Dysfunction after Diffuse Traumatic Brain Injury. J Neurotrauma 2016; 33:1625-33. [PMID: 26530102 DOI: 10.1089/neu.2015.4160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Inhibiting the opening of mitochondrial permeability transition pore (mPTP), thereby maintaining the mitochondrial membrane potential and calcium homeostasis, could reduce the induction of cell death. Although recombinant human erythropoietin (rhEpo) and carbamylated erythropoietin (Cepo) were shown to prevent apoptosis after traumatic brain injury (TBI), their impact on mPTP is yet unknown. Thirty minutes after diffuse TBI (impact-acceleration model), rats were intravenously administered a saline solution (TBI-saline), 5000 UI/kg rhEpo (TBI-rhEpo) or 50 μg/kg Cepo (TBI-Cepo). A fourth group received no TBI insult (sham-operated) (n = 11 rats per group). Post-traumatic brain edema was measured using magnetic resonance imaging. A first series of experiments was conducted 2 h after TBI (or equivalent) to investigate the mitochondrial function with the determination of thresholds for mPTP opening and ultrastructural mitochondrial changes. In addition, the intramitochondrial calcium content [Caim] was measured. In a second series of experiments, brain cell apoptosis was assessed at 24 h post-injury. TBI-rhEpo and TBI-Cepo groups had a reduced brain edema compared with TBI-saline. They had higher threshold for mPTP opening with succinate as substrate: 120 (120-150) (median, interquartiles) and 100 (100-120) versus 80 (60-90) nmol calcium/mg protein in TBI-saline, respectively (p < 0.05). Similar findings were shown with glutamate-malate as substrate. TBI-rhEpo and Cepo groups had less morphological mitochondrial disruption in astrocytes. The elevation in [Caim] after TBI was not changed by rhEpo and Cepo treatment. Finally, rhEpo and Cepo reduced caspase-3 expression at 24 h post-injury. These results indicate that rhEpo and Cepo could modulate mitochondrial dysfunction after TBI. The mechanisms involved are discussed.
Collapse
Affiliation(s)
- Anne Millet
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,3 Département de Réanimation Pédiatrique et Néonatale, Hôpital Couple Enfant , Grenoble, France
| | - Pierre Bouzat
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,4 Pôle d'Anesthésie Réanimation, CHU Grenoble Alpes , Grenoble, France
| | - Thibaut Trouve-Buisson
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,4 Pôle d'Anesthésie Réanimation, CHU Grenoble Alpes , Grenoble, France
| | - Cécile Batandier
- 5 INSERM, U1055, Laboratoire de Biologie Fondamentale et Appliquée, Université Joseph Fourier , Grenoble, France
| | - Karin Pernet-Gallay
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France
| | - Lucie Gaide-Chevronnay
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,4 Pôle d'Anesthésie Réanimation, CHU Grenoble Alpes , Grenoble, France
| | | | - Thierry Debillon
- 3 Département de Réanimation Pédiatrique et Néonatale, Hôpital Couple Enfant , Grenoble, France
| | - Eric Fontaine
- 5 INSERM, U1055, Laboratoire de Biologie Fondamentale et Appliquée, Université Joseph Fourier , Grenoble, France .,6 Unité de Nutrition Parentérale, Pôle de médecin Aigue Spécialisée, CHU Grenoble Alpes , Grenoble, France
| | - Jean-François Payen
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,4 Pôle d'Anesthésie Réanimation, CHU Grenoble Alpes , Grenoble, France
| |
Collapse
|
21
|
Tunc Ata M, Turgut G, Akbulut M, Kocyigit A, Karabulut A, Senol H, Turgut S. Effect of Erythropoietin and Stem Cells on Traumatic Brain Injury. World Neurosurg 2016; 89:355-61. [PMID: 26850972 DOI: 10.1016/j.wneu.2016.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To investigate the healing effects of erythropoietin (EPO) and stem cells (SCs) in traumatic brain injury (TBI). METHODS Twenty-nine Wistar albino rats were used and separated into the following groups: control (C), EPO, SC, and SC+EPO. Group C received a TBI only, with no treatment. In the EPO group, 1000 U/kg EPO was given intraperitoneally at 30 minutes after TBI. In SC group, immediately after formation of TBI, 3 × 10,000 CD34(+) stem cells were injected into the affected area. In the SC+EPO group, half an hour after TBI and the injection of stem cells, 1000 U/kg EPO was injected. Before and after injury, trauma coordination performance was measured by the rotarod and inclined plane tests. RESULTS Seven weeks after trauma, rat brains were examined by radiology and histology. Rotarod performance test did not change remarkably, even after the injury. Compared with group C, the SC+EPO group was found to have significant differences in the inclined plane test results. CONCLUSIONS Separately given, SCs and EPO have a positive effect on TBI, and our findings suggest that their coadministration is even more powerful.
Collapse
Affiliation(s)
- Melek Tunc Ata
- Department of Physiology, Pamukkale University, Denizli, Turkey.
| | - Günfer Turgut
- Department of Physiology, Pamukkale University, Denizli, Turkey
| | - Metin Akbulut
- Department of Pathology, Pamukkale University, Denizli, Turkey
| | - Ali Kocyigit
- Department of Radiology, Pamukkale University, Denizli, Turkey
| | - Aysun Karabulut
- Department of Obstetrics and Gynecology, Pamukkale University, Denizli, Turkey
| | - Hande Senol
- Department of Biostatistics, Pamukkale University, Denizli, Turkey
| | - Sebahat Turgut
- Department of Physiology, Pamukkale University, Denizli, Turkey
| |
Collapse
|
22
|
Zhou Y, Zhao X, Tang Y, Zhu L, Jiang J, Lu X. Erythropoietin Inhibits the Increase of Pulmonary Labile Zinc and the Expression of Inflammatory Mediators Following Subarachnoid Hemorrhage in Rats. Neurocrit Care 2015; 24:472-80. [DOI: 10.1007/s12028-015-0219-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Heikal L, Ghezzi P, Mengozzi M, Ferns G. Low Oxygen Tension Primes Aortic Endothelial Cells to the Reparative Effect of Tissue-Protective Cytokines. Mol Med 2015; 21:709-716. [PMID: 26349058 DOI: 10.2119/molmed.2015.00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared with 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast, βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis.
Collapse
Affiliation(s)
- Lamia Heikal
- Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Gordon Ferns
- Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
24
|
Noguchi T, Ohta S, Kakinoki R, Ikeguchi R, Kaizawa Y, Oda H, Matsuda S. The neuroprotective effect of erythropoietin on spinal motor neurons after nerve root avulsion injury in rats. Restor Neurol Neurosci 2015; 33:461-70. [DOI: 10.3233/rnn-140481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Takashi Noguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Souichi Ohta
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Kakinoki
- Department of Orthopaedic Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukitoshi Kaizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Oda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
26
|
Cyclic Helix B Peptide in Preservation Solution and Autologous Blood Perfusate Ameliorates Ischemia-Reperfusion Injury in Isolated Porcine Kidneys. Transplant Direct 2015; 1:e6. [PMID: 27500213 DOI: 10.1097/txd.0000000000000515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/04/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED There is a critical need to better preserve isolated organs before transplantation. We developed a novel nonerythropoiesis cyclic helix B peptide (CHBP) derived from erythropoietin, which has potent tissue protection and prolonged serum stability. The renoprotection and potential mechanism of CHBP were evaluated in a kidney preservation model. MATERIALS AND METHODS Porcine kidneys (n = 5) subjected to 20-minute warm ischemia were retrieved and flushed with hyperosmolar citrate to mimic deceased donation. The kidneys and autologous blood ± 10.56 nmol/L CHBP were placed in cold storage (CS) for 18 hours. These kidneys were then normothermically hemoreperfused for 3 hours using an isolated organ perfusion system. The renal function and structure, apoptosis, inflammation, and expression of caspase-3 and heat shock protein 70 (HSP70) were assessed. RESULTS Cyclic helix B peptide significantly increased the renal blood flow, oxygen consumption, and urine output during reperfusion, but decreased serum potassium and renal tissue damage. Apoptotic cells were significantly decreased in the tubular areas, but increased in the lumens and interstitial areas in the post-CS and postreperfused kidneys, whereas myeloperoxidase+ cells were reduced. In addition, the expression of both caspase-3 precursor and active subunits was downregulated by CHBP in reperfused kidneys. However, HSP70 was upregulated in the post-CS and postreperfused kidneys treated with CHBP. CONCLUSIONS Cyclic helix B peptide administered into preservation and reperfusion solutions ameliorated renal ischemia-reperfusion injury, which might be associated with decreased apoptosis, inflammation and caspase-3, but increased HSP70. This novel preservation approach using CHBP may be applied in a porcine kidney transplant model and potential human donor kidney preservation.
Collapse
|
27
|
Might erythropoietin save the spinal cord in aortic interventions? J Thorac Cardiovasc Surg 2015; 149:925-6. [DOI: 10.1016/j.jtcvs.2014.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/20/2022]
|
28
|
Erbaş O, Çınar BP, Solmaz V, Çavuşoğlu T, Ateş U. The neuroprotective effect of erythropoietin on experimental Parkinson model in rats. Neuropeptides 2015; 49:1-5. [PMID: 25464888 DOI: 10.1016/j.npep.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/16/2014] [Accepted: 10/21/2014] [Indexed: 02/03/2023]
Abstract
Dopaminergic neuronal loss in Parkinson's disease (PD) results from oxidative stress, neuroinflammation and excitotoxicity. Because erythropoietin (EPO) has been shown to have antioxidant, anti-inflammatory and neuroprotective effects in many previous studies, present study was designed to evaluate the effect of EPO on rotenone-induced dopaminergic neuronal loss. The rats in which PD was induced by stereotaxical infusion of rotenone showed increased MDA and TNF-alpha levels and decreased HVA levels. On the other hand, EPO treatment resulted in markedly decreased MDA and TNF-alpha levels and increased HVA levels. EPO treatment in rotenone-infusion group resulted in improvement of striatal neurodegeneration and a significant increase in decreased total number of neurons and immunohistochemical TH positive neurons. Results of the present study demonstrate the neuroprotective, anti-inflammatory and antioxidant effects of EPO in a rotenone-induced neurodegenerative animal model.
Collapse
Affiliation(s)
- Oytun Erbaş
- Department of Physiology, Gaziosmanpasa University Faculty of Medicine, Tokat, Turkey
| | | | - Volkan Solmaz
- Department of Neurology, Turhal State Hospital, Tokat, Turkey.
| | - Türker Çavuşoğlu
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey
| | - Utku Ateş
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
29
|
Erythropoietin Delivered via Intra-Arterial Infusion Reduces Endoplasmic Reticulum Stress in Brain Microvessels of Rats Following Cerebral Ischemia and Reperfusion. J Neuroimmune Pharmacol 2015; 10:153-61. [DOI: 10.1007/s11481-014-9571-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
30
|
Activity increase in EpoR and Epo expression by intranasal recombinant human erythropoietin (rhEpo) administration in ischemic hippocampi of adult rats. Neurosci Lett 2014; 583:16-20. [PMID: 25219375 DOI: 10.1016/j.neulet.2014.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/26/2014] [Accepted: 09/04/2014] [Indexed: 11/22/2022]
Abstract
Erythropoietin in the nervous system is a potential neuroprotective factor for cerebral ischemic damage due to specific-binding to the erythropoietin receptor, which is associated with survival mechanisms. However, the role of its receptor is unclear. Thus, this work assessed whether a low dose (500UI/Kg) of intranasal recombinant human erythropoietin administered 3h after ischemia induced changes in the activation of its receptor at the Tyr456-phosphorylated site in ischemic hippocampi in rats. The results showed that recombinant human erythropoietin after injury maintained cell survival and was associated with an increase in receptor phosphorylation at the Tyr456 site as an initial signaling step, which correlated with a neuroprotective effect.
Collapse
|
31
|
Yang C, Xu Z, Zhao Z, Li L, Zhao T, Peng D, Xu M, Rong R, Long YQ, Zhu T. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2306-17. [PMID: 25220479 DOI: 10.1016/j.bbadis.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/14/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Helix B surface peptide (HBSP), derived from erythropoietin, displays powerful tissue protection during kidney ischemia reperfusion (IR) injury without erythropoietic side effects. We employed cyclization strategy for the first time, and synthesized thioether-cyclized helix B peptide (CHBP) to improve metabolic stability and renoprotective effect. LC-MS/MS analysis was adopted to examine the stability of CHBP in vitro and in vivo. The renoprotective effect of CHBP in terms of renal function, apoptosis, inflammation, extracellular matrix deposition, and histological injury was also detected in vivo and in vitro. Antibody array and western blot were performed to analyze the signal pathway of involvement by CHBP in the IR model and renal tubular epithelial cells. In this study, thioether-cyclized peptide was significantly stable in vivo and in vitro. One dose of 8nmol/kg CHBP administered intraperitoneally at the onset of reperfusion improved renal protection compared with three doses of 8nmol/kg linear HBSP in a 48h murine IR model. In a one-week model, the one dose CHBP-treated group exhibited remarkably improved renal function over the IR group, and attenuated kidney injury, including reduced inflammation and apoptosis. Interestingly, we found that the phosphorylation of autophagy protein mTORC1 was dramatically reduced upon CHBP treatment. We also demonstrated that CHBP induced autophagy via inhibition of mTORC1 and activation of mTORC2, leading to renoprotective effects on IR. Our results indicate that the novel metabolically stable CHBP is a promising therapeutic medicine for kidney IR injury treatment.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Zhongliang Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tian Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Dian Peng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China; Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China; Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Peng W, Xing Z, Yang J, Wang Y, Wang W, Huang W. The efficacy of erythropoietin in treating experimental traumatic brain injury: a systematic review of controlled trials in animal models. J Neurosurg 2014; 121:653-64. [PMID: 25036201 DOI: 10.3171/2014.6.jns132577] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECT Erythropoietin (EPO) shows promise as a neuroprotective agent in animal models of traumatic brain injury (TBI). However, clinical trials of the efficacy of EPO treatment in patients with TBI yield conflicting results. The authors conducted a systematic review and meta-analysis to assess the effect of EPO in experimental animal models of TBI, the goal being to inform the design of future clinical trials. METHODS The authors identified eligible studies by searching PubMed, Web of Science, MEDLINE, Embase, and Google Scholar in October 2013. Data were pooled using the random-effects model, and results were reported in terms of standardized mean difference. Statistical heterogeneity was examined using both I(2) and chi-square tests, and the presence of small study effects was investigated with funnel plots and Egger tests. In-depth analyses were performed for lesion volume and neurobehavioral outcome, and the studies' methodological quality was also evaluated. RESULTS Of a total of 290 studies, 13 found an effect of EPO on lesion volume and neurobehavioral outcome. Overall, the methodological quality of the studies was poor, and there was evidence of statistical heterogeneity among the publications as well as small-study effects. However, in-depth analyses showed statistically significant findings in favor of a beneficial effect of EPO after TBI. CONCLUSIONS Despite limitations of this systematic review that may have influenced the findings, the authors conclude that EPO might be beneficial in treating experimental TBI in terms of reducing lesion volume and improving neurobehavioral outcome. However, this review also indicates that more well-designed and well-reported animal studies are needed.
Collapse
Affiliation(s)
- Weijun Peng
- Institute of Integrated Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | |
Collapse
|
33
|
Pellegrini L, Bennis Y, Velly L, Grandvuillemin I, Pisano P, Bruder N, Guillet B. Erythropoietin protects newborn rat against sevoflurane-induced neurotoxicity. Paediatr Anaesth 2014; 24:749-59. [PMID: 24725211 DOI: 10.1111/pan.12372] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Recent data on newborn animals exposed to anesthetics have raised safety concerns regarding anesthesia practices in young children. Indeed, studies on rodents have demonstrated a widespread increase in brain apoptosis shortly after exposure to sevoflurane, followed by long-term neurologic impairment. In this context, we aimed to evaluate the protective effect of rh-EPO, a potent neuroprotective agent, in rat pups exposed to sevoflurane. MATERIAL AND METHODS At postnatal day 7, 75 rat pups were allocated into three groups: SEVO + EPO (n = 27) exposed to sevoflurane 2 vol% (0.5 MAC) for 6 h in an air/O2 mixture (60/40) + 5000 UI.kg(-1) rh-EPO IP; SEVO (n = 27) exposed to sevoflurane + vehicle IP; and CONTROL (n = 21) exposed to the mixture without sevoflurane + vehicle IP. Three days after anesthesia (D10), apoptosis was quantified on brain extract with TUNEL method and caspase 3. NGF and BDNF expression was determined by Western blotting. Rats reaching adulthood were evaluated in terms of exploration capacities (object exploration duration) together with spatial and object learning (water maze and novel object test). RESULTS Sevoflurane exposure impaired normal behavior in adult rats by reducing the exploratory capacities during the novel object test and impaired both spatial and object learning capacities in adult rats (water maze, ratio time to find platform 3rd trial/1st trial: 1.1 ± 0.2 vs 0.4 ± 0.1; n = 9, SEVO vs CONTROL; P = 0.01). Rh-EPO reduced sevoflurane-induced behavior and learning abnormalities in adult rats (water maze, ratio time to find platform 3rd trial/1st trial: 0.3 ± 0.1 vs 1.1 ± 0.2; n = 9, SEVO + EPO vs SEVO; P = 0.01). Three days after anesthesia, rh-EPO prevented sevoflurane-induced brain apoptosis (5 ± 3 vs 35 ± 6 apoptotic cells·mm(-2) ; n = 6, SEVO + EPO vs SEVO; P = 0.01) and elevation of caspase three level and significantly increased the brain expression of BDNF and NGF (n = 6, SEVO + EPO vs SEVO; P = 0.01). CONCLUSION Six hours of sevoflurane anesthesia in newborn rats induces significant long-term cognitive impairment. A single administration of rh-EPO immediately after postnatal exposure to sevoflurane reduces both early activation of apoptotic phenomenon and late onset of neurologic disorders.
Collapse
Affiliation(s)
- Lionel Pellegrini
- Department of Anesthesia, APHM, CHU Timone, Marseille, France; INSERM UMR_S 1076, Aix-Marseille University, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Cerebral oedema (CO) after brain injury can occur from different ways. The vasogenic and cytotoxic oedema are usually described but osmotic and hydrostatic CO, respectively secondary to plasmatic hypotonia or increase in blood pressure, can also be encountered. Addition of these several mechanisms can worsen injuries. Consequences are major, leading quickly to death secondary to intracerebral hypertension and later to neuropsychic sequelae. So therapeutic care to control this phenomenon is essential and osmotherapy is actually the only way. A better understanding of physiopathological disorders, particularly energetic ways (lactate), aquaporine function, inflammation lead to new therapeutic hopes. The promising experimental results need now to be confirmed by clinical data.
Collapse
|
35
|
Noh MY, Cho KA, Kim H, Kim SM, Kim SH. Erythropoietin modulates the immune-inflammatory response of a SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). Neurosci Lett 2014; 574:53-8. [PMID: 24820540 DOI: 10.1016/j.neulet.2014.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
Abstract
Temporal patterns of inflammatory cytokine levels reflect the immune-inflammatory role in pathogenic mechanisms of SOD1 animal model of Amyotrophic Lateral Sclerosis (ALS) and these cytokines have important roles in both toxic and protective functions depending on the stage of disease progression in ALS patients. Erythropoietin (EPO) has various neuroprotective effects, including the reduction of inflammation, the enhancement of survival signals, and the prevention of neuronal cell death. This study was undertaken to evaluate the temporal pattern of inflammatory cytokine levels induced by EPO treatment in the SOD1(G93A) mice model of ALS. We treated mice with 5 IU of EPO per gram of animal weight once every other week after the mice were 60 days old, and pro/anti-inflammatory cytokines were analyzed at 30, 60, 90, and 120 days of age. In untreated controls, pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, CCL2 (MCP-1), CCL5 (RANTES), CXCL10 (IP-10), and IL-17A) were gradually increased with aging. In contrast, increment of anti-inflammatory cytokines (IL-4, IL-10, and TGF-β) showed the highest level at 90 days of age and their levels were remarkably faded until 120 days of age. EPO treatment, however, showed significantly decreased level of pro-inflammatory cytokines. And, up-regulated levels of anti-inflammatory cytokines with EPO were highly maintained until 120 days. In addition, the treatment of EPO delayed symptom onset, prolonged time of rotarod failure, and showed more preserved number of motoneurons. These findings suggest that EPO may be a potential therapeutic candidate having ability to modulate immune-inflammation in ALS.
Collapse
Affiliation(s)
- Min Young Noh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyung Ah Cho
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Heejaung Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Deparment of Laboratory Animal Center, Daugu-Gyeongbuk Medical Innovation Foudation, Republic of Korea
| | - Sung-Min Kim
- Department of Neurology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
van de Looij Y, Chatagner A, Quairiaux C, Gruetter R, Hüppi PS, Sizonenko SV. Multi-modal assessment of long-term erythropoietin treatment after neonatal hypoxic-ischemic injury in rat brain. PLoS One 2014; 9:e95643. [PMID: 24755676 PMCID: PMC3995802 DOI: 10.1371/journal.pone.0095643] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.
Collapse
Affiliation(s)
- Yohan van de Looij
- Division of Child Development and Growth, Department of Paediatrics, School of Medicine, University of Geneva and Geneva University Hospital, Geneva, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| | - Alexandra Chatagner
- Division of Child Development and Growth, Department of Paediatrics, School of Medicine, University of Geneva and Geneva University Hospital, Geneva, Switzerland
| | - Charles Quairiaux
- Department of Fundamental Neurosciences, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Petra S. Hüppi
- Division of Child Development and Growth, Department of Paediatrics, School of Medicine, University of Geneva and Geneva University Hospital, Geneva, Switzerland
| | - Stéphane V. Sizonenko
- Division of Child Development and Growth, Department of Paediatrics, School of Medicine, University of Geneva and Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
37
|
Ratilal BO, Arroja MMC, Rocha JPF, Fernandes AMA, Barateiro AP, Brites DMTO, Pinto RMA, Sepodes BMN, Mota-Filipe HD. Neuroprotective effects of erythropoietin pretreatment in a rodent model of transient middle cerebral artery occlusion. J Neurosurg 2014; 121:55-62. [PMID: 24702327 DOI: 10.3171/2014.2.jns132197] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
UNLABELLED OBJECT.: There is an unmet clinical need to develop neuroprotective agents for neurosurgical and endovascular procedures that require transient cerebral artery occlusion. The aim in this study was to explore the effects of a single dose of recombinant human erythropoietin (rhEPO) before middle cerebral artery (MCA) occlusion in a focal cerebral ischemia/reperfusion model. METHODS Twenty-eight adult male Wistar rats were subjected to right MCA occlusion via the intraluminal thread technique for 60 minutes under continuous cortical perfusion monitoring by laser Doppler flowmetry. Rats were divided into 2 groups: control and treatment. In the treated group, rhEPO (1000 IU/kg intravenously) was administered 10 minutes before the onset of the MCA ischemia. At 24-hour reperfusion, animals were examined for neurological deficits, blood samples were collected, and animals were killed. The following parameters were evaluated: brain infarct volume, ipsilateral hemispheric edema, neuron-specific enolase plasma levels, parenchyma histological features (H & E staining), Fluoro-Jade-positive neurons, p-Akt and total Akt expression by Western blot analysis, and p-Akt-positive nuclei by immunohistochemical investigation. RESULTS Infarct volume and Fluoro-Jade staining of degenerating neurons in the infarct area did not vary between groups. The severity of neurological deficit (p < 0.001), amount of brain edema (78% reduction in treatment group, p < 0.001), and neuron-specific enolase plasma levels (p < 0.001) were reduced in the treatment group. Perivascular edema was histologically less marked in the treatment group. No variations in the expression or localization of p-Akt were seen. CONCLUSIONS Administration of rhEPO before the onset of 60-minute transient MCA ischemia protected the brain from this insult. It is unlikely that rhEPO pretreatment leads to direct neuronal antiapoptotic effects, as supported by the lack of Akt activation, and its benefits are most probably related to an indirect effect on brain edema as a consequence of blood-brain barrier preservation. Although research on EPO derivatives is increasing, rhEPO acts through distinct neuroprotective pathways and its clinical safety profile is well known. Clinically available rhEPO is a potential therapy for prevention of neuronal injury induced by transitory artery occlusion during neurovascular procedures.
Collapse
|
38
|
Xiong Y, Zhang Y, Mahmood A, Meng Y, Qu C, Chopp M. Erythropoietin mediates neurobehavioral recovery and neurovascular remodeling following traumatic brain injury in rats by increasing expression of vascular endothelial growth factor. Transl Stroke Res 2013; 2:619-32. [PMID: 22707988 DOI: 10.1007/s12975-011-0120-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Erythropoietin (EPO) improves functional recovery after traumatic brain injury (TBI). Here, we investigated the role of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) on EPO-induced therapeutic efficacy in rats after TBI. Young male Wistar rats were subjected to unilateral controlled cortical impact injury and then infused intracerebroventricularly with either a potent selective VEGFR2 inhibitor SU5416 or vehicle dimethyl sulfoxide. Animals from both groups received delayed EPO treatment (5,000 U/kg in saline) administered intraperitoneally daily at 1, 2, and 3 days post injury. TBI rats treated with saline administered intraperitoneally daily at 1, 2, and 3 days post injury served as EPO treatment controls. 5-bromo-2-deoxyuridine was administered to label dividing cells. Spatial learning and sensorimotor function were assessed using a modified Morris water maze test and modified neurological severity score, respectively. Animals were sacrificed at 4 days post injury for measurement of VEGF and VEGFR2 or 35 days post injury for evaluation of cell proliferation, angiogenesis and neurogenesis. EPO treatment promoted sensorimotor and cognitive functional recovery after TBI. EPO treatment increased brain VEGF expression and phosphorylation of VEGFR2. EPO significantly increased cell proliferation, angiogenesis and neurogenesis in the dentate gyrus after TBI. Compared to the vehicle, SU5416 infusion significantly inhibited phosphorylation of VEGFR2, cell proliferation, angiogenesis, and neurogenesis as well as abolished functional recovery in EPO-treated TBI rats. These findings indicate the VEGF/VEGFR2 activation plays an important role in EPO-mediated neurobehavioral recovery and neurovascular remodeling after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 48202
| | | | | | | | | | | |
Collapse
|
39
|
Güresir E, Vasiliadis N, Konczalla J, Raab P, Hattingen E, Seifert V, Vatter H. Erythropoietin prevents delayed hemodynamic dysfunction after subarachnoid hemorrhage in a randomized controlled experimental setting. J Neurol Sci 2013; 332:128-35. [DOI: 10.1016/j.jns.2013.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
40
|
Constitutive excessive erythrocytosis causes inflammation and increased vascular permeability in aged mouse brain. Brain Res 2013; 1531:48-57. [PMID: 23892106 DOI: 10.1016/j.brainres.2013.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 12/16/2022]
Abstract
Excessive erythrocytosis results in severely increased blood viscosity that may compromise the vascular endothelium. Using our transgenic mouse model of excessive erythrocytosis we previously showed that despite altered brain endothelial cell morphology and an activated vasculature, brain vascular integrity was largely maintained up to 4-5 months of age. We now present data showing that persistent long-term damage of the vascular wall during the later stages of adulthood (9-12 months) results in a chronic detrimental inflammatory phenotype and increased vessel permeability that likely contributes to the reduced life span of our erythropoietin overexpressing transgenic mouse. In aged transgenic animals inflammatory cells were detected in brain tissue and elevated RNA and protein levels of inflammatory markers such as IL-6 and TNFα were observed in both brain tissue and blood plasma. Additionally, increased expression of p53 and other pro-apoptotic markers, as well as decreased Bcl-xL expression in the brain vasculature, indicated ongoing cell death within the vascular compartment. Finally, abnormally elevated vascular permeability in all organs was detected in correlation with decreased expression of the tight junction protein occludin and the adherens junction protein β-catenin in brain. Thus chronic erythrocytosis results in sustained activation of inflammatory pathways, vascular dysfunction and blood-brain barrier disruption.
Collapse
|
41
|
Bouzat P, Sala N, Payen JF, Oddo M. Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care 2013; 3:23. [PMID: 23837598 PMCID: PMC3716965 DOI: 10.1186/2110-5820-3-23] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/25/2013] [Indexed: 02/17/2023] Open
Abstract
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult—after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.
Collapse
Affiliation(s)
- Pierre Bouzat
- Department of Intensive Care Medicine, CHUV-University Hospital, Rue du Bugnon 46, BH 08,623, CH-1011 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
42
|
Pellegrini L, Bennis Y, Guillet B, Velly L, Garrigue P, Sabatier F, Dignat-George F, Bruder N, Pisano P. Therapeutic benefit of a combined strategy using erythropoietin and endothelial progenitor cells after transient focal cerebral ischemia in rats. Neurol Res 2013; 35:937-47. [PMID: 23816235 DOI: 10.1179/1743132813y.0000000235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Many studies have demonstrated beneficial effects of either erythropoietin (EPO) or endothelial progenitor cell (EPC) treatment in cerebral ischemia. To improve post-ischemic tissue repair, we investigated the effect of systemic administration of endothelial colony-forming cells (ECFCs), considered as relevant endothelial progenitors due to their specific vasculogenic activity, in the presence or absence of EPO, on functional recovery, apoptosis, angiogenesis, and neurogenesis in a transient focal cerebral ischemia model in the adult rat. DESIGN Experimental study. INTERVENTION The rats were divided into four groups 24 hours after ischemia,, namely control, ECFCs, EPO, and ECFCs+EPO, and received a single intravenous injection of ECFCs (5 × 10(6) cells) and/or intraperitoneal administration of EPO (2500 UI/kg per day for 3 days). MEASUREMENT Infarct volume, functional recovery, apoptosis, angiogenesis, and neurogenesis were assessed at different time points after ischemia. MAIN RESULTS The combination of EPO and ECFCs was the only treatment that completely restored neurological function. The ECFCs+EPO treatment was also the most effective to decrease apoptosis and to increase angiogenesis and neurogenesis in the ischemic hemisphere compared to controls and to groups receiving ECFCs or EPO alone. CONCLUSION These results suggest that EPO could act in a synergistic way with ECFCs to potentiate their therapeutic benefits.
Collapse
|
43
|
Yang C, Zhao T, Lin M, Zhao Z, Hu L, Jia Y, Xue Y, Xu M, Tang Q, Yang B, Rong R, Zhu T. Helix B surface peptide administered after insult of ischemia reperfusion improved renal function, structure and apoptosis through beta common receptor/erythropoietin receptor and PI3K/Akt pathway in a murine model. Exp Biol Med (Maywood) 2013; 238:111-9. [PMID: 23479770 DOI: 10.1258/ebm.2012.012185] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythropoietin (EPO) has been well recognized as a tissue protective agent by inhibiting apoptosis and inflammation. The tissue protective effect of EPO, however, only occurs at a high dosage, which may elicit severe side-effects at the meantime. Helix B surface peptide (HBSP), a novel peptide derived from the non-erythropoietic helix B of EPO, plays a specific role in tissue protection. We investigated effects of HBSP and the expression of its heterodimeric receptor, beta common receptor (βcR)/EPO receptor ( ), in a murine renal ischemia reperfusion (IR) injury model. HBSP significantly ameliorated renal dysfunction and tissue damage, decreased apoptotic cells in the kidney and reduced activation of caspase-9 and -3. The βcR/EPOR in the kidney was up-regulated by IR, but down-regulated by HBSP. Further investigation revealed that the expression and phosphorylation of Akt was dramatically enhanced by HBSP, but strongly reversed by wortmannin, the PI3K inhibitor. Wortmannin intervention improved βcR/EPOR expression, promoted caspase-9 and -3 activation, and increased active caspase-3 positive cells, while renal function and structure, and apoptotic cell counts scarcely changed. This result indicates a significant contribution of PI3K/Akt signaling pathway in the renoprotection of HBSP. The therapeutic effects of HBSP in this study suggest that HBSP could be a better candidate for renal protection.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, P R China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rahimi Nedjat M, Wähmann M, Bächli H, Güresir E, Vatter H, Raabe A, Heimann A, Kempski O, Alessandri B. Erythropoietin neuroprotection is enhanced by direct cortical application following subdural blood evacuation in a rat model of acute subdural hematoma. Neuroscience 2013; 238:125-34. [DOI: 10.1016/j.neuroscience.2013.01.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
|
45
|
Abstract
OPINION STATEMENT Erythropoietin (EPO) is an approved drug that is used in the treatment of chronic anemia associated with chronic renal failure. In the Neuro ICU, there are 2 potential uses for treatment with EPO. Anemia is common in patients with acute neurological disorders and may be a cause of secondary insults. Studies of EPO to treat anemia associated with critical illness have not conclusively shown a beneficial risk/benefit ratio. The relatively small reduction in transfusion requirement with EPO in critically ill patients is likely due to the 7-10 days required to see an effect of EPO on hematocrit. For these reasons, EPO is not recommended to treat anemia of critical illness. Neuroprotection is the other potential use for EPO in the Neuro ICU. Many experimental studies demonstrate neuroprotective effects with EPO in a variety of acute neurological disorders. To date, no clinical studies have confirmed beneficial effects of EPO on neurological outcome although some studies have suggested a reduction in mortality rate in trauma patients treated with EPO. Additional clinical studies are needed before EPO administration can be recommended for cytoprotection in neurological disorders.
Collapse
Affiliation(s)
- Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA,
| | | |
Collapse
|
46
|
Chong ZZ, Shang YC, Mu Y, Cui S, Yao Q, Maiese K. Targeting erythropoietin for chronic neurodegenerative diseases. Expert Opin Ther Targets 2013; 17:707-20. [PMID: 23510463 DOI: 10.1517/14728222.2013.780599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Since erythropoietin (EPO) and EPO receptor (EPOR) are expressed in the central nervous system (CNS) beyond hematopoietic system, EPO illustrates a robust biological function in maintaining neuronal survival and regulating neurogenesis and may play a crucial role in neurodegenerative diseases. AREAS COVERED EPO is capable of modulating multiple cellular signal transduction pathways to promote neuronal survival and enhance the proliferation and differentiation of neuronal progenitor cells. Initially, EPO binds to EPOR to activate the Janus-tyrosine kinase 2 (Jak2) protein followed by modulation of protein kinase B (Akt), mammalian target of rapamycin, signal transducer and activators of transcription 5, mitogen-activated protein kinases, protein tyrosine phosphatases, Wnt1 and nuclear factor κB. As a result, EPO may actively prevent the progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis and motor neuron diseases. EXPERT OPINION Novel knowledge of the cell signaling pathways regulated by EPO in the CNS will allow us to establish the foundation for the development of therapeutic strategies against neurodegenerative diseases. Further investigation of the role of EPO in neurodegenerative diseases can not only formulate EPO as a therapeutic candidate, but also further identify novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- University of Medicine and Dentistry of New Jersey, Cancer Center, New Jersey NJ 07103, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Kako E, Kaneko N, Aoyama M, Hida H, Takebayashi H, Ikenaka K, Asai K, Togari H, Sobue K, Sawamoto K. Subventricular zone-derived oligodendrogenesis in injured neonatal white matter in mice enhanced by a nonerythropoietic erythropoietin derivative. Stem Cells 2013; 30:2234-47. [PMID: 22890889 DOI: 10.1002/stem.1202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Perinatal hypoxia-ischemia (HI) frequently causes white-matter injury, leading to severe neurological deficits and mortality, and only limited therapeutic options exist. The white matter of animal models and human patients with HI-induced brain injury contains increased numbers of oligodendrocyte progenitor cells (OPCs). However, the origin and fates of these OPCs and their potential to repair injured white matter remain unclear. Here, using cell-type- and region-specific genetic labeling methods in a mouse HI model, we characterized the Olig2-expressing OPCs. We found that after HI, Olig2+ cells increased in the posterior part of the subventricular zone (pSVZ) and migrated into the injured white matter. However, their oligodendrocytic differentiation efficiency was severely compromised compared with the OPCs in normal tissue, indicating the need for an intervention to promote their differentiation. Erythropoietin (EPO) treatment is a promising candidate, but it has detrimental effects that preclude its clinical use for brain injury. We found that long-term postinjury treatment with a nonerythropoietic derivative of EPO, asialo-erythropoietin, promoted the maturation of pSVZ-derived OPCs and the recovery of neurological function, without affecting hematopoiesis. These results demonstrate the limitation and potential of endogenous OPCs in the pSVZ as a therapeutic target for treating neonatal white-matter injury.
Collapse
Affiliation(s)
- Eisuke Kako
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gaddam SK, Cruz J, Robertson C. Erythropoietin and cytoprotective cytokines in experimental traumatic brain injury. Methods Mol Biol 2013; 982:141-62. [PMID: 23456867 DOI: 10.1007/978-1-62703-308-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The various biochemical cascades that follow primary brain injury result in secondary brain injury which can adversely affect the clinical outcome. Over the last few years it has been well established that molecules like erythropoietin (Epo) have a neuroprotective role in experimental traumatic brain injury (TBI). Epo is shown to produce this effect by modulating multiple cellular processes, including apoptosis, inflammation, and regulation of cerebral blood flow. Derivatives of Epo, including asialo Epo and carbamylated Epo, have been developed to separate the neuroprotective properties from the erythropoiesis-stimulating activities of Epo which may have adverse effects in clinical situations. Peptides that mimic a portion of the Epo molecule, including Helix B surface peptide and Epotris, have also been developed to isolate the neuroprotective activities. The TBI model in rodents most commonly used to study the effect of Epo and these derivatives in TBI is controlled cortical impact injury, which is a model of focal contusion following a high velocity impact to the parietal cortex. Following TBI, rodents are given Epo or an Epo derivative vs. placebo and the outcome is evaluated in terms of physiological parameters (cerebral blood flow, intracranial pressure, cerebral perfusion pressure), behavioral parameters (motor and memory), and histological parameters (contusion volumes, hippocampus cell counts).
Collapse
|
49
|
Abstract
The hematopoietic growth factor erythropoietin (Epo) circulates in plasma and controls the oxygen carrying capacity of the blood (Fisher. Exp Biol Med (Maywood) 228:1-14, 2003). Epo is produced primarily in the adult kidney and fetal liver and was originally believed to play a role restricted to stimulation of early erythroid precursor proliferation, inhibition of apoptosis, and differentiation of the erythroid lineage. Early studies showed that mice with targeted deletion of Epo or the Epo receptor (EpoR) show impaired erythropoiesis, lack mature erythrocytes, and die in utero around embryonic day 13.5 (Wu et al. Cell 83:59-67, 1995; Lin et al. Genes Dev. 10:154-164, 1996). These animals also exhibited heart defects, abnormal vascular development as well as increased apoptosis in the brain suggesting additional functions for Epo signaling in normal development of the central nervous system and heart. Now, in addition to its well-known role in erythropoiesis, a diverse array of cells have been identified that produce Epo and/or express the Epo-R including endothelial cells, smooth muscle cells, and cells of the central nervous system (Masuda et al. J Biol Chem. 269:19488-19493, 1994; Marti et al. Eur J Neurosci. 8:666-676, 1996; Bernaudin et al. J Cereb Blood Flow Metab. 19:643-651, 1999; Li et al. Neurochem Res. 32:2132-2141, 2007). Endogenously produced Epo and/or expression of the EpoR gives rise to autocrine and paracrine signaling in different organs particularly during hypoxia, toxicity, and injury conditions. Epo has been shown to regulate a variety of cell functions such as calcium flux (Korbel et al. J Comp Physiol B. 174:121-128, 2004) neurotransmitter synthesis and cell survival (Velly et al. Pharmacol Ther. 128:445-459, 2010; Vogel et al. Blood. 102:2278-2284, 2003). Furthermore Epo has neurotrophic effects (Grimm et al. Nat Med. 8:718-724, 2002; Junk et al. Proc Natl Acad Sci U S A. 99:10659-10664, 2002), can induce an angiogenic phenotype in cultured endothelial cells and is a potent angiogenic factor in vivo (Ribatti et al. Eur J Clin Invest. 33:891-896, 2003) and might enhance ventilation in hypoxic conditions (Soliz et al. J Physiol. 568:559-571, 2005; Soliz et al. J Physiol. 583, 329-336, 2007). Thus multiple functions have been identified breathing new life and exciting possibilities into what is really an old growth factor.This review will address the function of Epo in non-hematopoietic tissues with significant emphasis on the brain and heart.
Collapse
Affiliation(s)
- Omolara O Ogunshola
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
50
|
Shin T, Ahn M, Moon C, Kim S. Erythropoietin and autoimmune neuroinflammation: lessons from experimental autoimmune encephalomyelitis and experimental autoimmune neuritis. Anat Cell Biol 2012; 45:215-20. [PMID: 23301189 PMCID: PMC3531585 DOI: 10.5115/acb.2012.45.4.215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 12/31/2022] Open
Abstract
Erythropoietin (EPO) is known to have numerous biological functions. While its primary function is during haematopoiesis, recent studies have shown that EPO plays important role in cytoprotection, immunomodulation, and antiapoptosis. These secondary functions of EPO are integral to tissue protection following hypoxic injury, ischemia-reperfusion injury, and spinal cord injury in the central nervous system. This review focuses on experimental evidence documenting the neuroprotective effects of EPO in organ-specific autoimmune nervous system disorders such as experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN). In addition, the immunomodulatory role of EPO in the pathogenesis of EAE and EAN animal models of human multiple sclerosis and Guillain-Barré syndrome, respectively, will be discussed.
Collapse
Affiliation(s)
- Taekyun Shin
- Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | | | | | | |
Collapse
|