1
|
Nayak U, Halagali P, Panchal KN, Tippavajhala VK, Mudgal J, Radhakrishnan R, Manikkath J. Nanoparticles in CNS Therapeutics: Pioneering Drug Delivery Advancements. Curr Pharm Des 2025; 31:443-460. [PMID: 39318210 DOI: 10.2174/0113816128328722240828184410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The incidence of Central Nervous System (CNS) disorders, including Parkinson's disease, Alzheimer's disease, stroke, and malignancies, has risen significantly in recent decades, contributing to millions of deaths annually. Efficacious treatment of these disorders requires medicines targeting the brain. The Blood-brain Barrier (BBB) poses a formidable challenge to effective drug delivery to the brain, hindering progress in CNS therapeutics. This review explores the latest developments in nanoparticulate carriers, highlighting their potential to overcome BBB limitations. OBJECTIVE This study aimed to evaluate and summarise the critical factors and pathways in the nanoparticle- based CNS targeted drug delivery. METHODS An extensive literature search was conducted, comprising the initial development of nanoparticle- based CNS-targeted drug delivery approaches to the latest advancements using various online search tools. RESULTS The properties of nanoparticles, such as type of nanoparticles, size, shape, surface charge, hydrophobicity, and surface functionalisation, along with properties of the BBB during normal and pathological conditions and their impact on the delivery of nanoparticles across the BBB, are identified and discussed here. CONCLUSION Important properties and pathways that determine the penetration of nanoparticles across the CNS are reviewed in this article, along with recent advances in the field.
Collapse
Affiliation(s)
- Usha Nayak
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Praveen Halagali
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Khushi N Panchal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S102TA, UK
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
2
|
Balzamino BO, Cacciamani A, Dinice L, Cecere M, Pesci FR, Ripandelli G, Micera A. Retinal Inflammation and Reactive Müller Cells: Neurotrophins' Release and Neuroprotective Strategies. BIOLOGY 2024; 13:1030. [PMID: 39765697 PMCID: PMC11673524 DOI: 10.3390/biology13121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Millions of people worldwide suffer from retinal disorders. Retinal diseases require prompt attention to restore function or reduce progressive impairments. Genetics, epigenetics, life-styling/quality and external environmental factors may contribute to developing retinal diseases. In the physiological retina, some glial cell types sustain neuron activities by guaranteeing ion homeostasis and allowing effective interaction in synaptic transmission. Upon insults, glial cells interact with neuronal and the other non-neuronal retinal cells, at least in part counteracting the biomolecular changes that may trigger retinal complications and vision loss. Several epigenetic and oxidative stress mechanisms are quickly activated to release factors that in concert with growth, fibrogenic and angiogenic factors can influence the overall microenvironment and cell-to-cell response. Reactive Müller cells participate by secreting neurotrophic/growth/angiogenic factors, cytokines/chemokines, cytotoxic/stress molecules and neurogenic inflammation peptides. Any attempt to maintain/restore the physiological condition can be interrupted by perpetuating insults, vascular dysfunction and neurodegeneration. Herein, we critically revise the current knowledge on the cell-to-cell and cell-to-mediator interplay between Müller cells, astrocytes and microglia, with respect to pro-con modulators and neuroprotective/detrimental activities, as observed by using experimental models or analyzing ocular fluids, altogether contributing a new point of view to the field of research on precision medicine.
Collapse
Affiliation(s)
- Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Michela Cecere
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Francesca Romana Pesci
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| |
Collapse
|
3
|
Di Gregorio E, Staelens M, Hosseinkhah N, Karimpoor M, Liburd J, Lim L, Shankar K, Tuszyński JA. Raman Spectroscopy Reveals Photobiomodulation-Induced α-Helix to β-Sheet Transition in Tubulins: Potential Implications for Alzheimer's and Other Neurodegenerative Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1093. [PMID: 38998698 PMCID: PMC11243591 DOI: 10.3390/nano14131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
In small clinical studies, the application of transcranial photobiomodulation (PBM), which typically delivers low-intensity near-infrared (NIR) to treat the brain, has led to some remarkable results in the treatment of dementia and several neurodegenerative diseases. However, despite the extensive literature detailing the mechanisms of action underlying PBM outcomes, the specific mechanisms affecting neurodegenerative diseases are not entirely clear. While large clinical trials are warranted to validate these findings, evidence of the mechanisms can explain and thus provide credible support for PBM as a potential treatment for these diseases. Tubulin and its polymerized state of microtubules have been known to play important roles in the pathology of Alzheimer's and other neurodegenerative diseases. Thus, we investigated the effects of PBM on these cellular structures in the quest for insights into the underlying therapeutic mechanisms. In this study, we employed a Raman spectroscopic analysis of the amide I band of polymerized samples of tubulin exposed to pulsed low-intensity NIR radiation (810 nm, 10 Hz, 22.5 J/cm2 dose). Peaks in the Raman fingerprint region (300-1900 cm-1)-in particular, in the amide I band (1600-1700 cm-1)-were used to quantify the percentage of protein secondary structures. Under this band, hidden signals of C=O stretching, belonging to different structures, are superimposed, producing a complex signal as a result. An accurate decomposition of the amide I band is therefore required for the reliable analysis of the conformation of proteins, which we achieved through a straightforward method employing a Voigt profile. This approach was validated through secondary structure analyses of unexposed control samples, for which comparisons with other values available in the literature could be conducted. Subsequently, using this validated method, we present novel findings of statistically significant alterations in the secondary structures of polymerized NIR-exposed tubulin, characterized by a notable decrease in α-helix content and a concurrent increase in β-sheets compared to the control samples. This PBM-induced α-helix to β-sheet transition connects to reduced microtubule stability and the introduction of dynamism to allow for the remodeling and, consequently, refreshing of microtubule structures. This newly discovered mechanism could have implications for reducing the risks associated with brain aging, including neurodegenerative diseases like Alzheimer's disease, through the introduction of an intervention following this transition.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Faculty of Biomedical Engineering, Polytechnic University of Turin, 10129 Turin, Italy
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Staelens
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Instituto de Física Corpuscular, CSIC–Universitat de València, Carrer Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | | | | | | | - Lew Lim
- Vielight Inc., Toronto, ON M4Y 2G8, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jack A. Tuszyński
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Faculty of Biomedical Engineering, Polytechnic University of Turin, 10129 Turin, Italy
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
4
|
Bjerkan J, Kobal J, Lancaster G, Šešok S, Meglič B, McClintock PVE, Budohoski KP, Kirkpatrick PJ, Stefanovska A. The phase coherence of the neurovascular unit is reduced in Huntington's disease. Brain Commun 2024; 6:fcae166. [PMID: 38938620 PMCID: PMC11210076 DOI: 10.1093/braincomms/fcae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Huntington's disease is a neurodegenerative disorder in which neuronal death leads to chorea and cognitive decline. Individuals with ≥40 cytosine-adenine-guanine repeats on the interesting transcript 15 gene develop Huntington's disease due to a mutated huntingtin protein. While the associated structural and molecular changes are well characterized, the alterations in neurovascular function that lead to the symptoms are not yet fully understood. Recently, the neurovascular unit has gained attention as a key player in neurodegenerative diseases. The mutant huntingtin protein is known to be present in the major parts of the neurovascular unit in individuals with Huntington's disease. However, a non-invasive assessment of neurovascular unit function in Huntington's disease has not yet been performed. Here, we investigate neurovascular interactions in presymptomatic (N = 13) and symptomatic (N = 15) Huntington's disease participants compared to healthy controls (N = 36). To assess the dynamics of oxygen transport to the brain, functional near-infrared spectroscopy, ECG and respiration effort were recorded. Simultaneously, neuronal activity was assessed using EEG. The resultant time series were analysed using methods for discerning time-resolved multiscale dynamics, such as wavelet transform power and wavelet phase coherence. Neurovascular phase coherence in the interval around 0.1 Hz is significantly reduced in both Huntington's disease groups. The presymptomatic Huntington's disease group has a lower power of oxygenation oscillations compared to controls. The spatial coherence of the oxygenation oscillations is lower in the symptomatic Huntington's disease group compared to the controls. The EEG phase coherence, especially in the α band, is reduced in both Huntington's disease groups and, to a significantly greater extent, in the symptomatic group. Our results show a reduced efficiency of the neurovascular unit in Huntington's disease both in the presymptomatic and symptomatic stages of the disease. The vasculature is already significantly impaired in the presymptomatic stage of the disease, resulting in reduced cerebral blood flow control. The results indicate vascular remodelling, which is most likely a compensatory mechanism. In contrast, the declines in α and γ coherence indicate a gradual deterioration of neuronal activity. The results raise the question of whether functional changes in the vasculature precede the functional changes in neuronal activity, which requires further investigation. The observation of altered dynamics paves the way for a simple method to monitor the progression of Huntington's disease non-invasively and evaluate the efficacy of treatments.
Collapse
Affiliation(s)
- Juliane Bjerkan
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Jan Kobal
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Gemma Lancaster
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Sanja Šešok
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Bernard Meglič
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | | | - Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
5
|
Aung MH, Aleman TS, Garcia AS, McGeehan B, Ying GS, Avery RA. Stimulus type and duration affect magnitude and evolution of flicker-induced hyperemia measured by laser speckle flowgraphy at the optic disc and peripapillary vessels. Sci Rep 2024; 14:6659. [PMID: 38509194 PMCID: PMC10954713 DOI: 10.1038/s41598-024-57263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Neurovascular coupling is a vital mechanism employed by the cerebrovascular system, including the eye, to regulate blood flow in periods of neuronal activation. This study aims to investigate if laser speckle flowgraphy (LSFG) can detect coupling response elicited by flickering light stimuli and how variations in stimulus type and duration can affect the magnitude and evolution of blood flow in the optic nerve head (ONH) and peripapillary vessels. Healthy adults were exposed to two types of 10-Hz flicker stimuli: a photopic negative response-like stimulus (PhNR-S) or a visual evoked potential-like stimulus (VEP-S)-each presented in separate 10- and 60-s epochs. Both PhNR-S and VEP-S significantly increased ONH blood flow (p < 0.001) immediately after flicker cessation, with a trend of 60-s stimuli (PhNR-S = 11.6%; VEP-S = 10.4%) producing a larger response than 10-s stimuli (PhNR-S = 7.5%; VEP-S = 6.2%). Moreover, exposure to 60-s stimuli elicited a significantly prolonged ONH hyperemic response, especially with PhNR-S. Lastly, stimulation with either 60-s stimuli elicited a robust increase in blood flow within the peripapillary arterioles (p < 0.01) and venules (p < 0.01) as well. Flicker stimulation with common visual electrophysiology stimuli (PhNR-S and VEP-S) induced a demonstrable increase in ONH and peripapillary vessel blood flow, which varied with flicker duration. Our results validate that LSFG is a robust method to quantify flicker-induced hyperemic responses and to study neurovascular coupling in humans.
Collapse
Affiliation(s)
- Moe H Aung
- Departments of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Ophthalmology, Dell Medical School at The University of Texas at Austin, Austin, TX, USA.
| | - Tomas S Aleman
- Department of Ophthalmology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arielle S Garcia
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brendan McGeehan
- Department of Ophthalmology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Gui-Shuang Ying
- Department of Ophthalmology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Robert A Avery
- Departments of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Ophthalmology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
6
|
Khor SLQ, Ng KY, Koh RY, Chye SM. Blood-brain Barrier and Neurovascular Unit Dysfunction in Parkinson's Disease: From Clinical Insights to Pathogenic Mechanisms and Novel Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:315-330. [PMID: 36999187 DOI: 10.2174/1871527322666230330093829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
The blood-brain barrier (BBB) plays a crucial role in the central nervous system by tightly regulating the influx and efflux of biological substances between the brain parenchyma and peripheral circulation. Its restrictive nature acts as an obstacle to protect the brain from potentially noxious substances such as blood-borne toxins, immune cells, and pathogens. Thus, the maintenance of its structural and functional integrity is vital in the preservation of neuronal function and cellular homeostasis in the brain microenvironment. However, the barrier's foundation can become compromised during neurological or pathological conditions, which can result in dysregulated ionic homeostasis, impaired transport of nutrients, and accumulation of neurotoxins that eventually lead to irreversible neuronal loss. Initially, the BBB is thought to remain intact during neurodegenerative diseases, but accumulating evidence as of late has suggested the possible association of BBB dysfunction with Parkinson's disease (PD) pathology. The neurodegeneration occurring in PD is believed to stem from a myriad of pathogenic mechanisms, including tight junction alterations, abnormal angiogenesis, and dysfunctional BBB transporter mechanism, which ultimately causes altered BBB permeability. In this review, the major elements of the neurovascular unit (NVU) comprising the BBB are discussed, along with their role in the maintenance of barrier integrity and PD pathogenesis. We also elaborated on how the neuroendocrine system can influence the regulation of BBB function and PD pathogenesis. Several novel therapeutic approaches targeting the NVU components are explored to provide a fresh outlook on treatment options for PD.
Collapse
Affiliation(s)
- Sarah Lei Qi Khor
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Schneider SC, Kaczmarz S, Göttler J, Kufer J, Zott B, Priller J, Kallmayer M, Zimmer C, Sorg C, Preibisch C. Stronger influence of systemic than local hemodynamic-vascular factors on resting-state BOLD functional connectivity. Neuroimage 2023; 281:120380. [PMID: 37741595 DOI: 10.1016/j.neuroimage.2023.120380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
Correlated fluctuations in the blood oxygenation level dependent (BOLD) signal of resting-state functional MRI (i.e., BOLD-functional connectivity, BOLD-FC) reflect a spectrum of neuronal and non-neuronal processes. In particular, there are multiple hemodynamic-vascular influences on BOLD-FC on both systemic (e.g., perfusion delay) and local levels (e.g., neurovascular coupling). While the influence of individual factors has been studied extensively, combined and comparative studies of systemic and local hemodynamic-vascular factors on BOLD-FC are scarce, notably in humans. We employed a multi-modal MRI approach to investigate and compare distinct hemodynamic-vascular processes and their impact on homotopic BOLD-FC in healthy controls and patients with unilateral asymptomatic internal carotid artery stenosis (ICAS). Asymptomatic ICAS is a cerebrovascular disorder, in which neuronal functioning is largely preserved but hemodynamic-vascular processes are impaired, mostly on the side of stenosis. Investigated indicators for local hemodynamic-vascular processes comprise capillary transit time heterogeneity (CTH) and cerebral blood volume (CBV) from dynamic susceptibility contrast (DSC) MRI, and cerebral blood flow (CBF) from pseudo-continuous arterial spin labeling (pCASL). Indicators for systemic processes are time-to-peak (TTP) from DSC MRI and BOLD lags from functional MRI. For each of these parameters, their influence on BOLD-FC was estimated by a comprehensive linear mixed model. Equally across groups, we found that individual mean BOLD-FC, local (CTH, CBV, and CBF) and systemic (TTP and BOLD lag) hemodynamic-vascular factors together explain 40.7% of BOLD-FC variance, with 20% of BOLD-FC variance explained by hemodynamic-vascular factors, with an about two-times larger contribution of systemic versus local factors. We conclude that regional differences in blood supply, i.e., systemic perfusion delays, exert a stronger influence on BOLD-FC than impairments in local neurovascular coupling.
Collapse
Affiliation(s)
- Sebastian C Schneider
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany.
| | - Stephan Kaczmarz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Philips GmbH Market DACH, Hamburg, Germany
| | - Jens Göttler
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Jan Kufer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Benedikt Zott
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Josef Priller
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany
| | - Michael Kallmayer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for vascular surgery, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Claus Zimmer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Christian Sorg
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Neurology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| |
Collapse
|
8
|
Banks WA, Noonan C, Rhea EM. Evidence for an alternative insulin transporter at the blood-brain barrier. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:100-108. [PMID: 36644126 PMCID: PMC9837797 DOI: 10.31491/apt.2022.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests there is an alternative insulin transporter besides the insulin receptor at the blood-brain barrier (BBB), responsible for shuttling insulin from the circulation into the brain. In this review, we summarize key features of the BBB and what makes it unique compared to other capillary beds; summarize what we know about insulin BBB transport; provide an extensive list of diseases, physiological states, and serum factors tested in modifying insulin BBB transport; and lastly, highlight potential alternative transport systems that may be involved in or have already been tested in mediating insulin BBB transport. Identifying the transport system for insulin at the BBB would aide in controlling central nervous system (CNS) insulin levels in multiple diseases and conditions including Alzheimer's disease (AD) and obesity, where availability of insulin to the CNS is limited.
Collapse
Affiliation(s)
- William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Cassidy Noonan
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
9
|
Shabani Z, Schuerger J, Su H. Cellular loci involved in the development of brain arteriovenous malformations. Front Hum Neurosci 2022; 16:968369. [PMID: 36211120 PMCID: PMC9532630 DOI: 10.3389/fnhum.2022.968369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are abnormal vessels that are prone to rupture, causing life-threatening intracranial bleeding. The mechanism of bAVM formation is poorly understood. Nevertheless, animal studies revealed that gene mutation in endothelial cells (ECs) and angiogenic stimulation are necessary for bAVM initiation. Evidence collected through analyzing bAVM specimens of human and mouse models indicate that cells other than ECs also are involved in bAVM pathogenesis. Both human and mouse bAVMs vessels showed lower mural cell-coverage, suggesting a role of pericytes and vascular smooth muscle cells (vSMCs) in bAVM pathogenesis. Perivascular astrocytes also are important in maintaining cerebral vascular function and take part in bAVM development. Furthermore, higher inflammatory cytokines in bAVM tissue and blood demonstrate the contribution of inflammatory cells in bAVM progression, and rupture. The goal of this paper is to provide our current understanding of the roles of different cellular loci in bAVM pathogenesis.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Joana Schuerger
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Hua Su, ; orcid.org/0000-0003-1566-9877
| |
Collapse
|
10
|
Sato Y, Falcone-Juengert J, Tominaga T, Su H, Liu J. Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells 2022; 11:2823. [PMID: 36139398 PMCID: PMC9496956 DOI: 10.3390/cells11182823] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Formulated as a group effort of the stroke community, the transforming concept of the neurovascular unit (NVU) depicts the structural and functional relationship between brain cells and the vascular structure. Composed of both neural and vascular elements, the NVU forms the blood-brain barrier that regulates cerebral blood flow to meet the oxygen demand of the brain in normal physiology and maintain brain homeostasis. Conversely, the dysregulation and dysfunction of the NVU is an essential pathological feature that underlies neurological disorders spanning from chronic neurodegeneration to acute cerebrovascular events such as ischemic stroke and cerebral hemorrhage, which were the focus of this review. We also discussed how common vascular risk factors of stroke predispose the NVU to pathological changes. We synthesized existing literature and first provided an overview of the basic structure and function of NVU, followed by knowledge of how these components remodel in response to ischemic stroke and brain hemorrhage. A greater understanding of the NVU dysfunction and remodeling will enable the design of targeted therapies and provide a valuable foundation for relevant research in this area.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jaime Falcone-Juengert
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hua Su
- Department of Anesthesia, UCSF, San Francisco, CA 94143, USA
- Center for Cerebrovascular Research, UCSF, San Francisco, CA 94143, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Schimith LE, Dos Santos MG, Arbo BD, André-Miral C, Muccillo-Baisch AL, Hort MA. Polydatin as a therapeutic alternative for central nervous system disorders: A systematic review of animal studies. Phytother Res 2022; 36:2852-2877. [PMID: 35614539 DOI: 10.1002/ptr.7497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022]
Abstract
Polydatin, or piceid, is a natural stilbene found in grapes, peanuts, and wines. Polydatin presents pharmacological activities, including neuroprotective properties, exerting preventive and/or therapeutic effects in central nervous system (CNS) disorders. In the present study, we summarize and discuss the neuroprotective effects of polydatin in CNS disorders and related pathological conditions in preclinical animal studies. A systematic review was performed by searching online databases, returning a total of 110 records, where 27 articles were selected and discussed here. The included studies showed neuroprotective effects of polydatin in experimental models of neurological disorders, including cerebrovascular disorders, Parkinson's disease, traumatic brain injuries, diabetic neuropathy, glioblastoma, and neurotoxicity induced by chemical agents. Most studies were focused on stroke (22.2%) and conducted in male rodents. The intervention protocol with polydatin was mainly acute (66.7%), with postdamage induction treatment being the most commonly used regimen (55.2%). Overall, polydatin ameliorated behavioral dysfunctions and/or promoted neurological function by virtue of its antioxidant and antiinflammatory properties. In summary, this review offers important scientific evidence for the neuroprotective effects and distinct pharmacological mechanisms of polydatin that not only enhances the present understanding but is also useful for the development of future preclinical and clinical investigations.
Collapse
Affiliation(s)
- Lucia E Schimith
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Michele G Dos Santos
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Bruno D Arbo
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.,Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Corinne André-Miral
- Unité en Sciences Biologiques et Biotechnologies (US2B), Nantes Université, CNRS, Nantes, France
| | - Ana L Muccillo-Baisch
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Mariana A Hort
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.,Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Gallego I, Villate-Beitia I, Saenz-Del-Burgo L, Puras G, Pedraz JL. Therapeutic Opportunities and Delivery Strategies for Brain Revascularization in Stroke, Neurodegeneration, and Aging. Pharmacol Rev 2022; 74:439-461. [PMID: 35302047 DOI: 10.1124/pharmrev.121.000418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) diseases, especially acute ischemic events and neurodegenerative disorders, constitute a public health problem with no effective treatments to allow a persistent solution. Failed therapies targeting neuronal recovery have revealed the multifactorial and intricate pathophysiology underlying such CNS disorders as ischemic stroke, Alzheimeŕs disease, amyotrophic lateral sclerosis, vascular Parkisonism, vascular dementia, and aging, in which cerebral microvasculature impairment seems to play a key role. In fact, a reduction in vessel density and cerebral blood flow occurs in these scenarios, contributing to neuronal dysfunction and leading to loss of cognitive function. In this review, we provide an overview of healthy brain microvasculature structure and function in health and the effect of the aforementioned cerebral CNS diseases. We discuss the emerging new therapeutic opportunities, and their delivery approaches, aimed at recovering brain vascularization in this context. SIGNIFICANCE STATEMENT: The lack of effective treatments, mainly focused on neuron recovery, has prompted the search of other therapies to treat cerebral central nervous system diseases. The disruption and degeneration of cerebral microvasculature has been evidenced in neurodegenerative diseases, stroke, and aging, constituting a potential target for restoring vascularization, neuronal functioning, and cognitive capacities by the development of therapeutic pro-angiogenic strategies.
Collapse
Affiliation(s)
- Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Laura Saenz-Del-Burgo
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| |
Collapse
|
13
|
Chukanova E, Chukanova A, Rodionova D. Hypoxia and oxidative stress in cerebral circulation insufficiency — effective ways of correction. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:35-40. [DOI: 10.17116/jnevro202212208135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Sesame Oil-Based Nanostructured Lipid Carriers of Nicergoline, Intranasal Delivery System for Brain Targeting of Synergistic Cerebrovascular Protection. Pharmaceutics 2021; 13:pharmaceutics13040581. [PMID: 33921796 PMCID: PMC8072759 DOI: 10.3390/pharmaceutics13040581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Nicergoline (NIC) is a semisynthetic ergot alkaloid derivative applied for treatment of dementia and other cerebrovascular disorders. The efficacy of sesame oil to slow and reverse the symptoms of neurodegenerative cognitive disorders has been proven. This work aimed to formulate and optimize sesame oil-based NIC-nanostructured lipid carriers (NIC–NLCs) for intranasal (IN) delivery with expected synergistic and augmented neuroprotective properties. The NIC–NLC were prepared using sesame oil as a liquid lipid. A three-level, three-factor Box–Behnken design was applied to statistically optimize the effect of sesame oil (%) of the total lipid, surfactant concentration, and sonication time on particle size, zeta potential, and entrapment efficacy as responses. Solid-state characterization, release profile, and ex vivo nasal permeation in comparison to NIC solution (NIC–SOL) was studied. In vivo bioavailability from optimized NIC–NLC and NIC–SOL following IN and IV administration was evaluated and compared. The optimized NIC–NLC formula showed an average particle size of 111.18 nm, zeta potential of −15.4 mV, 95.11% entrapment efficacy (%), and 4.6% loading capacity. The NIC–NLC formula showed a biphasic, extended-release profile (72% after 48 h). Permeation of the NIC–NLC formula showed a 2.3 enhancement ratio. Bioavailability studies showed a 1.67 and 4.57 fold increase in plasma and brain following IN administration. The results also indicated efficient direct nose-to-brain targeting properties with the brain-targeting efficiency (BTE%) and direct transport percentage (DTP%) of 187.3% and 56.6%, respectively, after IN administration. Thus, sesame oil-based NIC–NLC can be considered as a promising IN delivery system for direct and efficient brain targeting with improved bioavailability and expected augmented neuroprotective action for the treatment of dementia.
Collapse
|
15
|
The Neurovascular Unit Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22042022. [PMID: 33670754 PMCID: PMC7922832 DOI: 10.3390/ijms22042022] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.
Collapse
|
16
|
Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019; 9:565-611. [PMID: 30873582 PMCID: PMC6705133 DOI: 10.1002/cphy.c180025] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurological disorders have emerged as a predominant healthcare concern in recent years due to their severe consequences on quality of life and prevalence throughout the world. Understanding the underlying mechanisms of these diseases and the interactions between different brain cell types is essential for the development of new therapeutics. Induced pluripotent stem cells (iPSCs) are invaluable tools for neurological disease modeling, as they have unlimited self-renewal and differentiation capacity. Mounting evidence shows: (i) various brain cells can be generated from iPSCs in two-dimensional (2D) monolayer cultures; and (ii) further advances in 3D culture systems have led to the differentiation of iPSCs into organoids with multiple brain cell types and specific brain regions. These 3D organoids have gained widespread attention as in vitro tools to recapitulate complex features of the brain, and (iii) complex interactions between iPSC-derived brain cell types can recapitulate physiological and pathological conditions of blood-brain barrier (BBB). As iPSCs can be generated from diverse patient populations, researchers have effectively applied 2D, 3D, and BBB models to recapitulate genetically complex neurological disorders and reveal novel insights into molecular and genetic mechanisms of neurological disorders. In this review, we describe recent progress in the generation of 2D, 3D, and BBB models from iPSCs and further discuss their limitations, advantages, and future ventures. This review also covers the current status of applications of 2D, 3D, and BBB models in drug screening, precision medicine, and modeling a wide range of neurological diseases (e.g., neurodegenerative diseases, neurodevelopmental disorders, brain injury, and neuropsychiatric disorders). © 2019 American Physiological Society. Compr Physiol 9:565-611, 2019.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott G. Canfield
- Department of Cellular & Integrative Physiology, IU School of Medicine-Terre Haute, Terre Haute, IN, USA
| | - Emily R. Seminary
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha L. Sison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
17
|
Wiesemann A, Ketteler J, Slama A, Wirsdörfer F, Hager T, Röck K, Engel DR, Fischer JW, Aigner C, Jendrossek V, Klein D. Inhibition of Radiation-Induced Ccl2 Signaling Protects Lungs from Vascular Dysfunction and Endothelial Cell Loss. Antioxid Redox Signal 2019; 30:213-231. [PMID: 29463096 DOI: 10.1089/ars.2017.7458] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Radiation-induced normal tissue toxicity often precludes the application of curative radiation doses. Here we investigated the therapeutic potential of chemokine C-C motif ligand 2 (Ccl2) signaling inhibition to protect normal lung tissue from radiotherapy (RT)-induced injury. Results: RT-induced vascular dysfunction and associated adverse effects can be efficiently antagonized by inhibition of Ccl2 signaling using either the selective Ccl2 inhibitor bindarit (BIN) or mice deficient for the main Ccl2 receptor CCR2 (KO). BIN-treatment efficiently counteracted the RT-induced expression of Ccl2, normalized endothelial cell (EC) morphology and vascular function, and limited lung inflammation and metastasis early after irradiation (acute effects). A similar protection of the vascular compartment was detected by loss of Ccl2 signaling in lungs of CCR2-KO mice. Long-term Ccl2 signaling inhibition also significantly limited EC loss and accompanied fibrosis progression as adverse late effect. With respect to the human situation, we further confirmed that Ccl2 secreted by RT-induced senescent epithelial cells resulted in the activation of normally quiescent but DNA-damaged EC finally leading to EC loss in ex vivo cultured human normal lung tissue. Innovation: Abrogation of certain aspects of the secretome of irradiated resident lung cells, in particular signaling inhibition of the senescence-associated secretory phenotype-factor Ccl2 secreted predominantly by RT-induced senescent epithelial cells, resulted in protection of the endothelial compartment. Conclusions: Radioprotection of the normal tissue via Ccl2 signaling inhibition without simultaneous protection or preferable radiosensitization of tumor tissue might improve local tumor control and survival, because higher doses of radiation could be used.
Collapse
Affiliation(s)
- Alina Wiesemann
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Julia Ketteler
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Alexis Slama
- 2 Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen , Essen, Germany
| | - Florian Wirsdörfer
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Thomas Hager
- 3 Institute of Pathology, University Clinic Essen, University of Duisburg-Essen , Essen, Germany
| | - Katharina Röck
- 4 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Daniel R Engel
- 5 Department Immunodynamics, Institute of Experimental Immunology and Imaging, University Duisburg-Essen, University Hospital Essen , Essen, Germany
| | - Jens W Fischer
- 4 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Clemens Aigner
- 2 Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen , Essen, Germany
| | - Verena Jendrossek
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Diana Klein
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| |
Collapse
|
18
|
Inhibition of Connexin43 hemichannels with Gap19 protects cerebral ischemia/reperfusion injury via the JAK2/STAT3 pathway in mice. Brain Res Bull 2018; 146:124-135. [PMID: 30593877 DOI: 10.1016/j.brainresbull.2018.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Functional disruption of the neurovascular unit may lead to aggravation of ischemic cerebral injury. Connexin43 (Cx43)-dependent gap junctional channels (GJCs) are critical in maintaining brain homeostasis. However, excessive opening of hemichannels (HCs) after cerebral ischemia may cause apoptosis and finally lead to amplification of ischemic injury. Previous studies indicated that Cx43 mimetic peptides Gap26 and Gap27 may protect cerebral ischemic injury, but the latest studies showed they also inhibit the opening of GJCs, which are beneficial for neuroprotection. Recent studies showed that Gap19 is a new specific inhibitor of Cx43 HCs. We investigated the role of Gap19 on cerebral ischemia/reperfusion (I/R) injury in a mouse model of middle cerebral artery occlusion (MCAO). Ventricle-injected Gap19 significantly alleviated infarct volume, neuronal cell damage and neurological deficits after ischemia, the neuroprotective effect of Gap19 was significant stronger than Gap26. Post-treatment with TAT-Gap19 still provided neuroprotection when it was administered intraperitoneally at 4 h after reperfusion. In addition, we found that Gap19 decreased the levels of cleaved caspase-3 and Bax and increased the level of Bcl-2, suggesting the anti-apoptotic activity of specifically blocking the Cx43 HCs. Furthermore, our data indicate that Gap19 treatment increased the levels of phosphorylated JAK2 and STAT3 both in vivo and in vitro. Gap19 inhibited hemichannel activity assessed by dye uptake in astrocytes. And we detected that pSTAT3 co-localized with Cx43 together in astrocytes after oxygen glucose deprivation (OGD) injury. Finally, AG490, a blocker of the JAK2/STAT3 pathway, could reverse the neuroprotective effects of Gap19 both in vivo and in vitro. Our experiment investigated the anti-apoptotic activity of Gap19, the specific inhibitor of Cx43 HCs, and the potential mechanisms. Our results demonstrated that Gap19 plays an anti-apoptotic role via activating the JAK2/STAT3 pathway after cerebral I/R injury, indicating that specific blocking of Cx43 HCs is a potential target for ischemic stroke.
Collapse
|
19
|
Mitophagy is activated in brain damage induced by cerebral ischemia and reperfusion via the PINK1/Parkin/p62 signalling pathway. Brain Res Bull 2018; 142:63-77. [PMID: 29964088 DOI: 10.1016/j.brainresbull.2018.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
This study examined the course of mitophagy following cerebral ischemia with reperfusion and the role of the PTEN-induced kinase 1 (PINK1)/Parkin/p62 signalling pathway. The middle cerebral artery of male Sprague-Dawley rats was occluded for 90 min and was followed by different time-points of reperfusion. Cerebral infarct areas were detected by 2,3,5-triphenyl tetrazolium chloride staining, while brain damage was observed by haematoxylin and eosin staining. Levels of LC3, Beclin1 and LAMP-1 were estimated by western blots. LC3B location was observed in various cells in the neurovascular unit. In addition, PINK1 accumulation in damaged mitochondria and Parkin/p62 mitochondrial translocation were investigated by double immunofluorescence staining. Finally, the levels of PINK1, Parkin and p62 expression in mitochondrial fractions were estimated by western blots. Cerebral ischemia with different time-points of reperfusion resulted in infarct in the territory of the middle cerebral artery accompanied by overall brain damage. In addition, we found up-regulation of LC3B, Beclin1, and LAMP-1, as well as mitophagy activation after reperfusion, with peak expression of these proteins at 24 h after reperfusion. Electron microscopy and immunofluorescence indicated that LC3B was primarily located in neurons, although lower levels of expression were found in astrocytes and even less in vascular endothelial cells. Moreover, significant increases in PINK1 accumulation in the outer membrane of mitochondria and increased Parkin/p62 mitochondrial translocation were shown at 24 h after reperfusion. These findings suggest that the PINK1/Parkin/p62 signalling pathway was involved in the pathophysiological processes following ischemia and reperfusion.
Collapse
|
20
|
Souery WN, Bishop CJ. Clinically advancing and promising polymer-based therapeutics. Acta Biomater 2018; 67:1-20. [PMID: 29246651 DOI: 10.1016/j.actbio.2017.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
In this review article, we will examine the history of polymers and their evolution from provisional World War II materials to medical therapeutics. To provide a comprehensive look at the current state of polymer-based therapeutics, we will classify technologies according to targeted areas of interest, including central nervous system-based and intraocular-, gastrointestinal-, cardiovascular-, dermal-, reproductive-, skeletal-, and neoplastic-based systems. Within each of these areas, we will consider several examples of novel, clinically available polymer-based therapeutics; in addition, this review will also include a discussion of developing therapies, ranging from the in vivo to clinical trial stage, for each targeted area of treatment. Finally, we will emphasize areas of patient care in need of more effective, accessible, and targeted treatment approaches where polymer-based therapeutics may offer potential solutions.
Collapse
Affiliation(s)
- Whitney N Souery
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 101 Bizzell St., College Station, TX 77843, USA
| | - Corey J Bishop
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 101 Bizzell St., College Station, TX 77843, USA.
| |
Collapse
|
21
|
Begum G, Song S, Wang S, Zhao H, Bhuiyan MIH, Li E, Nepomuceno R, Ye Q, Sun M, Calderon MJ, Stolz DB, St Croix C, Watkins SC, Chen Y, He P, Shull GE, Sun D. Selective knockout of astrocytic Na + /H + exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke. Glia 2017; 66:126-144. [PMID: 28925083 DOI: 10.1002/glia.23232] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/25/2023]
Abstract
Stimulation of Na+ /H+ exchanger isoform 1 (NHE1) in astrocytes causes ionic dysregulation under ischemic conditions. In this study, we created a Nhe1flox/flox (Nhe1f/f ) mouse line with exon 5 of Nhe1 flanked with two loxP sites and selective ablation of Nhe1 in astrocytes was achieved by crossing Nhe1f/f mice with Gfap-CreERT2 Cre-recombinase mice. Gfap-CreERT2+/- ;Nhe1f/f mice at postnatal day 60-90 were treated with either corn oil or tamoxifen (Tam, 75 mg/kg/day, i.p.) for 5 days. After 30 days post-injection, mice underwent transient middle cerebral artery occlusion (tMCAO) to induce ischemic stroke. Compared with the oil-vehicle group (control), Tam-treated Gfap-CreERT2+/- ;Nhe1f/f (Nhe1 KO) mice developed significantly smaller ischemic infarction, less edema, and less neurological function deficits at 1-5 days after tMCAO. Immunocytochemical analysis revealed less astrocytic proliferation, less cellular hypertrophy, and less peri-lesion gliosis in Nhe1 KO mouse brains. Selective deletion of Nhe1 in astrocytes also reduced cerebral microvessel damage and blood-brain barrier (BBB) injury in ischemic brains. The BBB microvessels of the control brains show swollen endothelial cells, opened tight junctions, increased expression of proinflammatory protease MMP-9, and significant loss of tight junction protein occludin. In contrast, the Nhe1 KO mice exhibited reduced BBB breakdown and normal tight junction structure, with increased expression of occludin and reduced MMP-9. Most importantly, deletion of astrocytic Nhe1 gene significantly increased regional cerebral blood flow in the ischemic hemisphere at 24 hr post-MCAO. Taken together, our study provides the first line of evidence for a causative role of astrocytic NHE1 protein in reactive astrogliosis and ischemic neurovascular damage.
Collapse
Affiliation(s)
- Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaoxia Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hanshu Zhao
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Eric Li
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rachel Nepomuceno
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qing Ye
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ming Sun
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yinhuai Chen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Pingnian He
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Tian X, Peng J, Zhong J, Yang M, Pang J, Lou J, Li M, An R, Zhang Q, Xu L, Dong Z. β-Caryophyllene protects in vitro neurovascular unit against oxygen-glucose deprivation and re-oxygenation-induced injury. J Neurochem 2016; 139:757-768. [PMID: 27565895 DOI: 10.1111/jnc.13833] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 01/21/2023]
Abstract
β-Caryophyllene (BCP) mediates neuroprotection in cerebral ischemic animals. The neurovascular unit (NVU) acts as an intricate network to maintain the neuronal homeostatic microenvironment. However, the effects exerted by BCP on NVU remain unclear. Therefore, we established an in vitro NVU model to investigate the effects of BCP on oxygen-glucose deprivation and re-oxygenation (OGD/R)-induced injury. This model involved the co-culture of brain microvascular endothelial cells, neurons, and astrocytes. BCP (10 μmol/L) was applied for 24 h prior to OGD/R and maintained throughout OGD/R. Blood-brain barrier (BBB) integrity and neuronal apoptosis were analyzed. BCP pre-treatment prior to the initiation of OGD/R significantly (i) decreased BBB permeability and neuronal apoptosis, (ii) mitigated oxidative stress damage and the release of inflammatory cytokines, (iii) down-regulated Bax expression, metalloproteinase-9 activity and expression, and (iv) up-regulated claudin-5, occludin, ZO-1, growth-associated protein-43 and Bcl-2 expression. Thus, BCP pre-treatment exerted multiple protective effects on NVU in the context of OGD/R-induced injury. These protective effects potentially occur via reductions in oxidative stress damage and inflammatory cytokines that induce BBB breakdown, subsequently resulting in reduced neuronal apoptosis. The NVU serves as putative therapeutic targets for cerebral ischemia, and the results of this study provide new insights for the application of BCP as a neuroprotective agent.
Collapse
Affiliation(s)
- Xiaocui Tian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianjun Zhong
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Lou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Minghang Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Ruidi An
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qian Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Lu Xu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|
23
|
Zhang J, Zou H, Zhang Q, Wang L, Lei J, Wang Y, Ouyang J, Zhang Y, Zhao H. Effects of Xiaoshuan enteric-coated capsule on neurovascular functions assessed by quantitative multiparametric MRI in a rat model of permanent cerebral ischemia. Altern Ther Health Med 2016; 16:198. [PMID: 27391841 PMCID: PMC4938911 DOI: 10.1186/s12906-016-1184-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
Background Buyang Huanwu Decoction (BYHWD) is a Traditional Chinese Medicine (TCM) formula for treating stroke-induced disability. Xiaoshuan enteric-coated capsule (XSECC), derived from the formula BYHWD, is a drug approved by the China Food and Drug Administration (CFDA) for stroke management. To further investigate the potential protective effects of XSECC on neurovascular functions, we endeavour to monitor the neurovascular functions using multimodal magnetic resonance imaging (MRI) and evaluated histopathological changes of neurovascular unit (NVU) after stroke. Methods Ischemic stroke was induced by permanent middle cerebral artery occlusion (pMCAO). XSECC (420 mg/kg) was orally administered 2 h after stroke and daily thereafter. T2-weighted imaging (T2WI), T2 relaxometry mapping and diffusion tensor imaging (DTI) were used to measure cerebral infarct volume, edema and white matter fiber integrity, respectively. Neurochemical metabolite levels were monitored by 1H-magnetic resonance spectroscopy (1H-MRS). Arterial spin labeling (ASL) – cerebral blood flow (CBF) measurements and structural magnetic resonance angiography (MRA) images provided real-time and dynamic information about vascular hemodynamic dysfunction on the 3rd, 7th and 14th days after pMCAO. At the last imaging time point, immunohistochemistry, immunofluorescence as well as transmission electron microscopy (TEM) were used to test the microscopic and ultrastructural changes of NVU. Results T2WI, T2 relaxometry mapping and Fractional anisotropy (FA) in DTI showed that XSECC significantly reduced cerebral infarct volume, relieved edema and alleviated nerve fiber injuries, respectively. 1H-MRS provided information about improvement of neuronal/glial metabolism after XSECC treatment. Moreover, ASL – CBF measurements combined with MRA showed that XSECC significantly increased CBF and vascular signal strength and alleviated ischemia-induced morphological changes of arteries in ischemic hemisphere within 14 days after stroke. In addition, neuron specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), CD34 staining and TEM detection indicated that XSECC not only ameliorated neuronal injury, but also reduced endothelial damage and inhibited astrocyte proliferation. Conclusions Our results suggested that XSECC has multi-target neurovascular protective effects on ischemic stroke, which may be closely correlated with the improvement of cerebral blood supply and neuronal/glial metabolism.
Collapse
|
24
|
Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 2016; 15:275-92. [PMID: 26794270 DOI: 10.1038/nrd.2015.21] [Citation(s) in RCA: 753] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders is achieving sufficient blood-brain barrier (BBB) penetration. Research in the past few decades has revealed that the BBB is not only a substantial barrier for drug delivery to the CNS but also a complex, dynamic interface that adapts to the needs of the CNS, responds to physiological changes, and is affected by and can even promote disease. This complexity confounds simple strategies for drug delivery to the CNS, but provides a wealth of opportunities and approaches for drug development. Here, I review some of the most important areas that have recently redefined the BBB and discuss how they can be applied to the development of CNS therapeutics.
Collapse
Affiliation(s)
- William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center and Department of Medicine, University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, 1660 South Columbian Way, Seattle, Washington 98108, USA
| |
Collapse
|
25
|
Jin SJ, Liu Y, Deng SH, Lin TL, Rashid A, Liao LH, Ning Q, Luo XP. Protective effects of activated protein C on neurovascular unit in a rat model of intrauterine infection-induced neonatal white matter injury. ACTA ACUST UNITED AC 2015; 35:904-909. [PMID: 26670444 DOI: 10.1007/s11596-015-1526-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 10/14/2015] [Indexed: 02/08/2023]
Abstract
Activated protein C (APC), a natural anticoagulant, has been reported to exert direct vasculoprotective, neural protective, anti-inflammatory, and proneurogenic activities in the central nervous system. This study was aimed to explore the neuroprotective effects and potential mechanisms of APC on the neurovascular unit of neonatal rats with intrauterine infection-induced white matter injury. Intraperitoneal injection of 300 μg/kg lipopolysaccharide (LPS) was administered consecutively to pregnant Sprague-Dawley rats at embryonic days 19 and 20 to establish the rat model of intrauterine infection- induced white matter injury. Control rats were injected with an equivalent amount of sterile saline on the same time. APC at the dosage of 0.2 mg/kg was intraperitoneally injected to neonatal rats immediately after birth. Brain tissues were collected at postnatal day 7 and stained with hematoxylin and eosin (H&E). Immunohistochemistry was used to evaluate myelin basic protein (MBP) expression in the periventricular white matter region. Blood-brain barrier (BBB) permeability and brain water content were measured using Evens Blue dye and wet/dry weight method. Double immunofluorescence staining and real-time quantitative PCR were performed to detect microglial activation and the expression of protease activated receptor 1 (PAR1). Typical pathological changes of white matter injury were observed in rat brains exposed to LPS, and MBP expression in the periventricular region was significantly decreased. BBB was disrupted and the brain water content was increased. Microglia were largely activated and the mRNA and protein levels of PAR1 were elevated. APC administration ameliorated the pathological lesions of the white matter and increased MBP expression. BBB permeability and brain water content were reduced. Microglia activation was inhibited and the PAR1 mRNA and protein expression levels were both down-regulated. Our results suggested that APC exerted neuroprotective effects on multiple components of the neurovascular unit in neonatal rats with intrauterine infection- induced white matter injury, and the underlying mechanisms might involve decreased expression of PAR1.
Collapse
Affiliation(s)
- Sheng-Juan Jin
- Department of Pediatrics, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Liu
- Department of Pediatrics, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Hua Deng
- Department of Pediatrics, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tu-Lian Lin
- Department of Pediatrics, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Abid Rashid
- Department of Pediatrics, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Hong Liao
- Department of Pediatrics, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731292. [PMID: 26579539 PMCID: PMC4633536 DOI: 10.1155/2015/731292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/04/2015] [Accepted: 10/04/2015] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.
Collapse
|
27
|
Chukanova EI, Bogolepova AN, Chukanova AS. [An experience of using divasa in the treatment of cerebrovascular insufficiency]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:17-23. [PMID: 26356393 DOI: 10.17116/jnevro20151156117-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIM To evaluate the clinical efficacy and safety of divasa in the treatment of patients with cerebrovascular insufficiency. MATERIAL AND METHODS The main group included 40 patients (mean age 56.2±5.7 years) with asthenic/autonomic and vestibular/ataxic disorders developed during chronic cerebrovascular disease. The severity of symptoms was measured with the Visual Analogue scale (VAS). Neuropsychological and psychoemotional status was assessed with MMSE, MFI-20, HAM-A, a subjective sleep questionnaire, a scheme for detection of signs of autonomic disorders. Quality of life questionnaire (SF-36) and CGI scale were used as well. The plasma levels of fibrinogen and the von Willebrand factor were determined in all patients. The control group included 40 patients with chronic cerebrovascular insufficiency matched for age, sex and severity of neurological symptoms to the main group. RESULTS The scores of asthenic symptoms, anxiety, sleep disorders and autonomic disorders were decreased significantly that led to the improvement of quality of life of patients. A significant decrease and normalization of the plasma levels of fibrinogen and the von Willebrand factor were identified in the patients of the main group. The drug was well-tolerated, side-effects (allergic reactions) were noted only in 5%. CONCLUSION The positive effect of divasa on patient's condition was demonstrated. The drug may be recommended for the use in complex treatment of these patients.
Collapse
Affiliation(s)
- E I Chukanova
- Pirogov Russian National Research Medical University, Moscow
| | - A N Bogolepova
- Pirogov Russian National Research Medical University, Moscow
| | - A S Chukanova
- Pirogov Russian National Research Medical University, Moscow
| |
Collapse
|
28
|
Gusev EI, Chukanova AS. [Modern pathogenetic aspects of development of cerebral chronic ischemia]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:4-8. [PMID: 26120974 DOI: 10.17116/jnevro2015115314-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Key mechanisms of the development of cerebral blood circulation insufficiency are presented. The following initial patters are analyzed: primary cytokine response, endothelial dysfunction and functioning of neurovascular units. Current conceptions on the development of pathological apoptosis and neuroplasticity are considered.
Collapse
Affiliation(s)
- E I Gusev
- Pirogov Russian National Research Medical University, Moscow
| | - A S Chukanova
- Pirogov Russian National Research Medical University, Moscow
| |
Collapse
|
29
|
Suganthy N, Devi KP. In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata. PHARMACEUTICAL BIOLOGY 2015; 54:118-29. [PMID: 25856713 DOI: 10.3109/13880209.2015.1017886] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
CONTEXT Rhizophora mucronata Lam. (Rhizophoraceae), commonly known as Asiatic mangrove, has been used traditionally among Asian countries as folk medicine. OBJECTIVE This study investigates the cholinesterase inhibitory potential and antioxidant activities of R. mucronata. MATERIALS AND METHOD Rhizophora mucronata leaves were successively extracted using solvents of varying polarity and a dosage of 100-500 µg/ml were used for each assay. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were assessed according to the method of Ellman. In vitro antioxidant activity was assessed using free radical scavenging, reducing power, and metal-chelating activity (duration - 3 months). Total phenolic and flavonoid content were quantified spectrophotometrically. Compound characterization was done using column chromatography, NMR, FTIR, and LC-MS analysis. RESULTS Methanolic leaf extract (500 µg/ml) exhibited the highest inhibitory activity against AChE (92.73 ± 0.54%) and BuChE (98.98 ± 0.17%), with an IC50 value of 59.31 ± 0.35 and 51.72 ± 0.33 µg/ml, respectively. Among the different solvent extracts, methanolic extract exhibited the highest antioxidant activity with an IC50 value of 47.39 ± 0.43, 401.45 ± 18.52, 80.23 ± 0.70, and 316.47 ± 3.56 µg/ml for DPPH, hydroxyl, nitric oxide radical, and hydrogen peroxide, respectively. Total polyphenolic and flavonoid contents in methanolic extract were observed to be 598.13 ± 1.85 µg of gallic acid equivalent and 48.85 ± 0.70 μg of rutin equivalent/mg of extract. Compound characterization illustrated (+)-catechin as the bioactive compound responsible for cholinesterase inhibitory and antioxidant activities. CONCLUSION The presence of rich source of flavonoids, in particular catechin, might be responsible for its cholinesterase inhibitory and antioxidant activities.
Collapse
Affiliation(s)
- N Suganthy
- a Department of Biotechnology , Alagappa University , Karaikudi , Tamil Nadu , India
| | - K Pandima Devi
- a Department of Biotechnology , Alagappa University , Karaikudi , Tamil Nadu , India
| |
Collapse
|
30
|
Pinelis VG, Sorokina EG, Semenova JB, Karaseva OV, Mescheryakov SV, Chernisheva TA, Arsenieva EN, Roshal LM. Biomarkers in children with traumatic brain injury. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:66-72. [DOI: 10.17116/jnevro20151158166-72] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Neuhaus W, Gaiser F, Mahringer A, Franz J, Riethmüller C, Förster C. The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier. Front Cell Neurosci 2014; 8:352. [PMID: 25389390 PMCID: PMC4211409 DOI: 10.3389/fncel.2014.00352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 12/14/2022] Open
Abstract
Stabilization of the blood-brain barrier during and after stroke can lead to less adverse outcome. For elucidation of underlying mechanisms and development of novel therapeutic strategies validated in vitro disease models of the blood-brain barrier could be very helpful. To mimic in vitro stroke conditions we have established a blood-brain barrier in vitro model based on mouse cell line cerebEND and applied oxygen/glucose deprivation (OGD). The role of astrocytes in this disease model was investigated by using cell line C6. Transwell studies pointed out that addition of astrocytes during OGD increased the barrier damage significantly in comparison to the endothelial monoculture shown by changes of transendothelial electrical resistance as well as fluorescein permeability data. Analysis on mRNA and protein levels by qPCR, western blotting and immunofluorescence microscopy of tight junction molecules claudin-3,-5,-12, occludin and ZO-1 revealed that their regulation and localisation is associated with the functional barrier breakdown. Furthermore, soluble factors of astrocytes, OGD and their combination were able to induce changes of functionality and expression of ABC-transporters Abcb1a (P-gp), Abcg2 (bcrp), and Abcc4 (mrp4). Moreover, the expression of proteases (matrixmetalloproteinases MMP-2, MMP-3, MMP-9, and t-PA) as well as of their endogenous inhibitors (TIMP-1, TIMP-3, PAI-1) was altered by astrocyte factors and OGD which resulted in significant changes of total MMP and t-PA activity. Morphological rearrangements induced by OGD and treatment with astrocyte factors were confirmed at a nanometer scale using atomic force microscopy. In conclusion, astrocytes play a major role in blood-brain barrier breakdown during OGD in vitro.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Department of Pharmaceutical Chemistry, University of Vienna Vienna, Austria ; Department of Anesthesia and Critical Care, University Hospital Würzburg Würzburg, Germany
| | - Fabian Gaiser
- Department of Anesthesia and Critical Care, University Hospital Würzburg Würzburg, Germany
| | - Anne Mahringer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Jonas Franz
- Serend-ip GmbH, Centre for Nanotechnology Münster, Germany
| | | | - Carola Förster
- Department of Anesthesia and Critical Care, University Hospital Würzburg Würzburg, Germany
| |
Collapse
|
32
|
VanGilder RL, Huber JD. Sesamol: a Treatment for Diabetes-Associated Blood-Brain Barrier Dysfunction. POSTDOC JOURNAL : A JOURNAL OF POSTDOCTORAL RESEARCH AND POSTDOCTORAL AFFAIRS 2014; 2:13-22. [PMID: 28781979 PMCID: PMC5542572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diabetes is a long-standing disease that leads to secondary complications of capillaries such as retinopathy, nephropathy and neuropathy. Emerging evidence suggests that diabetes may also affect the cerebromicrovasculature, the blood-brain barrier (BBB), and lead to changes in the brain that affect cognition and mood. Therefore, it is important to identify natural compounds that may have therapeutic benefit for reducing BBB dysfunction and improve patient quality of life. Preclinical evidence suggests that sesamol, a natural antioxidant in sesame seed oil, could have therapeutic benefit for treating BBB dysfunction during diabetes. Similarly, paroxetine, which shares a methylenedioxy moiety with sesamol shows clinical benefit for treating neuropathic pain associated with diabetes. This review emphasizes BBB dysfunction as a treatable secondary complication associated with diabetes and examines the evidence for the use of natural compounds like sesamol or existing therapies like paroxetine to help restore BBB function.
Collapse
Affiliation(s)
- Reyna L VanGilder
- School of Pharmacy, West Virginia University, 5706 Medical Center Dr, Morgantown, WV 26505, USA
| | - Jason D Huber
- School of Pharmacy, West Virginia University, 5706 Medical Center Dr, Morgantown, WV 26505, USA
| |
Collapse
|
33
|
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:11-24. [PMID: 24963272 PMCID: PMC4064947 DOI: 10.4137/pmc.s13384] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 01/04/2023]
Abstract
The treatment of central nervous system (CNS) disease has long been difficult due to the ineffectiveness of drug delivery across the blood-brain barrier (BBB). This review summarizes important concepts of the BBB in normal versus pathophysiology and how this physical, enzymatic, and efflux barrier provides necessary protection to the CNS during drug delivery, and consequently treatment challenging. Small molecules account for the vast majority of available CNS drugs primarily due to their ability to penetrate the phospholipid membrane of the BBB by passive or carrier-mediated mechanisms. Physiochemical and biological factors relevant for designing small molecules with optimal capabilities for BBB permeability are discussed, as well as the most promising classes of transporters suitable for small-molecule drug delivery. Clinically translatable imaging methodologies for detecting and quantifying drug uptake and targeting in the brain are discussed as a means of further understanding and refining delivery parameters for both drugs and imaging probes in preclinical and clinical domains. This information can be used as a guide to design drugs with preserved drug action and better delivery profiles for improved treatment outcomes over existing therapeutic approaches.
Collapse
Affiliation(s)
- John L Mikitsh
- Department of Radiology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann-Marie Chacko
- Department of Radiology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta Physiol (Oxf) 2014; 210:790-8. [PMID: 24629161 DOI: 10.1111/apha.12250] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/01/2013] [Accepted: 01/27/2014] [Indexed: 01/01/2023]
Abstract
The cerebral hyperaemia is one of the fundamental mechanisms for the central nervous system homeostasis. Due also to this mechanism, oxygen and nutrients are maintained in satisfactory levels, through vasodilation and vasoconstriction. The brain hyperaemia, or coupling, is accomplished by a group of cells, closely related to each other; called neurovascular unit (NVU). The neurovascular unit is composed by neurones, astrocytes, endothelial cells of blood-brain barrier (BBB), myocytes, pericytes and extracellular matrix components. These cells, through their intimate anatomical and chemical relationship, detect the needs of neuronal supply and trigger necessary responses (vasodilation or vasoconstriction) for such demands. Here, we review the concepts of NVU, the coupling mechanisms and research strategies.
Collapse
Affiliation(s)
- V. Muoio
- Institut für Vegetative Physiologie; Charite- Universisitätmedizin Berlin; Berlin Germany
| | - P. B. Persson
- Institut für Vegetative Physiologie; Charite- Universisitätmedizin Berlin; Berlin Germany
| | - M. M. Sendeski
- Institut für Vegetative Physiologie; Charite- Universisitätmedizin Berlin; Berlin Germany
| |
Collapse
|
35
|
Shi QH, Xiang J, Zhu XY, Cai DF. [Protective effects of Chinese herbal medicine Naoshuantong on neurovascular unit in rats with cerebral ischemia/reperfusion injury]. ACTA ACUST UNITED AC 2013; 10:1135-9. [PMID: 23073197 DOI: 10.3736/jcim20121010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the protective effects of Naoshuantong, a compound traditional Chinese herbal medicine, on the main components of neurovascular unit in rats with cerebral ischemia/reperfusion injury. METHODS A total of 30 male Sprague-Dawley rats were randomly divided into sham-operated, ischemia/reperfusion, and ischemia/reperfusion plus Naoshuantong groups. The cerebral ischemia was induced by 1.5 h of middle cerebral artery occlusion, followed by unlocking the thread to induce reperfusion injury. After 24 h of reperfusion, neurological functional deficits were assessed, apoptosis of main components of neurovascular unit was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling combined with neuronal nuclei antigen, glial fibrillary acidic protein or CD31 immunofluorescence double staining. RESULTS Naoshuantong significantly reduced neurological functional deficits, and reduced neuron, astrocyte and vascular endothelium cell apoptosis induced by ischemia/reperfusion injury in the border zone of ischemic cortex. CONCLUSION Naoshuantong is effective in protecting the neurovascular unit including neurons, astrocytes and vascular endothelium cells against cerebral ischemia/reperfusion-induced apoptosis.
Collapse
Affiliation(s)
- Qi-hong Shi
- Department of Pharmacy, Qidong People's Hospital, Jiangsu Province, China
| | | | | | | |
Collapse
|
36
|
PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:459467. [PMID: 23781261 PMCID: PMC3678438 DOI: 10.1155/2013/459467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/31/2013] [Accepted: 04/09/2013] [Indexed: 11/18/2022]
Abstract
In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD) on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase)/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining, and neurological function was observed at 24 h after reperfusion. DNA fragmentation assay, combined with immunofluorescence, was performed to evaluate apoptosis of neuron, astrocyte, and vascular endothelial cell which constitute neurovascular unit. The expression levels of proteins involved in PI3K/Akt pathway were detected by Western blot. The results showed that XXMD improved neurological function, decreased cerebral infarct area and neuronal damage, and attenuated cellular apoptosis in neurovascular unit, while these effects were abolished by inhibition of PI3K/Akt with LY294002. We also found that XXMD upregulated p-PDKl, p-Akt, and p-GSK3 β expression levels, which were partly reversed by LY294002. In addition, the increases of p-PTEN and p-c-Raf expression levels on which LY294002 had no effect were also observed in response to XXMD treatment. The data indicated the protective effects of XXMD on neurovascular unit partly through the activation of PI3K/Akt pathway.
Collapse
|
37
|
Deo AK, Theil FP, Nicolas JM. Confounding Parameters in Preclinical Assessment of Blood–Brain Barrier Permeation: An Overview With Emphasis on Species Differences and Effect of Disease States. Mol Pharm 2013; 10:1581-95. [DOI: 10.1021/mp300570z] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anand K. Deo
- UCB Pharma S.A., Chemin du Foriest, B-1420 Braine-l’Alleud,
Belgium
| | | | | |
Collapse
|
38
|
Domínguez A, Álvarez A, Hilario E, Suarez-Merino B, Goñi-de-Cerio F. Central nervous system diseases and the role of the blood-brain barrier in their treatment. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2052-6946-1-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Abstract
Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion-transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
40
|
Sagare AP, Bell RD, Zlokovic BV. Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer's disease. J Alzheimers Dis 2013; 33 Suppl 1:S87-100. [PMID: 22751174 PMCID: PMC4416477 DOI: 10.3233/jad-2012-129037] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evidence that neurovascular dysfunction is an integral part of Alzheimer's disease (AD) pathogenesis has continued to emerge in the last decade. Changes in the brain vasculature have been shown to contribute to the onset and progression of the pathological processes associated with AD, such as microvascular reductions, blood brain barrier (BBB) breakdown, and faulty clearance of amyloid β-peptide (Aβ) from the brain. Herein, we review the role of the neurovascular unit and molecular mechanisms in cerebral vascular cells behind the pathogenesis of AD. In particular, we focus on molecular pathways within cerebral vascular cells and the systemic circulation that contribute to BBB dysfunction, brain hypoperfusion, and impaired clearance of Aβ from the brain. We aim to provide a summary of recent research findings implicated in neurovascular defects and faulty Aβ vascular clearance contributing to AD pathogenesis.
Collapse
Affiliation(s)
- Abhay P. Sagare
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert D. Bell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Ronaldson PT, Davis TP. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des 2012; 18:3624-44. [PMID: 22574987 DOI: 10.2174/138161212802002625] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/06/2012] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) is a critical regulator of brain homeostasis. Additionally, the BBB is the most significant obstacle to effective CNS drug delivery. It possesses specific charcteristics (i.e., tight junction protein complexes, influx and efflux transporters) that control permeation of circulating solutes including therapeutic agents. In order to form this "barrier," brain microvascular endothelial cells require support of adjacent astrocytes and microglia. This intricate relationship also occurs between endothelial cells and other cell types and structures of the CNS (i.e., pericytes, neurons, extracellular matrix), which implies existence of a "neurovascular unit." Ischemic stroke can disrupt the neurovascular unit at both the structural and functional level, which leads to an increase in leak across the BBB. Recent studies have identified several pathophysiological mechanisms (i.e., oxidative stress, activation of cytokine-mediated intracellular signaling systems) that mediate changes in the neurovascular unit during ischemic stroke. This review summarizes current knowledge in this area and emphasizes pathways (i.e., oxidative stress, cytokine-mediated intracellular signaling, glial-expressed receptors/targets) that can be manipulated pharmacologically for i) preservation of BBB and glial integrity during ischemic stroke and ii) control of drug permeation and/or transport across the BBB. Targeting these pathways present a novel opportunity for optimization of CNS delivery of therapeutics in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
42
|
McCaffrey G, Davis TP. Physiology and pathophysiology of the blood-brain barrier: P-glycoprotein and occludin trafficking as therapeutic targets to optimize central nervous system drug delivery. J Investig Med 2012; 60:10.231/JIM.0b013e318276de79. [PMID: 23138008 PMCID: PMC3851303 DOI: 10.231/jim.0b013e318276de79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The blood-brain barrier (BBB) is a physical and metabolic barrier that separates the central nervous system from the peripheral circulation. Central nervous system drug delivery across the BBB is challenging, primarily because of the physical restriction of paracellular diffusion between the endothelial cells that comprise the microvessels of the BBB and the activity of efflux transporters that quickly expel back into the capillary lumen a wide variety of xenobiotics. Therapeutic manipulation of protein trafficking is emerging as a novel means of modulating protein function, and in this minireview, the targeting of the trafficking of 2 key BBB proteins, P-glycoprotein and occludin, is presented as a novel, reversible means of optimizing central nervous system drug delivery.
Collapse
Affiliation(s)
- Gwen McCaffrey
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ 85745
| | - Thomas P. Davis
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ 85745
| |
Collapse
|
43
|
McCaffrey G, Davis TP. Physiology and pathophysiology of the blood-brain barrier: P-glycoprotein and occludin trafficking as therapeutic targets to optimize central nervous system drug delivery. J Investig Med 2012; 60:1131-40. [PMID: 23138008 PMCID: PMC3851303 DOI: 10.2310/jim.0b013e318276de79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is a physical and metabolic barrier that separates the central nervous system from the peripheral circulation. Central nervous system drug delivery across the BBB is challenging, primarily because of the physical restriction of paracellular diffusion between the endothelial cells that comprise the microvessels of the BBB and the activity of efflux transporters that quickly expel back into the capillary lumen a wide variety of xenobiotics. Therapeutic manipulation of protein trafficking is emerging as a novel means of modulating protein function, and in this minireview, the targeting of the trafficking of 2 key BBB proteins, P-glycoprotein and occludin, is presented as a novel, reversible means of optimizing central nervous system drug delivery.
Collapse
Affiliation(s)
- Gwen McCaffrey
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85745, USA.
| | | |
Collapse
|
44
|
Argandoña EG, Bengoetxea H, Bulnes S, Rico-Barrio I, Ortuzar N, Lafuente JV. Effect of intracortical vascular endothelial growth factor infusion and blockade during the critical period in the rat visual cortex. Brain Res 2012; 1473:141-54. [DOI: 10.1016/j.brainres.2012.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 06/18/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022]
|
45
|
The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis. J Neuroinflammation 2012; 9:171. [PMID: 22788993 PMCID: PMC3488971 DOI: 10.1186/1742-2094-9-171] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Production of the chemokine CCL2 by cells of the neurovascular unit (NVU) drives critical aspects of neuroinflammation. Suppression of CCL2 therefore holds promise in treating neuroinflammatory disease. Accordingly, we sought to determine if the compound bindarit, which inhibits CCL2 synthesis, could repress the three NVU sources of CCL2 most commonly reported in neuroinflammation--astrocytes, microglia and brain microvascular endothelial cells (BMEC)--as well as modify the clinical course of neuroinflammatory disease. METHODS The effect of bindarit on CCL2 expression by cultured murine astrocytes, microglia and BMEC was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bindarit action on mouse brain and spinal cord in vivo was similarly investigated by qRT-PCR following LPS injection in mice. And to further gauge the potential remedial effects of bindarit on neuroinflammatory disease, its impact on the clinical course of experimental autoimmune encephalomyelitis (EAE) in mice was also explored. RESULTS Bindarit repressed CCL2 expression by all three cultured cells, and antagonized upregulated expression of CCL2 in both brain and spinal cord in vivo following LPS administration. Bindarit also significantly modified the course and severity of clinical EAE, diminished the incidence and onset of disease, and evidenced signs of disease reversal. CONCLUSION Bindarit was effective in suppressing CCL2 expression by cultured NVU cells as well as brain and spinal cord tissue in vivo. It further modulated the course of clinical EAE in both preventative and therapeutic ways. Collectively, these results suggest that bindarit might prove an effective treatment for neuroinflammatory disease.
Collapse
|
46
|
McCaffrey G, Staatz WD, Sanchez-Covarrubias L, Finch JD, Demarco K, Laracuente ML, Ronaldson PT, Davis TP. P-glycoprotein trafficking at the blood-brain barrier altered by peripheral inflammatory hyperalgesia. J Neurochem 2012; 122:962-75. [PMID: 22716933 DOI: 10.1111/j.1471-4159.2012.07831.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
P-glycoprotein (ABCB1/MDR1, EC 3.6.3.44), the major efflux transporter at the blood-brain barrier (BBB), is a formidable obstacle to CNS pharmacotherapy. Understanding the mechanism(s) for increased P-glycoprotein activity at the BBB during peripheral inflammatory pain is critical in the development of novel strategies to overcome the significant decreases in CNS analgesic drug delivery. In this study, we employed the λ-carrageenan pain model (using female Sprague-Dawley rats), combined with confocal microscopy and subcellular fractionation of cerebral microvessels, to determine if increased P-glycoprotein function, following the onset of peripheral inflammatory pain, is associated with a change in P-glycoprotein trafficking which leads to pain-induced effects on analgesic drug delivery. Injection of λ-carrageenan into the rat hind paw induced a localized, inflammatory pain (hyperalgesia) and simultaneously, at the BBB, a rapid change in colocalization of P-glycoprotein with caveolin-1, a key scaffolding/trafficking protein. Subcellular fractionation of isolated cerebral microvessels revealed that the bulk of P-glycoprotein constitutively traffics to membrane domains containing high molecular weight, disulfide-bonded P-glycoprotein-containing structures that cofractionate with membrane domains enriched with monomeric and high molecular weight, disulfide-bonded, caveolin-1-containing structures. Peripheral inflammatory pain promoted a dynamic redistribution between membrane domains of P-glycoprotein and caveolin-1. Disassembly of high molecular weight P-glycoprotein-containing structures within microvascular endothelial luminal membrane domains was accompanied by an increase in ATPase activity, suggesting a potential for functionally active P-glycoprotein. These results are the first observation that peripheral inflammatory pain leads to specific structural changes in P-glycoprotein responsible for controlling analgesic drug delivery to the CNS.
Collapse
Affiliation(s)
- Gwen McCaffrey
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85745, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Banks WA. Drug delivery to the brain in Alzheimer's disease: consideration of the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:629-39. [PMID: 22202501 DOI: 10.1016/j.addr.2011.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
The successful treatment of Alzheimer's disease (AD) will require drugs that can negotiate the blood-brain barrier (BBB). However, the BBB is not simply a physical barrier, but a complex interface that is in intimate communication with the rest of the central nervous system (CNS) and influenced by peripheral tissues. This review examines three aspects of the BBB in AD. First, it considers how the BBB may be contributing to the onset and progression of AD. In this regard, the BBB itself is a therapeutic target in the treatment of AD. Second, it examines how the BBB restricts drugs that might otherwise be useful in the treatment of AD and examines strategies being developed to deliver drugs to the CNS for the treatment of AD. Third, it considers how drug penetration across the AD BBB may differ from the BBB of normal aging. In this case, those differences can complicate the treatment of CNS diseases such as depression, delirium, psychoses, and pain control in the AD population.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA , USA.
| |
Collapse
|
48
|
Tarasiuk J, Kułakowska A, Drozdowski W, Kornhuber J, Lewczuk P. CSF markers in amyotrophic lateral sclerosis. J Neural Transm (Vienna) 2012; 119:747-57. [DOI: 10.1007/s00702-012-0806-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
|
49
|
Drug transport into the central nervous system: using newer findings about the blood–brain barriers. Drug Deliv Transl Res 2012; 2:152-9. [DOI: 10.1007/s13346-012-0058-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Rodrigues MCO, Hernandez-Ontiveros DG, Louis MK, Willing AE, Borlongan CV, Sanberg PR, Voltarelli JC, Garbuzova-Davis S. Neurovascular aspects of amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:91-106. [PMID: 22748827 DOI: 10.1016/b978-0-12-386986-9.00004-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with a complicated and poorly understood pathogenesis. Strong evidence indicates impairment of all neurovascular unit components including the blood-brain and blood-spinal cord barriers (BBB/BSCB) in both patients and animal models. The present review provides an updated analysis of the microvascular pathology and impaired BBB/BSCB in ALS. Based on experimental and clinical ALS studies, the roles of cellular components, cell interactions, tight junctions, transport systems, cytokines, matrix metalloproteinases, and free radicals in the BBB/BSCB disruption are discussed. The impact of BBB/BSCB damage in ALS pathogenesis is a novel research topic, and this review will reveal some aspects of microvascular pathology involved in the disease and hopefully engender new therapeutic approaches.
Collapse
Affiliation(s)
- Maria Carolina O Rodrigues
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|