1
|
Daugherty A, Milewicz DM, Dichek DA, Ghaghada KB, Humphrey JD, LeMaire SA, Li Y, Mallat Z, Saeys Y, Sawada H, Shen YH, Suzuki T, Zhou (周桢) Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arterioscler Thromb Vasc Biol 2025; 45:609-631. [PMID: 40079138 PMCID: PMC12018150 DOI: 10.1161/atvbaha.124.320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues. The purpose of this review is to provide recommendations on guidance in (1) the selection of a mouse model and experimental conditions for the study, (2) parameters for standardizing detection and measurements of aortic diseases, (3) meaningful interpretation of characteristics of diseased aortic tissue, and (4) reporting standards that include rigor and transparency.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David A. Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Texas Children’s Hospital, and Department of Radiology, Baylor College of Medicine Houston, TX, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Scott A. LeMaire
- Heart & Vascular Institute, Geisinger Health System, Danville, PA, USA
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, Paris, France
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Department of Applied Mathematics, Computer Science and Statistics, Ghent University Ghent, Belgium
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Leinweber ME, Walter C, Assadian A, Kopecky C, Domenig O, Kovarik JJ, Hofmann AG. Angiotensin Dysregulation in Patients with Arterial Aneurysms. Int J Mol Sci 2025; 26:1502. [PMID: 40003968 PMCID: PMC11855860 DOI: 10.3390/ijms26041502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Besides playing a critical role in maintaining cardiovascular homeostasis, the renin-angiotensin-aldosterone system (RAS) has been strongly implicated in (aortic) aneurysm pathogenesis. This study aims to investigate systemic and local levels of angiotensin (Ang) and its metabolites in patients with arterial aneurysms, predominantly abdominal aortic aneurysms, using advanced biochemical profiling techniques to provide new insights into the involvement of RAS in aneurysm genesis. A prospective, single-center study was conducted between October 2023 and July 2024. Serum Ang metabolite levels were measured using RAS Fingerprint technology. Aortic tissue samples were analyzed for local RAS activity, including Ang levels and enzyme activity. Additionally, pre- and postoperative serum samples were obtained in a select group of patients. In total, 37 aneurysm patients and 56 controls were included. Aneurysm patients exhibited higher systemic levels of nearly all Ang metabolites compared to controls, with significant differences in Ang I (p = 0.002), Ang II (p = 0.047), Ang 1-5 (p = 0.004), and Renin (p = 0.014) in patients without pharmacological RAS interference. Aneurysm patients receiving ACE inhibitors showed lower serum concentrations in ACE2 activity (p = 0.042) and increased Ang IV levels (p = 0.049) compared to controls. Postoperative measurements indicated different dynamics regarding angiotensin metabolite changes in patients with or without ACE inhibition. This study provides the first comprehensive characterization of RAS profiles in aneurysm patients. These findings add to the body of evidence regarding associations between of RAS and the pathogenesis of arterial aneurysms.
Collapse
Affiliation(s)
| | - Corinna Walter
- Department of Vascular and Endovascular Surgery, Clinic Ottakring, 1160 Vienna, Austria
| | - Afshin Assadian
- Department of Vascular and Endovascular Surgery, Clinic Ottakring, 1160 Vienna, Austria
| | - Chantal Kopecky
- Clinical Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Johannes Josef Kovarik
- Clinical Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Amun Georg Hofmann
- Department of Vascular and Endovascular Surgery, Clinic Ottakring, 1160 Vienna, Austria
| |
Collapse
|
3
|
Arslan Ü, Jalalzai I. A Narrative Review of Biomarkers and Imaging in the Diagnosis of Acute Aortic Syndrome. Diagnostics (Basel) 2025; 15:183. [PMID: 39857067 PMCID: PMC11765216 DOI: 10.3390/diagnostics15020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Acute aortic syndrome (AAS) encompasses a range of life-threatening conditions, including classical dissection, intramural hematoma, and penetrating aortic ulcer. Each of these conditions presents distinct clinical characteristics and carries the potential to progress to rupture. Because AAS can be asymptomatic or present with diverse symptoms, its diagnosis requires clinical evaluation, risk scoring, and biomarkers such as D-dimer (DD), C-reactive protein (CRP), homocysteine, natriuretic peptides (BNP), and imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI), and echocardiography. While this review primarily focuses on widely used and clinically accessible biomarkers and imaging techniques, it also discusses alternative biomarkers proposed for diagnostic use. Although CT remains the gold standard for diagnosis, biomarkers facilitate rapid risk stratification, complementing imaging techniques. Emerging technologies, such as metabolomics, are reshaping diagnostic algorithms. Despite advances in diagnostic methods, challenges such as misdiagnosis and missed diagnoses persist. Ongoing research into novel biomarkers and innovative imaging techniques holds promise for improving diagnostic accuracy and patient outcomes.
Collapse
Affiliation(s)
- Ümit Arslan
- Department of Cardiovascular Surgery, Faculty of Medicine, Atatürk University, Erzurum 25030, Türkiye;
| | | |
Collapse
|
4
|
Mackay CDA, Jadli AS, Fedak PWM, Patel VB. Adventitial Fibroblasts in Aortic Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease. Diagnostics (Basel) 2022; 12:diagnostics12040871. [PMID: 35453919 PMCID: PMC9025866 DOI: 10.3390/diagnostics12040871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
Aortic aneurysm (AA) is a degenerative vascular disease that involves aortic dilatation, and, if untreated, it can lead to rupture. Despite its significant impact on the healthcare system, its multifactorial nature and elusive pathophysiology contribute to limited therapeutic interventions that prevent the progression of AA. Thus, further research into the mechanisms underlying AA is paramount. Adventitial fibroblasts are one of the key constituents of the aortic wall, and they play an essential role in maintaining vessel structure and function. However, adventitial fibroblasts remain understudied when compared with endothelial cells and smooth muscle cells. Adventitial fibroblasts facilitate the production of extracellular matrix (ECM), providing structural integrity. However, during biomechanical stress and/or injury, adventitial fibroblasts can be activated into myofibroblasts, which move to the site of injury and secrete collagen and cytokines, thereby enhancing the inflammatory response. The overactivation or persistence of myofibroblasts has been shown to initiate pathological vascular remodeling. Therefore, understanding the underlying mechanisms involved in the activation of fibroblasts and in regulating myofibroblast activation may provide a potential therapeutic target to prevent or delay the progression of AA. This review discusses mechanistic insights into myofibroblast activation and associated vascular remodeling, thus illustrating the contribution of fibroblasts to the pathogenesis of AA.
Collapse
Affiliation(s)
- Cameron D. A. Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Paul W. M. Fedak
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Correspondence: or ; Tel.: +1-(403)-220-3446
| |
Collapse
|
5
|
Sawada H, Lu HS, Cassis LA, Daugherty A. Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arterioscler Thromb Vasc Biol 2022; 42:277-288. [PMID: 35045728 PMCID: PMC8866209 DOI: 10.1161/atvbaha.121.317058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AngII (angiotensin II) infusion in mice has been used to provide mechanistic insight into human abdominal aortic aneurysms for over 2 decades. This is a technically facile animal model that recapitulates multiple facets of the human disease. Although numerous publications have reported abdominal aortic aneurysms with AngII infusion in mice, there remain many fundamental unanswered questions such as uniformity of describing the pathological characteristics and which cell type is stimulated by AngII to promote abdominal aortic aneurysms. Extrapolation of the findings to provide insight into the human disease has been hindered by the preponderance of studies designed to determine the effects on initiation of abdominal aortic aneurysms, rather than a more clinically relevant scenario of determining efficacy on the established disease. The purpose of this review is to enhance understanding of AngII-induced abdominal aortic pathologies in mice, thereby providing greater insight into the human disease.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
6
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
7
|
Spartalis M, Tzatzaki E, Iliopoulos DC, Spartalis E, Patelis N, Athanasiou A, Paschou SA, Voudris V, Siasos G. Captopril versus atenolol to prevent expansion rate of thoracic aortic aneurysms: rationale and design. Future Cardiol 2021; 17:189-195. [PMID: 32842783 DOI: 10.2217/fca-2020-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 01/16/2023] Open
Abstract
Thoracic aortic aneurysms are correlated with significant mortality and morbidity. No therapy, however, is effective at limiting aneurysm expansion and preventing rupture. Angiotensin-converting enzyme inhibitors can reduce the wall shear stress and inflammation, both of which play vital roles in the expansion of the aneurysm. A total of 636 patients will be randomized into one of three parallel arms, receiving captopril, atenolol or placebo. The primary end point will be the rate of change in the absolute diameter of the aortic root and ascending aorta on MRI of the aorta after 36 months. The trial will investigate the efficacy of angiotensin-converting enzyme inhibitors versus beta-blocker therapy in reducing the growth rate of thoracic aortic aneurysms and rupture. Trial registration number: NCT04224675.
Collapse
Affiliation(s)
- Michael Spartalis
- Division of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Eleni Tzatzaki
- Division of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery & Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Eleftherios Spartalis
- Laboratory of Experimental Surgery & Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Nikolaos Patelis
- Laboratory of Experimental Surgery & Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Antonios Athanasiou
- Laboratory of Experimental Surgery & Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Stavroula A Paschou
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Vassilis Voudris
- Division of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
8
|
van Dorst DCH, de Wagenaar NP, van der Pluijm I, Roos-Hesselink JW, Essers J, Danser AHJ. Transforming Growth Factor-β and the Renin-Angiotensin System in Syndromic Thoracic Aortic Aneurysms: Implications for Treatment. Cardiovasc Drugs Ther 2020; 35:1233-1252. [PMID: 33283255 PMCID: PMC8578102 DOI: 10.1007/s10557-020-07116-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Thoracic aortic aneurysms (TAAs) are permanent pathological dilatations of the thoracic aorta, which can lead to life-threatening complications, such as aortic dissection and rupture. TAAs frequently occur in a syndromic form in individuals with an underlying genetic predisposition, such as Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). Increasing evidence supports an important role for transforming growth factor-β (TGF-β) and the renin-angiotensin system (RAS) in TAA pathology. Eventually, most patients with syndromic TAAs require surgical intervention, as the ability of present medical treatment to attenuate aneurysm growth is limited. Therefore, more effective medical treatment options are urgently needed. Numerous clinical trials investigated the therapeutic potential of angiotensin receptor blockers (ARBs) and β-blockers in patients suffering from syndromic TAAs. This review highlights the contribution of TGF-β signaling, RAS, and impaired mechanosensing abilities of aortic VSMCs in TAA formation. Furthermore, it critically discusses the most recent clinical evidence regarding the possible therapeutic benefit of ARBs and β-blockers in syndromic TAA patients and provides future research perspectives and therapeutic implications.
Collapse
Affiliation(s)
- Daan C H van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nathalie P de Wagenaar
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands. .,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Okuyama M, Uchida HA, Hada Y, Kakio Y, Otaka N, Umebayashi R, Tanabe K, Fujii Y, Kasahara S, Subramanian V, Daugherty A, Sato Y, Wada J. Exogenous Vasohibin-2 Exacerbates Angiotensin II-Induced Ascending Aortic Dilation in Mice. Circ Rep 2019; 1:155-161. [PMID: 33693132 PMCID: PMC7890291 DOI: 10.1253/circrep.cr-19-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background:
Chronic angiotensin II (AngII) infusion promotes ascending aortic dilation in C57BL/6J mice. Meanwhile, vasohibin-2 (VASH2) is an angiogenesis promoter in neovascularization under various pathologic conditions. The aim of this study was to investigate whether exogenous VASH2 influences chronic AngII-induced ascending aortic dilation. Methods and Results:
Eight–ten-week-old male C57BL/6J mice were injected with adenovirus (Ad) expressing either VASH2 or LacZ. One week after the injection, mice were infused with either AngII or saline s.c. for 3 weeks. Mice were divided into 4 groups: AngII+VASH2, AngII+LacZ, saline+VASH2, and saline+LacZ. Overexpression of VASH2 significantly increased AngII-induced intimal areas as well as the external diameter of the ascending aorta. In addition, VASH2 overexpression promoted ascending aortic medial elastin fragmentation in AngII-infused mice, which was associated with increased matrix metalloproteinase activity and medial smooth muscle cell (SMC) apoptosis. On western blot analysis, accumulation of apoptotic signaling proteins, p21 and p53 was increased in the AngII+VASH2 group. Furthermore, transfection of human aortic SMC with Ad VASH2 increased p21 and p53 protein abundance upon AngII stimulation. Positive TUNEL staining was also detected in the same group of the human aortic SMC. Conclusions:
Exogenous VASH2 exacerbates AngII-induced ascending aortic dilation in vivo, which is associated with increased medial apoptosis and elastin fragmentation.
Collapse
Affiliation(s)
- Michihiro Okuyama
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan.,Saha Cardiovascular Research Center, College of Medicine, University of Kentucky Lexington, KY USA
| | - Haruhito A Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan.,Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Yoshiko Hada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Yuki Kakio
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Nozomu Otaka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Ryoko Umebayashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Yasuhiro Fujii
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky Lexington, KY USA.,Department of Physiology, College of Medicine, University of Kentucky Lexington, KY USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky Lexington, KY USA.,Department of Physiology, College of Medicine, University of Kentucky Lexington, KY USA
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University Sendai Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
10
|
Zhou Z, Peters AM, Wang S, Janda A, Chen J, Zhou P, Arthur E, Kwartler CS, Milewicz DM. Reversal of Aortic Enlargement Induced by Increased Biomechanical Forces Requires AT1R Inhibition in Conjunction With AT2R Activation. Arterioscler Thromb Vasc Biol 2019; 39:459-466. [PMID: 30602301 PMCID: PMC6400319 DOI: 10.1161/atvbaha.118.312158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Objective- Pharmacological inhibition of the AT1R (angiotensin II type 1 receptor) with losartan can attenuate ascending aortic remodeling induced by transverse aortic constriction (TAC). In this study, we investigated the role of the AT2R (angiotensin II type 2 receptor) and MasR (Mas receptor) in TAC-induced ascending aortic dilation and remodeling. Approach and Results- Wild-type C57BL/6J mice were subjected to sham or TAC surgeries in the presence and absence of various drugs. Aortic diameters were assessed by echocardiography, central blood pressure was measured in the ascending aorta 2 weeks post-operation, and histology and gene expression analyses completed. An angiotensin-converting enzyme inhibitor, captopril, decreased systolic blood pressure to the same level as losartan but did not attenuate aortic dilation, adventitial inflammation, medial collagen deposition, elastin breakage, or Mmp9 (matrix metalloproteinase-9) expression when compared with TAC mice. In contrast, co-administration of captopril with an AT2R agonist, compound 21, attenuated aortic dilation, medial collagen content, elastin breaks, and Mmp9 expression, whereas co-administration of captopril with a MasR agonist (AVE0991) did not reverse aortic dilation and led to aberrant aortic remodeling. An AT2R antagonist, PD123319, reversed the protective effects of losartan in TAC mice. Treatment with compound 21 alone showed no effect on TAC-induced aortic enlargement, blood pressure, elastin breakage, or Mmp9 expression. Conclusions- Our data indicate that when AT1R signaling is blocked, AT2R activation is a key modulator to prevent aortic dilation that occurs with TAC. These data suggest that angiotensin-converting enzyme inhibitor may not be as effective as losartan for slowing aneurysm growth because losartan requires intact AT2R signaling to prevent aortic enlargement.
Collapse
Affiliation(s)
- Zhen Zhou
- From the Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston (Z.Z., A.M.P., S.W., A.J., J.C., P.Z., E.A., C.S.K., D.M.M.)
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China (Z.Z.)
| | - Andrew M Peters
- From the Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston (Z.Z., A.M.P., S.W., A.J., J.C., P.Z., E.A., C.S.K., D.M.M.)
| | - Shanzhi Wang
- From the Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston (Z.Z., A.M.P., S.W., A.J., J.C., P.Z., E.A., C.S.K., D.M.M.)
| | - Alexandra Janda
- From the Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston (Z.Z., A.M.P., S.W., A.J., J.C., P.Z., E.A., C.S.K., D.M.M.)
| | - Jiyuan Chen
- From the Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston (Z.Z., A.M.P., S.W., A.J., J.C., P.Z., E.A., C.S.K., D.M.M.)
| | - Ping Zhou
- From the Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston (Z.Z., A.M.P., S.W., A.J., J.C., P.Z., E.A., C.S.K., D.M.M.)
| | - Erin Arthur
- From the Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston (Z.Z., A.M.P., S.W., A.J., J.C., P.Z., E.A., C.S.K., D.M.M.)
| | - Callie S Kwartler
- From the Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston (Z.Z., A.M.P., S.W., A.J., J.C., P.Z., E.A., C.S.K., D.M.M.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston (Z.Z., A.M.P., S.W., A.J., J.C., P.Z., E.A., C.S.K., D.M.M.)
| |
Collapse
|
11
|
Alamandine attenuates arterial remodelling induced by transverse aortic constriction in mice. Clin Sci (Lond) 2019; 133:629-643. [PMID: 30737255 DOI: 10.1042/cs20180547] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/27/2022]
Abstract
Aims: The renin-angiotensin system (RAS) plays an important role in the pathophysiology of vascular diseases, especially as a mediator of inflammation and tissue remodelling. Alamandine (Ala1-angiotensin-(1-7)) is a new biologically active peptide from the RAS, interacting with Mas-related G-protein-coupled receptor member D. Although a growing number of studies reveal the cardioprotective effects of alamandine, there is a paucity of data on its participation in vascular remodelling associated events. In the present study, we investigated the effects of alamandine on ascending aorta remodelling after transverse aortic constriction (TAC) in mice. Methods and results: C57BL/6J male mice were divided into the following groups: Sham (sham-operated), TAC (operated) and TAC+ALA (operated and treated with alamandine-HPβCD (2-Hydroxypropyl-β-cyclodextrin), 30 μg/kg/day, by gavage). Oral administration of alamandine for 14 days attenuated arterial remodelling by decreasing ascending aorta media layer thickness and the cells density in the adventitia induced by TAC. Alamandine administration attenuated ascending aorta fibrosis induced by TAC, through a reduction in the following parameters; total collagen deposition, expression collagen III and transforming growth factor-β (TGF-β) transcripts, matrix metalloproteinases (MMPs) activity and vascular expression of MMP-2. Importantly, alamandine decreased vascular expression of proinflammatory genes as CCL2, tumour necrosis factor α (TNF-α) and interleukin-1β (IL-1β), and was able to increase expression of MRC1 and FIZZ1, pro-resolution markers, after TAC surgery. Conclusion: Alamandine treatment attenuates vascular remodelling after TAC, at least in part, through anti-fibrotic and anti-inflammatory effects. Hence, this work opens new avenues for the use of this heptapeptide also as a therapeutic target for vascular disease.
Collapse
|
12
|
van der Pluijm I, Burger J, van Heijningen PM, IJpma A, van Vliet N, Milanese C, Schoonderwoerd K, Sluiter W, Ringuette LJ, Dekkers DHW, Que I, Kaijzel EL, te Riet L, MacFarlane EG, Das D, van der Linden R, Vermeij M, Demmers JA, Mastroberardino PG, Davis EC, Yanagisawa H, Dietz HC, Kanaar R, Essers J. Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation. Cardiovasc Res 2018; 114:1776-1793. [PMID: 29931197 PMCID: PMC6198735 DOI: 10.1093/cvr/cvy150] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/26/2017] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Aim Thoracic aortic aneurysms are a life-threatening condition often diagnosed too late. To discover novel robust biomarkers, we aimed to better understand the molecular mechanisms underlying aneurysm formation. Methods and results In Fibulin-4R/R mice, the extracellular matrix protein Fibulin-4 is 4-fold reduced, resulting in progressive ascending aneurysm formation and early death around 3 months of age. We performed proteomics and genomics studies on Fibulin-4R/R mouse aortas. Intriguingly, we observed alterations in mitochondrial protein composition in Fibulin-4R/R aortas. Consistently, functional studies in Fibulin-4R/R vascular smooth muscle cells (VSMCs) revealed lower oxygen consumption rates, but increased acidification rates. Yet, mitochondria in Fibulin-4R/R VSMCs showed no aberrant cytoplasmic localization. We found similar reduced mitochondrial respiration in Tgfbr-1M318R/+ VSMCs, a mouse model for Loeys-Dietz syndrome (LDS). Interestingly, also human fibroblasts from Marfan (FBN1) and LDS (TGFBR2 and SMAD3) patients showed lower oxygen consumption. While individual mitochondrial Complexes I-V activities were unaltered in Fibulin-4R/R heart and muscle, these tissues showed similar decreased oxygen consumption. Furthermore, aortas of aneurysmal Fibulin-4R/R mice displayed increased reactive oxygen species (ROS) levels. Consistent with these findings, gene expression analyses revealed dysregulation of metabolic pathways. Accordingly, blood ketone levels of Fibulin-4R/R mice were reduced and liver fatty acids were decreased, while liver glycogen was increased, indicating dysregulated metabolism at the organismal level. As predicted by gene expression analysis, the activity of PGC1α, a key regulator between mitochondrial function and organismal metabolism, was downregulated in Fibulin-4R/R VSMCs. Increased TGFβ reduced PGC1α levels, indicating involvement of TGFβ signalling in PGC1α regulation. Activation of PGC1α restored the decreased oxygen consumption in Fibulin-4R/R VSMCs and improved their reduced growth potential, emphasizing the importance of this key regulator. Conclusion Our data indicate altered mitochondrial function and metabolic dysregulation, leading to increased ROS levels and altered energy production, as a novel mechanism, which may contribute to thoracic aortic aneurysm formation.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Cell Respiration
- Cells, Cultured
- Disease Models, Animal
- Energy Metabolism
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Humans
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Reactive Oxygen Species/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Joyce Burger
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Paula M van Heijningen
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Arne IJpma
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Chiara Milanese
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Kees Schoonderwoerd
- Department of Clinical Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Willem Sluiter
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Lea-Jeanne Ringuette
- Department of Anatomy and Cell Biology, McGill University, Rue University, Montréal, QC H3A 0C7, Canada
| | - Dirk H W Dekkers
- Proteomics Center, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Ivo Que
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Erik L Kaijzel
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Luuk te Riet
- Department of Vascular Surgery, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Pharmacology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Elena G MacFarlane
- Department of Surgery, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, USA
| | - Devashish Das
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | | | - Marcel Vermeij
- Department of Pathology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Jeroen A Demmers
- Proteomics Center, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Rue University, Montréal, QC H3A 0C7, Canada
| | - Hiromi Yanagisawa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Harry C Dietz
- Department of Surgery, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, USA
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, USA
- Division of Pediatric Cardiology, Department of Pediatrics, and Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, USA
| | - Roland Kanaar
- Department of Radiation Oncology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdan, The Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdan, The Netherlands
| |
Collapse
|
13
|
Thoracic aortic aneurysm: unlocking the “silent killer” secrets. Gen Thorac Cardiovasc Surg 2017; 67:1-11. [DOI: 10.1007/s11748-017-0874-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
14
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
15
|
AT1-receptor blockade, but not renin inhibition, reduces aneurysm growth and cardiac failure in fibulin-4 mice. J Hypertens 2016; 34:654-65. [PMID: 26828783 DOI: 10.1097/hjh.0000000000000845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Increasing evidence supports a role for the angiotensin II-AT1-receptor axis in aneurysm development. Here, we studied whether counteracting this axis via stimulation of AT2 receptors is beneficial. Such stimulation occurs naturally during AT1-receptor blockade with losartan, but not during renin inhibition with aliskiren. METHODS AND RESULTS Aneurysmal homozygous fibulin-4 mice, displaying a four-fold reduced fibulin-4 expression, were treated with placebo, losartan, aliskiren, or the β-blocker propranolol from day 35 to 100. Their phenotype includes cystic media degeneration, aortic regurgitation, left ventricular dilation, reduced ejection fraction, and fractional shortening. Although losartan and aliskiren reduced hemodynamic stress and increased renin similarly, only losartan increased survival. Propranolol had no effect. No drug rescued elastic fiber fragmentation in established aneurysms, although losartan did reduce aneurysm size. Losartan also increased ejection fraction, decreased LV diameter, and reduced cardiac pSmad2 signaling. None of these effects were seen with aliskiren or propranolol. Longitudinal micro-CT measurements, a novel method in which each mouse serves as its own control, revealed that losartan reduced LV growth more than aneurysm growth, presumably because the heart profits both from the local (cardiac) effects of losartan and its effects on aortic root remodeling. CONCLUSION Losartan, but not aliskiren or propranolol, improved survival in fibulin-4 mice. This most likely relates to its capacity to improve structure and function of both aorta and heart. The absence of this effect during aliskiren treatment, despite a similar degree of blood pressure reduction and renin-angiotensin system blockade, suggests that it might be because of AT2-receptor stimulation.
Collapse
|
16
|
Sheppard MB, Daugherty A, Lu H. Insights into ascending aortic aneurysm pathogenesis using in vivo and ex vivo imaging systems in angiotensin II-infused mice. J Thorac Dis 2016; 8:E822-4. [PMID: 27618768 DOI: 10.21037/jtd.2016.07.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mary B Sheppard
- Department of Family Medicine and Surgery, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Alan Daugherty
- Department of Family Medicine and Surgery, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Hong Lu
- Department of Family Medicine and Surgery, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Angiotensin II Induces an Increase in Matrix Metalloproteinase 2 Expression in Aortic Smooth Muscle Cells of Ascending Thoracic Aortic Aneurysms Through JNK, ERK1/2, and p38 MAPK Activation. J Cardiovasc Pharmacol 2016; 66:285-93. [PMID: 25955575 DOI: 10.1097/fjc.0000000000000276] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we hypothesized that angiotensin II (Ang II) induces matrix metalloproteinase 2 (MMP-2) upregulation in aneurysmal smooth muscle cells (ASMCs) derived from ascending thoracic aortic aneurysms (ATAAs). We compared MMP-2 protein levels in ascending aortic specimens using Western blot and plasma concentrations by enzyme-linked immunosorbent assay between ATAA (n = 40) and coronary heart disease patients (n = 40). Additionally, the protein level of angiotensinogen (AGT) in the ascending aorta and the plasma concentration of Ang II were detected by Western blot and radioimmunoassay, respectively, in ATAA and coronary heart disease patients. In ATAA patients, Ang II and MMP-2 plasma levels were significantly increased (P < 0.05). Additionally, AGT and MMP-2 protein levels in the aorta of ATAA patients were higher (P < 0.01). Enhanced AGT suggested that the amount of Ang II in aneurysmal aorta specimens may be also increased, which was confirmed by immunofluorescent staining for Ang II. Moreover, we investigated the effect of Ang II on MMP-2 upregulation by ASMCs and determined the Ang II receptors and intracellular signaling pathways that are involved. Our results showed that treatment with Ang II significantly increased the expression of MMP-2 through the Ang II type 1 receptor (AT1R) and activated the 3 major mitogen-activated protein kinases (MAPKs), JNK, ERK1/2, and p38 MAPK. In conclusion, these results indicate that Ang II can induce MMP-2 expression elevation through AT1R and MAPK pathways in ASMCs and suggest that there is therapeutic potential for angiotensin receptor blocker drugs and MAPK inhibitors in the prevention and treatment of ATAAs.
Collapse
|
18
|
Quigley HA, Pitha IF, Welsbie DS, Nguyen C, Steinhart MR, Nguyen TD, Pease ME, Oglesby EN, Berlinicke CA, Mitchell KL, Kim J, Jefferys JJ, Kimball EC. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS One 2015; 10:e0141137. [PMID: 26505191 PMCID: PMC4624713 DOI: 10.1371/journal.pone.0141137] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
Purpose To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. Methods We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Results Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. Conclusions The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes in the sclera expressed at the optic nerve head.
Collapse
Affiliation(s)
- Harry A. Quigley
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Ian F. Pitha
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Derek S. Welsbie
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cathy Nguyen
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Matthew R. Steinhart
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mary Ellen Pease
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ericka N. Oglesby
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cynthia A. Berlinicke
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Katherine L. Mitchell
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jessica Kim
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joan J. Jefferys
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth C. Kimball
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Balistreri CR. Genetic contribution in sporadic thoracic aortic aneurysm? Emerging evidence of genetic variants related to TLR-4-mediated signaling pathway as risk determinants. Vascul Pharmacol 2015; 74:1-10. [PMID: 26409318 DOI: 10.1016/j.vph.2015.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/26/2015] [Accepted: 09/23/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, Palermo 90134, Italy.
| |
Collapse
|
20
|
Wang C, Chang Q, Qian X, Tian C, Sun X. Angiotensin II induces an increase in MMP-2 expression in idiopathic ascending aortic aneurysm via AT1 receptor and JNK pathway. Acta Biochim Biophys Sin (Shanghai) 2015; 47:539-47. [PMID: 26071572 DOI: 10.1093/abbs/gmv047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/16/2015] [Indexed: 01/16/2023] Open
Abstract
The cellular and molecular mechanisms responsible for human idiopathic ascending aortic aneurysm (IAAA) remain unknown. Matrix metalloproteinase-2 (MMP-2) is a key enzyme for the degradation of extracellular matrix in aneurysmal walls. The aim of this study was to elucidate the role of the angiotensin II (Ang II) pathway in MMP-2 induction in IAAA aortic walls. Quantitative polymerase chain reaction and western blot analysis were used to compare the MMP-2 mRNA and protein levels in ascending aortic specimens with those in IAAA patients (n = 10) and heart transplant donors (n = 5) without any aortopathy. It was found that MMP-2 expression was significantly increased, which was associated with elastic lamellae disruption in IAAA walls. Additionally, the expression levels of angiotensinogen (AGT) and Ang II in the ascending aortic tissues from individuals with and without IAAAs were detected by western blot analysis and radioimmunoassay, respectively. The results demonstrated that the expressions of AGT and Ang II protein were significantly increased in the ascending aortic tissues of IAAA patients. Furthermore, whether Ang II induces MMP-2 expression was investigated using human IAAA walls ex vivo culture. It was found that exogenous Ang II increased the MMP-2 expression in a dose-dependent manner, which was completely inhibited by the Ang II type 1 receptor (AT1R) inhibitor candesartan and was mediated by c-Jun N-terminal kinase (JNK) activation. Taken together, these results indicate that Ang II can induce an increase of MMP-2 expression via AT1R and JNK in ex vivo cultured IAAA aortic walls, and suggest that angiotensin receptor blocker (ARB) drugs and JNK inhibitors have the potential in the prevention or treatment of IAAAs.
Collapse
Affiliation(s)
- Chunmao Wang
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qian Chang
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiangyang Qian
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chuan Tian
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiaogang Sun
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
21
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Baykan AO, Yüksel Kalkan G, Gür M, Uçar H, Acele A, Şeker T, Şen Ö, Kaypakli O, Harbalioğlu H, Çayli M. Coronary flow velocity reserve in patients with ascending aorta aneurysm. Echocardiography 2015; 32:975-982. [PMID: 25287024 DOI: 10.1111/echo.12782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Ascending aorta aneurysms (AAA) are one of the leading causes of morbidity and mortality. Impairment in coronary flow may contribute to cardiovascular consequences in AAA patients. Coronary flow velocity reserve (CFVR) has been considered an important diagnostic index of the functional capacity of coronary arteries noninvasively. The aim of this study was to evaluate, by noninvasive CVFR, whether patients with AAA demonstrate significant coronary microvascular dysfunction in the absence of coronary artery disease (CAD). METHODS We prospectively included 44 patients with thoracic AAA in the absence of concomitant CAD (30 men, 14 women; mean age 57.5 ± 8.4 years). A total of 36 patients without aortic dilatation (mean age 55.2 ± 9.9 years) were selected as the control group. Coronary flow velocities in the distal left anterior descending (LAD) artery were measured using transthoracic echocardiography. CFVR was calculated as the hyperemic to resting coronary diastolic peak velocities ratio. RESULTS Compared with controls, patients with AAA had higher baseline LAD peak diastolic coronary flow velocities (28.3 ± 5.8 vs. 25.2 ± 4.5 cm/sec, P = 0.01), lower hyperemic LAD flow velocities (54.0 ± 10.3 vs. 57.2 ± 12.7 cm/sec, P = 0.220), and consequently lower CFVR (1.9 ± 0.3 vs. 2.3 ± 0.5, P < 0.001). Multivariate linear regression analysis showed that CFVR was independently associated only with aortic systolic diameter (AoSD) (β = -0.679, P = <0.001). CONCLUSIONS Our study demonstrates that noninvasive CFVR is significantly reduced in patients with AAA and AoSD is the most important determinant of impaired CFVR.
Collapse
Affiliation(s)
- Ahmet Oytun Baykan
- Department of Cardiology, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Gülhan Yüksel Kalkan
- Department of Cardiology, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Mustafa Gür
- Department of Cardiology, Kafkas University School of Medicine, Kars, Turkey
| | - Hakan Uçar
- Department of Cardiology, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Armağan Acele
- Department of Cardiology, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Taner Şeker
- Department of Cardiology, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Ömer Şen
- Department of Cardiology, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Onur Kaypakli
- Department of Cardiology, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Hazar Harbalioğlu
- Department of Cardiology, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Murat Çayli
- Department of Cardiology, Dicle University School of Medicine, Diyarbakir, Turkey
| |
Collapse
|
23
|
Rabkin SW. Accentuating and Opposing Factors Leading to Development of Thoracic Aortic Aneurysms Not Due to Genetic or Inherited Conditions. Front Cardiovasc Med 2015; 2:21. [PMID: 26664893 PMCID: PMC4671360 DOI: 10.3389/fcvm.2015.00021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/15/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding and unraveling the pathophysiology of thoracic aortic aneurysm (TAA), a vascular disease with a potentially high-mortality rate, is one of the next frontiers in vascular biology. The processes leading to the formation of TAA, of unknown cause, so-called degenerative TAA, are complex. This review advances the concept of promoters and inhibitors of the development of degenerative TAA. Promoters of TAA development include age, blood pressure elevation, increased pulse pressure, neurohumeral factors increasing blood pressure, inflammation specifically IFN-γ, IL-1 β, IL-6, TNF-α, and S100 A12; the coagulation system specifically plasmin, platelets, and thrombin as well as matrix metalloproteinases (MMPs). SMAD-2 signaling and specific microRNAs modulate TAA development. The major inhibitors or factors opposing TAA development are the constituents of the aortic wall (elastic lamellae, collagen, fibulins, fibronectin, proteoglycans, and vascular smooth muscle cells), which maintain normal aortic dimensions in the face of aortic wall stress, specific tissue MMP inhibitors, plasminogen activator inhibitor-1, protease nexin-1, and Syndecans. Increases in promoters and reductions in inhibitors expand the thoracic aorta leading to TAA formation.
Collapse
Affiliation(s)
- Simon W Rabkin
- Division of Cardiology, Department of Medicine, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
24
|
van Thiel BS, van der Pluijm I, te Riet L, Essers J, Danser AHJ. The renin-angiotensin system and its involvement in vascular disease. Eur J Pharmacol 2015; 763:3-14. [PMID: 25987425 DOI: 10.1016/j.ejphar.2015.03.090] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 10/24/2022]
Abstract
The renin-angiotensin system (RAS) plays a critical role in the pathogenesis of many types of cardiovascular diseases including cardiomyopathy, valvular heart disease, aneurysms, stroke, coronary artery disease and vascular injury. Besides the classical regulatory effects on blood pressure and sodium homoeostasis, the RAS is involved in the regulation of contractility and remodelling of the vessel wall. Numerous studies have shown beneficial effect of inhibition of this system in the pathogenesis of cardiovascular diseases. However, dysregulation and overexpression of the RAS, through different molecular mechanisms, also induces, the initiation of vascular damage. The key effector peptide of the RAS, angiotensin II (Ang II) promotes cell proliferation, apoptosis, fibrosis, oxidative stress and inflammation, processes known to contribute to remodelling of the vasculature. In this review, we focus on the components that are under the influence of the RAS and contribute to the development and progression of vascular disease; extracellular matrix defects, atherosclerosis and ageing. Furthermore, the beneficial therapeutic effects of inhibition of the RAS on the vasculature are discussed, as well as the need for additive effects on top of RAS inhibition.
Collapse
Affiliation(s)
- Bibi S van Thiel
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Luuk te Riet
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Wang C, Qian X, Sun X, Chang Q. Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2. Exp Biol Med (Maywood) 2015; 240:1564-71. [PMID: 25767191 DOI: 10.1177/1535370215576312] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/27/2015] [Indexed: 11/16/2022] Open
Abstract
Increased levels of angiotensin II (Ang II) and activated matrix metalloproteinase 2 (MMP-2) produced by human aortic smooth muscle cells (human ASMCs) have recently been implicated in the pathogenesis of thoracic aortic aneurysm (TAA). Additionally, angiotensin II type 1 receptor (AT1R)-mediated extracellular signal-regulated kinase (ERK)1/2 activation contributes to TAA development in Marfan Syndrome. However, there is scant data regarding the relationship between Ang II and MMP-2 expression in human ASMCs. Therefore, we investigated the effect of Ang II on MMP-2 expression in human ASMCs and used Western blotting to identify the Ang II receptors and intracellular signaling pathways involved. Reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence data demonstrated that Ang II receptors were expressed on human ASMCs. Additionally, Ang II increased the expression of Ang II type 2 receptor (AT2R) but not AT1R at both the transcriptional and translational levels. Furthermore, Western blotting showed that Ang II increased MMP-2 expression in human ASMCs in a dose- and time-dependent manner. This response was completely inhibited by the AT1R inhibitor candesartan but not by the AT2R blocker PD123319. In addition, Ang II-induced upregulation of MMP-2 was mediated by the activation of ERK1/2, whereas p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) had no effect on this process. In conclusion, these results indicate that Ang II can increase the expression of MMP-2 via AT1 receptor and ERK1/2 signaling pathways in human ASMCs and suggest that antagonists of AT1R and ERK1/2 may be useful for treating TAAs.
Collapse
Affiliation(s)
- Chunmao Wang
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China
| | - Xiangyang Qian
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China
| | - Xiaogang Sun
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China
| | - Qian Chang
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China
| |
Collapse
|
26
|
Mallat Z, Daugherty A. AT1 receptor antagonism to reduce aortic expansion in Marfan syndrome: lost in translation or in need of different interpretation? Arterioscler Thromb Vasc Biol 2014; 35:e10-2. [PMID: 25550201 DOI: 10.1161/atvbaha.114.305173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ziad Mallat
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); and Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Alan Daugherty
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); and Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| |
Collapse
|
27
|
Davis FM, Rateri DL, Balakrishnan A, Howatt DA, Strickland DK, Muratoglu SC, Haggerty CM, Fornwalt BK, Cassis LA, Daugherty A. Smooth muscle cell deletion of low-density lipoprotein receptor-related protein 1 augments angiotensin II-induced superior mesenteric arterial and ascending aortic aneurysms. Arterioscler Thromb Vasc Biol 2014; 35:155-62. [PMID: 25395615 DOI: 10.1161/atvbaha.114.304683] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Low-density lipoprotein receptor-related protein 1 (LRP1), a multifunctional protein involved in endocytosis and cell signaling pathways, leads to several vascular pathologies when deleted in vascular smooth muscle cells (SMCs). The purpose of this study was to determine whether LRP1 deletion in SMCs influenced angiotensin II-induced arterial pathologies. APPROACH AND RESULTS LRP1 protein abundance was equivalent in selected arterial regions, but SMC-specific LRP1 depletion had no effect on abdominal and ascending aortic diameters in young mice. To determine the effects of LRP1 deficiency on angiotensin II vascular responses, SMC-specific LRP1 (smLRP1(+/+)) and smLRP1-deficient (smLRP1(-/-)) mice were infused with saline, angiotensin II, or norepinephrine. Several smLRP(-/-) mice died of superior mesenteric arterial (SMA) rupture during angiotensin II infusion. In surviving mice, angiotensin II profoundly augmented SMA dilation in smLRP1(-/-) mice. SMA dilation was blood pressure dependent as demonstrated by a similar response during norepinephrine infusion. SMA dilation was also associated with profound macrophage accumulation, but minimal elastin fragmentation. Angiotensin II infusion led to no significant differences in abdominal aorta diameters between smLRP1(+/+) and smLRP1(-/-) mice. In contrast, ascending aortic dilation was exacerbated markedly in angiotensin II-infused smLRP1(-/-) mice, but norepinephrine had no significant effect on either aortic region. Ascending aortas of smLRP1(-/-) mice infused with angiotensin II had minimal macrophage accumulation but significantly increased elastin fragmentation and mRNA abundance of several LRP1 ligands including MMP-2 (matrix metalloproteinase-2) and uPA (urokinase plasminogen activator). CONCLUSIONS smLRP1 deficiency had no effect on angiotensin II-induced abdominal aortic aneurysm formation. Conversely, angiotensin II infusion in smLRP1(-/-) mice exacerbated SMA and ascending aorta dilation. Dilation in these 2 regions had differential association with blood pressure and divergent pathological characteristics.
Collapse
Affiliation(s)
- Frank M Davis
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Debra L Rateri
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Anju Balakrishnan
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Deborah A Howatt
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Dudley K Strickland
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Selen C Muratoglu
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Christopher M Haggerty
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Brandon K Fornwalt
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Lisa A Cassis
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.).
| |
Collapse
|
28
|
Harris D, Liang Y, Chen C, Li S, Patel O, Qin Z. Bone marrow from blotchy mice is dispensable to regulate blood copper and aortic pathologies but required for inflammatory mediator production in LDLR-deficient mice during chronic angiotensin II infusion. Ann Vasc Surg 2014; 29:328-40. [PMID: 25449986 DOI: 10.1016/j.avsg.2014.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/07/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND The blotchy mouse caused by mutations of ATP7A develops low blood copper and aortic aneurysm and rupture. Although the aortic pathologies are believed primarily due to congenital copper deficiencies in connective tissue, perinatal copper supplementation does not produce significant therapeutic effects, hinting additional mechanisms in the symptom development, such as an independent effect of the ATP7A mutations during adulthood. METHODS We investigated if bone marrow from blotchy mice contributes to these symptoms. For these experiments, bone marrow from blotchy mice (blotchy marrow group) and healthy littermate controls (control marrow group) was used to reconstitute recipient mice (irradiated male low-density lipoprotein receptor -/- mice), which were then infused with angiotensin II (1,000 ng/kg/min) for 4 weeks. RESULTS By using Mann-Whitney U test, our results showed that there was no significant difference in the copper concentrations in plasma and hematopoietic cells between these 2 groups. And plasma level of triglycerides was significantly reduced in blotchy marrow group compared with that in control marrow group (P < 0.05), whereas there were no significant differences in cholesterol and phospholipids between these 2 groups. Furthermore, a bead-based multiplex immunoassay showed that macrophage inflammatory protein (MIP)-1β, monocyte chemotactic protein (MCP)-1, MCP-3, MCP-5, tissue inhibitor of metalloproteinases (TIMP)-1, and vascular endothelial growth factor (VEGF)-A production was significantly reduced in the plasma of blotchy marrow group compared with that in control marrow group (P < 0.05). More important, although angiotensin II infusion increased maximal external aortic diameters in thoracic and abdominal segments, there was no significant difference in the aortic diameters between these 2 groups. Furthermore, aortic ruptures, including transmural breaks of the elastic laminae in the abdominal segment and lethal rupture in the thoracic segment, were observed in blotchy marrow group but not in control marrow group; however, there was no significant difference in the incidence of aortic ruptures between these 2 groups (P = 0.10; Fisher's exact test). CONCLUSIONS Overall, our study indicated that the effect of bone marrow from blotchy mice during adulthood is dispensable in the regulation of blood copper, plasma cholesterol and phospholipids levels, and aortic pathologies, but contributes to a reduction of MIP-1β, MCP-1, MCP-3, MCP-5, TIMP-1, and VEGF-A production and triglycerides concentration in plasma. Our study also hints that bone marrow transplantation cannot serve as an independent treatment option.
Collapse
Affiliation(s)
- Devon Harris
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Yuanyuan Liang
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Cang Chen
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Senlin Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Om Patel
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX.
| |
Collapse
|
29
|
Rateri DL, Davis FM, Balakrishnan A, Howatt DA, Moorleghen JJ, O'Connor WN, Charnigo R, Cassis LA, Daugherty A. Angiotensin II induces region-specific medial disruption during evolution of ascending aortic aneurysms. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2586-95. [PMID: 25038458 DOI: 10.1016/j.ajpath.2014.05.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022]
Abstract
Angiotensin II (Ang II) promotes development of ascending aortic aneurysms (AAs), but progression of this pathology is undefined. We evaluated factors potentially involved in progression, and determined the temporal sequence of tissue changes during development of Ang II-induced ascending AAs. Ang II infusion into C57BL/6J mice promoted rapid expansion of the ascending aorta, with significant increases within 5 days, as determined by both in vivo ultrasonography and ex vivo sequential acquisition of tissues. Rates of expansion were not significantly different in LDL receptor-null mice fed a saturated fat-enriched diet, demonstrating a lack of effect of hypercholesterolemia. Augmenting systolic blood pressure with norepinephrine infusion had no significant effect on ascending aortic expansion. Pathological changes observed within 5 days of Ang II infusion included increased medial thickness and intramural hemorrhage characterized by erythrocyte extravasation in outer lamellar layers of the media. Intramedial hemorrhage was not observed after prolonged Ang II infusion, although partial medial disruption was present. Elastin fragmentation and transmural medial breaks of the ascending aorta were observed with continued Ang II infusion, which were restricted to anterior aspects. CD45(+) cells accumulated in adventitia but were minimal in media. Similar pathology was observed in tissues obtained from patients with ascending AAs. In conclusion, Ang II promotes ascending AAs through region-specific changes that are independent of hypercholesterolemia or systolic blood pressure.
Collapse
Affiliation(s)
- Debra L Rateri
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Frank M Davis
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Jessica J Moorleghen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | | | - Richard Charnigo
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
30
|
Niedowicz DM, Reeves VL, Platt TL, Kohler K, Beckett TL, Powell DK, Lee TL, Sexton TR, Song ES, Brewer LD, Latimer CS, Kraner SD, Larson KL, Ozcan S, Norris CM, Hersh LB, Porter NM, Wilcock DM, Murphy MP. Obesity and diabetes cause cognitive dysfunction in the absence of accelerated β-amyloid deposition in a novel murine model of mixed or vascular dementia. Acta Neuropathol Commun 2014; 2:64. [PMID: 24916066 PMCID: PMC4229778 DOI: 10.1186/2051-5960-2-64] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/18/2023] Open
Abstract
Mid-life obesity and type 2 diabetes mellitus (T2DM) confer a modest, increased risk for Alzheimer's disease (AD), though the underlying mechanisms are unknown. We have created a novel mouse model that recapitulates features of T2DM and AD by crossing morbidly obese and diabetic db/db mice with APPΔNL/ΔNLx PS1P264L/P264L knock-in mice. These mice (db/AD) retain many features of the parental lines (e.g. extreme obesity, diabetes, and parenchymal deposition of β-amyloid (Aβ)). The combination of the two diseases led to additional pathologies-perhaps most striking of which was the presence of severe cerebrovascular pathology, including aneurysms and small strokes. Cortical Aβ deposition was not significantly increased in the diabetic mice, though overall expression of presenilin was elevated. Surprisingly, Aβ was not deposited in the vasculature or removed to the plasma, and there was no stimulation of activity or expression of major Aβ-clearing enzymes (neprilysin, insulin degrading enzyme, or endothelin-converting enzyme). The db/AD mice displayed marked cognitive impairment in the Morris Water Maze, compared to either db/db or APPΔNLx PS1P264L mice. We conclude that the diabetes and/or obesity in these mice leads to a destabilization of the vasculature, leading to strokes and that this, in turn, leads to a profound cognitive impairment and that this is unlikely to be directly dependent on Aβ deposition. This model of mixed or vascular dementia provides an exciting new avenue of research into the mechanisms underlying the obesity-related risk for age-related dementia, and will provide a useful tool for the future development of therapeutics.
Collapse
|
31
|
Affiliation(s)
- Alan Daugherty
- From the Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.); and Department of Surgery and Cancer, Imperial College, London, United Kingdom (J.T.P.)
| | | |
Collapse
|
32
|
Davis F, Rateri DL, Daugherty A. Aortic aneurysms in Loeys-Dietz syndrome - a tale of two pathways? J Clin Invest 2013; 124:79-81. [PMID: 24355917 DOI: 10.1172/jci73906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loeys-Dietz syndrome (LDS) is a connective tissue disorder that is characterized by skeletal abnormalities, craniofacial malformations, and a high predisposition for aortic aneurysm. In this issue of the JCI, Gallo et al. developed transgenic mouse strains harboring missense mutations in the genes encoding type I or II TGF-β receptors. These mice exhibited several LDS-associated phenotypes. Despite being functionally defective, the mutated receptors enhanced TGF-β signaling in vivo, inferred by detection of increased levels of phosphorylated Smad2. Aortic aneurysms in these LDS mice were ablated by treatment with the Ang II type 1 (AT1) receptor antagonist losartan. The results from this study will foster further interest into the potential therapeutic implications of AT1 receptor antagonists.
Collapse
|
33
|
Chun AS, Elefteriades JA, Mukherjee SK. Medical treatment for thoracic aortic aneurysm - much more work to be done. Prog Cardiovasc Dis 2013; 56:103-8. [PMID: 23993243 DOI: 10.1016/j.pcad.2013.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A 45 year old executive presents to your office for risk assessment after learning that his sister required an ascending aortic aneurysm repair. He is a well-informed man, concerned about his personal risk for aortic disease, and undergoes a cardiac screen which reveals a dilated ascending aortic aneurysm, measuring a maximal diameter of 4.4 cm. His aortic valve is tricuspid. He is non-Marfanoid and asymptomatic. He realizes that he does not yet meet guideline criteria for aortic surgery, but he is also cognizant of the fact that he is approaching the cut-off for surgical intervention. He wishes to minimize his future risk of aortic rupture, dissection and aortic expansion and seeks your input. Should 'medical treatment' should be employed at this stage? Is there sufficient basis to initiate any form of pharmacotherapy? Would you start a beta-adrenergic receptor blocker, an angiotensin receptor blocker, a matrix metalloproteinase inhibitor (doxycycline), or a statin to reduce his aortic risk for rupture, dissection or need for surgical repair? Does your clinical decision match evidence from existing data? Our paper will address these issues among other questions relevant to the role of medical therapy for thoracic aortic disease.
Collapse
Affiliation(s)
- Andrew S Chun
- Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
34
|
Abstract
The field of aortopathy, in common with other genomic disorders, is undergoing a revolution. This is largely driven by the implementation of newer forms of genetic sequencing (massively parallel or next-generation sequencing). Advantages conferred by this technology include reduced costs, reduced sequencing time and the ability to simultaneously test multiple genes. This has a significant advantage in the identification of genes disrupted in heritable aortopathies. These advances are enabling scientists and clinicians to identify key molecular pathways; translating fundamental genetic findings into a better understanding of disease mechanisms is ultimately leading to effective treatments. In outlining contemporary knowledge of genetic biomarkers in aortopathy we seek to demonstrate that the era of genomically orientated decision-making is here.
Collapse
Affiliation(s)
- Gillian Rea
- NIHR Biomedical Research Unit in Cardiovascular Disease, Royal Brompton & Harefield NHS Foundation Trust & Imperial College London, BRU Cardiovascular Genetics Office, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Northern Ireland Regional Genetics Service, Level A, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK
| | - Fiona J Stewart
- Northern Ireland Regional Genetics Service, Level A, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK
| |
Collapse
|
35
|
Muttardi K, Haydar A, Phua CK, Chapman N, Jenkins M, Cheshire NJ, Bicknell CD. An underused opportunity to introduce ACE inhibitors and influence prognosis: observational study of patients undergoing aortic surgery. JRSM SHORT REPORTS 2013; 4:2042533313484145. [PMID: 23885293 PMCID: PMC3697859 DOI: 10.1177/2042533313484145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To asses whether Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are underused in patients with aortic disease due to concerns regarding flow limiting (>70%) renal artery stenosis (RAS). DESIGN A prospective analysis of patients admitted for aortic surgery was performed (January-July 2009). Co-morbidity, ACEI/ARB use and renal function were recorded. Computerised tomography (CT) angiograms were reviewed by a single blinded radiologist for the presence and severity of RAS. SETTING St Mary's Hospital, Vascular Unit, Imperial College Healthcare NHS Trust, London, UK. PARTICIPANTS 75 randomly selected patients admitted to our vascular unit including elective and emergency admissions. MAIN OUTCOME MEASURES Indications for ACEI therapy were identified as determined by the National Institute of Health and Clinical Excellence (NICE) guidance. The ratio of the measurement distal to the stenosis and at the area of maximal stenosis on CT angiography were used to calculate the percentage RAS. RESULTS 60 patients were identified (15 patients excluded due to previously modified renal vessels). The median age was 73 [interquartile range 68, 77]. Their underlying aortic disease included 52 (87%) aortic aneurysm, 6 (10%) with aortic dissection, 1 (1.7%) patient with occlusive disease and 1 (1.7%) patient with mycotic disease. Overall, 56/60 (93%) patients had at least one indication for ACEI therapy. 33/60 (55%) of patients were already receiving ACEI. CT angiogram examination demonstrated 17/60 (28%) patients have RAS of some degree, of which only 9/60 (15%) have flow limiting RAS. CONCLUSION A large proportion of aortic patients do not receive ACEI/ARB therapy despite definite indications and a low prevalence of flow-limiting RAS is low. After the exclusion of RAS at angiography, careful introduction of ACEI therapy with appropriate monitoring could be considered for many more patients.
Collapse
Affiliation(s)
- Kayria Muttardi
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
High prevalence of eosinophilic esophagitis in patients with inherited connective tissue disorders. J Allergy Clin Immunol 2013; 132:378-86. [PMID: 23608731 DOI: 10.1016/j.jaci.2013.02.030] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is an emerging chronic inflammatory disease mediated by immune hypersensitization to multiple foods and strongly associated with atopy and esophageal remodeling. OBJECTIVE We provide clinical and molecular evidence indicating a high prevalence of EoE in patients with inherited connective tissue disorders (CTDs). METHODS We examined the rate of EoE among patients with CTDs and subsequently analyzed esophageal mRNA transcript profiles in patients with EoE with or without CTD features. RESULTS We report a cohort of 42 patients with EoE with a CTD-like syndrome, representing 0.8% of patients with CTDs and 1.3% of patients with EoE within our hospital-wide electronic medical record database and our EoE research registry, respectively. An 8-fold risk of EoE in patients with CTDs (relative risk, 8.1; 95% confidence limit, 5.1-12.9; χ(2)1 = 112.0; P < 10(-3)) was present compared with the general population. Esophageal transcript profiling identified a distinct subset of genes, including COL8A2, in patients with EoE and CTDs. CONCLUSION There is a remarkable association of EoE with CTDs and evidence for a differential expression of genes involved in connective tissue repair in this cohort. Thus, we propose stratification of patients with EoE and CTDs into a subset referred to as EoE-CTD.
Collapse
|
37
|
Chen X, Lu H, Rateri DL, Cassis LA, Daugherty A. Conundrum of angiotensin II and TGF-β interactions in aortic aneurysms. Curr Opin Pharmacol 2013; 13:180-5. [PMID: 23395156 DOI: 10.1016/j.coph.2013.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Angiotensin II (AngII) has been invoked as a principal mediator for the development and progression of both thoracic and abdominal aortic aneurysms. While there is consistency in experimental and clinical studies that overactivation of the renin angiotensin system promotes aortic aneurysm development, there are many unknowns regarding the mechanistic basis underlying AngII-induced aneurysms. Interactions of AngII with TGF-β in both thoracic and abdominal aortic aneurysms have been the focus of recent studies. While these studies have demonstrated profound effects of manipulating TGF-β activity on AngII-induced aortic aneurysms, they have also led to more questions regarding the interactions between AngII and this multifunctional cytokine. This review compiled the recent literature to provide insights into understanding the potentially complex interactions between AngII and TGF-β in the development of aortic aneurysms.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, United States
| | | | | | | | | |
Collapse
|
38
|
Medical management of thoracic aortic aneurysm disease. J Thorac Cardiovasc Surg 2013; 145:S2-6. [DOI: 10.1016/j.jtcvs.2012.11.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/05/2012] [Accepted: 11/28/2012] [Indexed: 11/20/2022]
|
39
|
Jing Q, Wang X, Ma Y, Yang M, Huang G, Zhao X, Han Y. Angiotensin-converting enzyme I/D polymorphism and the risk of thoracic aortic dissection in Chinese Han population. Mol Biol Rep 2012; 40:1249-54. [DOI: 10.1007/s11033-012-2167-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 10/08/2012] [Indexed: 12/30/2022]
|
40
|
Involvement of the renin-angiotensin system in abdominal and thoracic aortic aneurysms. Clin Sci (Lond) 2012; 123:531-43. [PMID: 22788237 DOI: 10.1042/cs20120097] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aortic aneurysms are relatively common maladies that may lead to the devastating consequence of aortic rupture. AAAs (abdominal aortic aneurysms) and TAAs (thoracic aortic aneurysms) are two common forms of aneurysmal diseases in humans that appear to have distinct pathologies and mechanisms. Despite this divergence, there are numerous and consistent demonstrations that overactivation of the RAS (renin-angiotensin system) promotes both AAAs and TAAs in animal models. For example, in mice, both AAAs and TAAs are formed during infusion of AngII (angiotensin II), the major bioactive peptide in the RAS. There are many proposed mechanisms by which the RAS initiates and perpetuates aortic aneurysms, including effects of AngII on a diverse array of cell types and mediators. These experimental findings are complemented in humans by genetic association studies and retrospective analyses of clinical data that generally support a role of the RAS in both AAAs and TAAs. Given the lack of a validated pharmacological therapy for any form of aortic aneurysm, there is a pressing need to determine whether the consistent findings on the role of the RAS in animal models are translatable to humans afflicted with these diseases. The present review compiles the recent literature that has shown the RAS as a critical component in the pathogenesis of aortic aneurysms.
Collapse
|
41
|
Verdonk K, Danser AHJ, van Esch JHM. Angiotensin II type 2 receptor agonists: where should they be applied? Expert Opin Investig Drugs 2012; 21:501-13. [PMID: 22348403 DOI: 10.1517/13543784.2012.664131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Angiotensin II, the active endproduct of the renin-angiotensin system (RAS), exerts its effects via angiotensin II type 1 and type 2 (AT(1), AT(2)) receptors. AT(1) receptors mediate all well-known effects of angiotensin II, ranging from vasoconstriction to tissue remodeling. Thus, to treat cardiovascular disease, RAS blockade aims at preventing angiotensin II-AT(1) receptor interaction. Yet RAS blockade is often accompanied by rises in angiotensin II, which may exert beneficial effects via AT(2) receptors. AREAS COVERED This review summarizes our current knowledge on AT(2) receptors, describing their location, function(s), endogenous agonist(s) and intracellular signaling cascades. It discusses the beneficial effects obtained with C21, a recently developed AT(2) receptor agonist. Important questions that are addressed are do these receptors truly antagonize AT(1) receptor-mediated effects? What about their role in the diseased state and their heterodimerization with other receptors? EXPERT OPINION The general view that AT(2) receptors exclusively exert beneficial effects has been challenged, and in pathological models, their function sometimes mimics that of AT(1) receptors, for example, inducing vasoconstriction and cardiac hypertrophy. Yet given its upregulation in various pathological conditions, the AT(2) receptor remains a promising target for treatment, allowing effects beyond blood pressure-lowering, for example, in stroke, aneurysm formation, inflammation and myocardial fibrosis.
Collapse
Affiliation(s)
- Koen Verdonk
- Erasmus Medical Center, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Rotterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Bruemmer D, Daugherty A, Lu H, Rateri DL. Relevance of angiotensin II-induced aortic pathologies in mice to human aortic aneurysms. Ann N Y Acad Sci 2012; 1245:7-10. [PMID: 22211965 DOI: 10.1111/j.1749-6632.2011.06332.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiotensin II infusion in mice promotes abdominal and thoracic aortic aneurysms, which provides a feasible approach to study the mechanisms of these two distinct diseases.
Collapse
Affiliation(s)
- Dennis Bruemmer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
43
|
Impaired vascular contractility and aortic wall degeneration in fibulin-4 deficient mice: effect of angiotensin II type 1 (AT1) receptor blockade. PLoS One 2011; 6:e23411. [PMID: 21858106 PMCID: PMC3153486 DOI: 10.1371/journal.pone.0023411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 07/16/2011] [Indexed: 01/19/2023] Open
Abstract
Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of the renin-angiotensin system to the preventive treatment of aneurysm disease.
Collapse
|