1
|
Dubey SK, Thakur A, Jena MK, Kumar S, Sodhi M, Mukesh M, Kaushik JK, Mohanty AK. Effect of bovine beta-casomorphins on rat pancreatic beta cells (RIN-5F) under glucotoxic stress. Biochem Biophys Res Commun 2024; 739:150578. [PMID: 39178795 DOI: 10.1016/j.bbrc.2024.150578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Beta-casomorphins (BCMs) are the bio-active peptides having opioid properties which are formed by the proteolytic digestion of β-caseins in milk. BCM-7 forms when A1 milk is digested in the small intestine due to a histidine at the 67th position in β-casein, unlike A2 milk, which has proline at this position and produces BCM-9. BCM-7 has further degraded into BCM-5 by the dipeptidyl peptidase-IV (DPP-IV) enzyme in the intestine. The opioid-like activity of BCM-7 is responsible for eliciting signaling pathways which enable a wide range of physiological effects. The aim of our study was to find out the differential role of BCMs (BCM-7, BCM-9 and BCM-5) on pancreatic β-cell proliferation, insulin secretion, and opioid peptide binding receptors from β-cells (RIN-5F cell line) in normal (5.5 mM) and high glucose (27.5 mM) concentrations. Our results showed that BCM-7/9/5 did not affect β-cell viability, proliferation, and insulin secretion at normal glucose level. However, at higher glucose concentration, BCMs significantly protected β-cells from glucotoxicity but did not affect the insulin secretion. Interestingly, in the presence of Mu-opioid peptide receptor antagonist CTOP, BCMs did not protect β-cells from glucotoxicity. The results suggest that BCMs protect β-cells from glucotoxicity via non-opioid mediated pathways because BCMs did not modulate the gene expression of the mu, kappa and delta opioid peptide receptors.
Collapse
Affiliation(s)
- Shivam Kumar Dubey
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Abhishek Thakur
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sudarshan Kumar
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Monika Sodhi
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (ICAR-NBAGR), Karnal, Haryana, 132001, India.
| | - Manishi Mukesh
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (ICAR-NBAGR), Karnal, Haryana, 132001, India.
| | - Jai Kumar Kaushik
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Ashok Kumar Mohanty
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India; ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut, Uttar Pradesh, 250001, India.
| |
Collapse
|
2
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
3
|
Peng Z, Jia Q, Mao J, Yi Q. Effects of Combined Therapy of Olanzapine and Samidorphan on Safety and Metabolic Parameters in Schizophrenia Patients: A Meta-Analysis. Neuropsychiatr Dis Treat 2023; 19:2295-2308. [PMID: 37908559 PMCID: PMC10615109 DOI: 10.2147/ndt.s426481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose This meta-analysis intended to evaluate the safety and metabolic effects of the combination of olanzapine (OLZ) and samidorphan (SAM) in the treatment of schizophrenia (SCZ) patients. Patients and Methods We searched for the English and Chinese databases for randomized controlled trials (RCTs) on the OLZ combined with SAM for SCZ. The English databases included PubMed, Web of Science, EMbase, and Cochrane Library, however, Chinese databases included Chinese Biology Medicine (CBM), VIP, Wanfang, and China National Knowledge Infrastructure (CNKI). All database searches were due by May 31, 2023. Using Review Manager 5.4 software, a meta-analysis was conducted following a literature review and data extraction. Results This study included five RCTs involving 1781 patients. Regarding safety, the meta-analysis revealed that the probability of weight gain was reduced in the OLZ and SAM group than in the OLZ group (RR = 0.83, 95% CI (0.69, 0.99), P < 0.05). Statistically, the incidence of severe adverse safety events, dry mouth, headache, drowsiness, death, and suicidal perception events was insignificant (P > 0.05); in terms of metabolism, compared with the OLZ group, the OLZ plus SAM group reduced total cholesterol (TC) levels (MD = -3.58, 95% CI (-6.81, -0.34), P < 0.05). However, it had no significant effect on metabolic indices, including low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, glucose, and insulin index (P > 0.05). Conclusion In patients with SCZ, treatment with the combination of OLZ and SAM decreased the incidence of weight gain adverse events and TC levels; nevertheless, it did not affect other adverse events or metabolic parameters. These findings provide clinicians with evidence-based guidance and support for drug selection. However, it is crucial to confirm these findings through further high-quality research.
Collapse
Affiliation(s)
- Zhenlei Peng
- The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Qiyu Jia
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Junxiong Mao
- The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Qizhong Yi
- The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
4
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
5
|
Koekkoek LL, van der Gun LL, Serlie MJ, la Fleur SE. The Clash of Two Epidemics: the Relationship Between Opioids and Glucose Metabolism. Curr Diab Rep 2022; 22:301-310. [PMID: 35593927 PMCID: PMC9188528 DOI: 10.1007/s11892-022-01473-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We are currently in the midst of a global opioid epidemic. Opioids affect many physiological processes, but one side effect that is not often taken into consideration is the opioid-induced alteration in blood glucose levels. RECENT FINDINGS This review shows that the vast majority of studies report that opioid stimulation increases blood glucose levels. In addition, plasma levels of the endogenous opioid β-endorphin rise in response to low blood glucose. In contrast, in hyperglycaemic baseline conditions such as in patients with type 2 diabetes mellitus (T2DM), opioid stimulation lowers blood glucose levels. Furthermore, obesity itself alters sensitivity to opioids, changes opioid receptor expression and increases plasma β-endorphin levels. Thus, opioid stimulation can have various side effects on glycaemia that should be taken into consideration upon prescribing opioid-based medication, and more research is needed to unravel the interaction between obesity, glycaemia and opioid use.
Collapse
Affiliation(s)
- Laura L Koekkoek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Luna L van der Gun
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands.
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands.
| |
Collapse
|
6
|
Application of Dual-Enhanced Surface-Enhanced Raman Scattering Probe Technology in the Diagnosis of Tumor Cells in Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113582. [PMID: 35684522 PMCID: PMC9182129 DOI: 10.3390/molecules27113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
With the development of precision medicine, antigen/antibody-targeted therapy has brought great hope to tumor patients; however, the migration of tumor cells, especially a small number of cells flowing into blood or other tissues, remains a clinical challenge. In particular, it is difficult to use functional gold nanomaterials for targeted clinical tumor diagnosis while simultaneously obtaining stable and highly sensitive Raman signals. Therefore, we developed a detection method for functional Au Nanostars (AuNSs) with dual signal enhancement that can specifically track location and obtain high-intensity surface-enhanced Raman scattering (SERS) signals. First, AuNSs with specific optical properties were synthesized and functionalized. The Raman dye 4-mercapto-hydroxybenzoic acid and polyethylene glycol were coupled with the tumor marker, epidermal growth factor receptor, to obtain the targeted SERS probes. In addition, a detection chip was prepared for Raman detection with physical enhancement, exhibiting a 40-times higher signal intensity than that of quartz glass. This study combines physical enhancement and SERS enhancement technologies to achieve dual enhancement, enabling the detection of a highly sensitive and stable Raman signal; this has potential clinical value for antigen/antibody-targeted tumor diagnosis and treatment.
Collapse
|
7
|
Hendijani F, Hosseini FS. Interindividual variability in diabetic patients’ response to opium poppy: an overview of impressive factors. Per Med 2022; 19:155-163. [PMID: 35220727 DOI: 10.2217/pme-2021-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetic patients always seek alternative treatments to lower their blood glucose level efficiently, because antidiabetic drugs produce adverse effects and many patients experience reduced response after a treatment period. Opium poppy ( Papaver somniferum) is frequently consumed by diabetic patients for reduction of blood glucose level. Scientific studies found controversial results in the investigation of the blood glucose-lowering effects of opium poppy. In this regard, we explored the antidiabetic effect of opium poppy more closely. The antidiabetic or antihyperglycemic effect of P. somniferum alkaloids were reviewed. Next, opioid receptors and their role in diabetes were explored. In the final part origins of interindividual variabilities in opioid receptors and metabolizing enzymes’ functions including genetic and epigenetic factors were reviewed.
Collapse
Affiliation(s)
- Fatemeh Hendijani
- Department of Pharmacognosy & Pharmaceutical Biotechnology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Sadat Hosseini
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
8
|
Li YX, Cheng KC, Liu IM, Niu HS. Myricetin Increases Circulating Adropin Level after Activation of Glucagon-like Peptide 1 (GLP-1) Receptor in Type-1 Diabetic Rats. Pharmaceuticals (Basel) 2022; 15:ph15020173. [PMID: 35215286 PMCID: PMC8877079 DOI: 10.3390/ph15020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023] Open
Abstract
Myricetin is a common plant-derived flavonoid, considered an agonist of glucagon-like peptide 1 (GLP-1) receptor. It improves glycemic control and helps reduce body weight in diabetic subjects. The potential mechanisms of action of myricetin in this context might be enhancing the secretion of β-endorphin (BER) to activate peripheral μ-opioid receptors. Moreover, adropin is a nutritionally regulated peptide hormone, which regulates energy metabolism, and plays a role in ameliorating diabetes. Because their mechanisms of insulin sensitivity are closely related, we hypothesized that myricetin may interact with adropin and plasma BER. The present study investigated the glucose-lowering effect of acute and chronic treatments of myricetin in type-1 diabetic rats. Plasma BER and adropin levels were determined by enzyme-linked immunosorbent assay (ELISA). The secretion of BER was measured in rats who received adrenalectomy. The changes in adropin gene (Enho) or mRNA level of GLP-1 receptor were measured using qPCR analysis. The results showed that myricetin dose-dependently increased plasma BER and adropin levels like the reduction of hyperglycemia after bolus injection as acute treatment. In addition, these effects of myricetin were inhibited by the antagonist of GLP-1 receptor. Moreover, in HepG2 cell line, myricetin induced GLP-1 receptor activation, which modulated the expression of adropin. In diabetic rats, the plasma adropin increased by myricetin is mainly through endogenous β-endorphin after activation of GLP-1 receptor via bolus injection as acute treatment. Additionally, chronic treatment with myricetin increased adropin secretion in diabetic rats. In conclusion, our results provide a new finding that activation of opioid μ-receptor in the liver may enhance circulating adropin in animals.
Collapse
Affiliation(s)
- Ying-Xiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970302, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (K.-C.C.); (I.-M.L.)
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (K.-C.C.); (I.-M.L.)
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970302, Taiwan;
- Correspondence:
| |
Collapse
|
9
|
Citrome L, Graham C, Simmons A, Jiang Y, Todtenkopf MS, Silverman B, DiPetrillo L, Cummings H, Sun L, McDonnell D. An Evidence-Based Review of OLZ/SAM for Treatment of Adults with Schizophrenia or Bipolar I Disorder. Neuropsychiatr Dis Treat 2021; 17:2885-2904. [PMID: 34526769 PMCID: PMC8437420 DOI: 10.2147/ndt.s313840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Olanzapine effectively treats schizophrenia and bipolar I disorder (BD-I); however, its use is limited by the risk of significant weight gain and metabolic effects. OLZ/SAM, a combination of olanzapine and samidorphan, was recently approved in the United States for the treatment of adults with schizophrenia or BD-I. OLZ/SAM provides the efficacy of olanzapine while mitigating olanzapine-associated weight gain through opioid-receptor blockade. Here, we summarize OLZ/SAM clinical data characterizing pharmacokinetics, antipsychotic efficacy, weight mitigation efficacy, safety, and long-term treatment effects. In an acute exacerbation of schizophrenia, OLZ/SAM and olanzapine provided similar symptom improvements versus placebo at week 4. In stable outpatients with schizophrenia, OLZ/SAM treatment resulted in significantly less weight gain, reducing the risk for clinically significant weight gain and waist circumference increases of ≥5 cm by half, compared with olanzapine at week 24. Based on open-label extension studies, OLZ/SAM is safe and well tolerated for up to 3.5 years of treatment, while maintaining schizophrenia symptom control and stabilizing weight. The olanzapine component of OLZ/SAM was bioequivalent to branded olanzapine (Zyprexa); adjunctive OLZ/SAM had no clinically significant effects on lithium or valproate pharmacokinetics. Additionally, OLZ/SAM had no clinically relevant effect on electrocardiogram parameters in a dedicated thorough QT study. Overall, safety and tolerability findings from clinical studies with OLZ/SAM indicate a similar safety profile to that of olanzapine, with the exception of less weight gain. As OLZ/SAM contains the opioid antagonist samidorphan, it is contraindicated in patients using opioids and in those undergoing acute opioid withdrawal. Clinical trial results from more than 1600 subjects support the use of OLZ/SAM as a new treatment option for patients with schizophrenia or BD-I.
Collapse
Affiliation(s)
- Leslie Citrome
- Department of Psychiatry and Behavioral Sciences, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | - Lei Sun
- Alkermes, Inc., Waltham, MA, USA
| | | |
Collapse
|
10
|
Yoshida K, Sato H, Tanaka T, Kasai K. Autopsy case of fatal hypoglycemia following ingestion of a therapeutic dose of tramadol. Forensic Sci Med Pathol 2021; 17:465-468. [PMID: 34106422 DOI: 10.1007/s12024-021-00386-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 11/30/2022]
Abstract
An 86-year-old female was found unconscious the day after taking a prescribed tablet containing a combination of tramadol and acetaminophen. At admission to the hospital, marked hypoglycemia (blood glucose: 4 mg/dL) was confirmed, but serum insulin and C-peptide were within the normal range, which suggested that neither endogenous hyperinsulinemia nor exogenous insulin administration was responsible for the hypoglycemia. Despite resuscitation efforts, the woman subsequently died. At autopsy, there was renal disorder, but any pathological abnormalities that could have caused hypoglycemia were not observed. Blood tramadol and acetaminophen were in the therapeutic range. We speculate that the cause of fatal hypoglycemia was tramadol intake at the therapeutic dose. Older age and renal insufficiency are factors that could have potentially caused the fatal hypoglycemia in this case despite tramadol having been taken at a therapeutic dose. This is the first case report of fatal hypoglycemia following ingestion of a therapeutic dose of tramadol.
Collapse
Affiliation(s)
- Kosho Yoshida
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Iseigaoka 1-1, Yahatanishi, Kitakyushu, Japan.
| | - Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Iseigaoka 1-1, Yahatanishi, Kitakyushu, Japan
| | - Toshiko Tanaka
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Iseigaoka 1-1, Yahatanishi, Kitakyushu, Japan
| | - Kentaro Kasai
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Iseigaoka 1-1, Yahatanishi, Kitakyushu, Japan
| |
Collapse
|
11
|
Moustafa SR. The immune-opioid axis in prediabetes: predicting prediabetes with insulin resistance by plasma interleukin-10 and endomorphin-2 to kappa-opioid receptors ratio. Diabetol Metab Syndr 2021; 13:61. [PMID: 34099024 PMCID: PMC8185911 DOI: 10.1186/s13098-021-00677-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prediabetes is characterized by a hemoglobin A1c of 5.7-6.4% and fasting blood glucose of 100-125 mg/dl. A high percentage of prediabetes subjects develop type 2 diabetes mellitus in the next years. The effects of opioid peptides and their receptors, in addition to immunological cytokines, on prediabetes are not well understood. Therefore, molecular, physiological, and clinical studies are required to link the opioid system, immune system, and insulin resistance (IR) in prediabetes. We hypothesize that opioid peptides (endomorphin-2 (EM2), and β-endorphin (βEP)), and their receptors (µ-opioid receptors (MOR) and κ-opioid receptors (KOR)), in addition to the inflammatory cytokines (IL-6) and anti-inflammatory cytokine (IL-10), affect IR parameters in patients with prediabetes. METHODS Sixty prediabetes patients with IR (prediabetes+IR) and sixty prediabetes patients without IR (prediabetes-IR), in addition to 58 controls, have participated in the study. IL-6, IL-10, EM2, βEP, MOR, and KOR were measured by the ELISA technique. RESULTS In general, most prediabetes subjects have dyslipidemia. The IL-6, IL-10, β-endorphin, MOR, and endomorphin-2 were higher in the prediabetes subgroups than the control group. The immune system was activated in the prediabetes in an IR-dependent manner. Prediabetes+IR can be predicted by the increased levels of IL-10, βEP, and EM2 and by the combination of IL-10 and EM2/KOR with good sensitivity and specificity. CONCLUSION Opioid peptides and their receptors were upregulated in patients with prediabetes, depending on the significance of IR and the immune cytokines. The intercorrelation between the immune system, EOS, and insulin in prediabetes was confirmed.
Collapse
Affiliation(s)
- Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Roya Towers C21, Erbil, Iraq.
| |
Collapse
|
12
|
Elman I, Howard M, Borodovsky JT, Mysels D, Rott D, Borsook D, Albanese M. Metabolic and Addiction Indices in Patients on Opioid Agonist Medication-Assisted Treatment: A Comparison of Buprenorphine and Methadone. Sci Rep 2020; 10:5617. [PMID: 32221389 PMCID: PMC7101411 DOI: 10.1038/s41598-020-62556-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
Metabolic hormones stabilize brain reward and motivational circuits, whereas excessive opioid consumption counteracts this effect and may impair metabolic function. Here we addressed the role of metabolic processes in the course of the agonist medication-assisted treatment for opioid use disorder (OUD) with buprenorphine or methadone. Plasma lipids, hemoglobin A1C, body composition, the oral glucose tolerance test (oGTT) and the Sweet Taste Test (STT) were measured in buprenorphine- (n = 26) or methadone (n = 32)- treated subjects with OUD. On the whole, the subjects in both groups were overweight or obese and insulin resistant; they displayed similar oGTT and STT performance. As compared to methadone-treated subjects, those on buprenorphine had significantly lower rates of metabolic syndrome (MetS) along with better values of the high-density lipoproteins (HDL). Subjects with- vs. without MetS tended to have greater addiction severity. Correlative analyses revealed that more buprenorphine exposure duration was associated with better HDL and opioid craving values. In contrast, more methadone exposure duration was associated with worse triglycerides-, HDL-, blood pressure-, fasting glucose- and hemoglobin A1C values. Buprenorphine appears to produce beneficial HDL- and craving effects and, contrary to methadone, its role in the metabolic derangements is not obvious. Our data call for further research aimed at understanding the distinctive features of buprenorphine metabolic effects vis-à-vis those of methadone and their potential role in these drugs' unique therapeutic profiles.
Collapse
Affiliation(s)
- Igor Elman
- Center for Pain and the Brain, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Margaret Howard
- Rhode Island Department of Behavioral Healthcare, Cranston, RI, USA
| | - Jacob T Borodovsky
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David Mysels
- Department of Psychiatry, Alpert Medical School of Brown University, Providence, RI, USA
| | - David Rott
- Department of Cardiology, Sheba Medical Center, Sackler School of Medicine, Tel Aviv, Israel
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children's Hospital, Massachusetts General Hospital and McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Albanese
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
13
|
Salarinasab S, Salimi L, Alidadiani N, Shokrollahi E, Arzhanga P, Karbasforush S, Marofi F, Nasirzadeh M, Rahbarghazi R, Nourazarian A, Nikanfar M. Interaction of opioid with insulin/IGFs signaling in Alzheimer's disease. J Mol Neurosci 2020; 70:819-834. [PMID: 32026387 DOI: 10.1007/s12031-020-01478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is associated with biochemical and histopathological changes characterized by molecular abnormalities. Due to the lack of effective treatments for Alzheimer's disease, many attempts have been made to find potential therapies to reduce or even return neuronal loss after disease initiation. Alzheimer's disease is also touted as type III diabetes, showing an association with insulin signaling. The large distribution of the insulin receptor on the cell surface and its regulatory role in the central nervous system suggests that the pathogenesis of Alzheimer's disease could be ascribed to insulin signaling. The interference of opioids, such as morphine with insulin signaling pathways, is thought to occur via direct crosstalk between the signaling pathways of the insulin receptor and the mu-opioid receptor. In this review article, we discuss the possible crosstalk between the mu-opioid receptor and insulin signaling pathways. The association of these two signaling pathways with Alzheimer's disease is also debated.
Collapse
Affiliation(s)
- Sadegh Salarinasab
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadiani
- Department of Cardiac Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Elhameh Shokrollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saedeh Karbasforush
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nasirzadeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, 51666-14756, Iran.
| | - Alireza Nourazarian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht St, Tabriz, 51666-16471, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Zafar MI. Suitability of APINCH high-risk medications use in diabetes mellitus. Eur J Pharmacol 2020; 867:172845. [DOI: 10.1016/j.ejphar.2019.172845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022]
|
15
|
Li J, Bai L, Wei F, Zhao J, Wang D, Xiao Y, Yan W, Wei J. Therapeutic Mechanisms of Herbal Medicines Against Insulin Resistance: A Review. Front Pharmacol 2019; 10:661. [PMID: 31258478 PMCID: PMC6587894 DOI: 10.3389/fphar.2019.00661] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a condition in which insulin sensitivity is reduced and the insulin signaling pathway is impaired. Although often expressed as an increase in insulin concentration, the disease is characterized by a decrease in insulin action. This increased workload of the pancreas and the consequent decompensation are not only the main mechanisms for the development of type 2 diabetes (T2D), but also exacerbate the damage of metabolic diseases, including obesity, nonalcoholic fatty liver disease, polycystic ovary syndrome, metabolic syndrome, and others. Many clinical trials have suggested the potential role of herbs in the treatment of insulin resistance, although most of the clinical trials included in this review have certain flaws and bias risks in their methodological design, including the generation of randomization, the concealment of allocation, blinding, and inadequate reporting of sample size estimates. These studies involve not only the single-flavored herbs, but also herbal formulas, extracts, and active ingredients. Numerous of in vitro and in vivo studies have pointed out that the role of herbal medicine in improving insulin resistance is related to interventions in various aspects of the insulin signaling pathway. The targets involved in these studies include insulin receptor substrate, phosphatidylinositol 3-kinase, glucose transporter, AMP-activated protein kinase, glycogen synthase kinase 3, mitogen-activated protein kinases, c-Jun-N-terminal kinase, nuclear factor-kappaB, protein tyrosine phosphatase 1B, nuclear factor-E2-related factor 2, and peroxisome proliferator-activated receptors. Improved insulin sensitivity upon treatment with herbal medicine provides considerable prospects for treating insulin resistance. This article reviews studies of the target mechanisms of herbal treatments for insulin resistance.
Collapse
Affiliation(s)
- Jun Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Litao Bai
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danwei Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Xiao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weitian Yan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Pan J, Yu J, Sun L, Xie C, Chang L, Wu J, Hawes S, Saez-Atienzar S, Zheng W, Kung J, Ding J, Le W, Chen S, Cai H. ALDH1A1 regulates postsynaptic μ-opioid receptor expression in dorsal striatal projection neurons and mitigates dyskinesia through transsynaptic retinoic acid signaling. Sci Rep 2019; 9:3602. [PMID: 30837649 PMCID: PMC6401150 DOI: 10.1038/s41598-019-40326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/25/2019] [Indexed: 12/02/2022] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1), a retinoic acid (RA) synthase, is selectively expressed by the nigrostriatal dopaminergic (nDA) neurons that preferentially degenerate in Parkinson’s disease (PD). ALDH1A1–positive axons mainly project to the dorsal striatum. However, whether ALDH1A1 and its products regulate the activity of postsynaptic striatal neurons is unclear. Here we show that μ–type opioid receptor (MOR1) levels were severely decreased in the dorsal striatum of postnatal and adult Aldh1a1 knockout mice, whereas dietary supplement of RA restores its expression. Furthermore, RA treatment also upregulates striatal MOR1 levels and signaling and alleviates L-DOPA–induced dyskinetic movements in pituitary homeobox 3 (Pitx3)–deficient mice that lack of ALDH1A1–expressing nDA neurons. Therefore, our findings demonstrate that ALDH1A1–synthesized RA is required for postsynaptic MOR1 expression in the postnatal and adult dorsal striatum, supporting potential therapeutic benefits of RA supplementation in moderating L-DOPA–induced dyskinesia.
Collapse
Affiliation(s)
- Jing Pan
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jia Yu
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing, 100095, P. R. China
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengsong Xie
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa Chang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Junbing Wu
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Hawes
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Saez-Atienzar
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wang Zheng
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Children's National Medical Center, Washington, D.C., USA
| | - Justin Kung
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Jinhui Ding
- Bioinformatics Core, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011, P. R. China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Hsu CC, Lin MH, Cheng JT, Wu MC. Antihyperglycaemic action of diosmin, a citrus flavonoid, is induced through endogenous β-endorphin in type I-like diabetic rats. Clin Exp Pharmacol Physiol 2017; 44:549-555. [PMID: 28218955 DOI: 10.1111/1440-1681.12739] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 12/13/2022]
Abstract
Diosmin is one of the flavonoids contained in citrus and has been demonstrated to improve glucose metabolism in diabetic disorders. However, the mechanism(s) of diosmin in glucose regulation remain obscure. Therefore, we investigated the potential mechanism(s) for the antihyperglycaemic action of diosmin in streptozotocin-induced diabetic rats (STZ-diabetic rats). Diosmin lowered hyperglycaemia in a dose-dependent manner in STZ-diabetic rats. This action was inhibited by naloxone at a dose sufficient to block opioid receptors. Additionally, we determined the changes in plasma β-endorphin-like immunoreactivity (BER) using enzyme-linked immunosorbent assay (ELISA). Diosmin also increased BER dose-dependently in the same manner. Repeated treatment of STZ-diabetic rats with diosmin for 1 week resulted in an increase in the expression of the glucose transporter subtype 4 (GLUT 4) in the soleus muscle and a reduction in the expression of phosphoenolpyruvate carboxykinase (PEPCK) in the liver. These effects were also inhibited by naloxone at a dose sufficient to block opioid receptors. Bilateral adrenalectomy in STZ-diabetic rats eliminated the actions of diosmin, including both the reduction in hyperglycemia and the elevation of plasma BER. In conclusion, our results suggest that diosmin may act on the adrenal glands to enhance the secretion of β-endorphin, which can stimulate the opioid receptors to attenuate hepatic gluconeogenesis and increase glucose uptake in soleus muscle, resulting in reduced hyperglycemia in STZ-diabetic rats.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mang Hung Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Chief Secretary 's Office, Chiayi Hospital, Ministry of Health and Welfare, Chiayi, Taiwan
| | - Juei Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan, Taiwan.,Institute of Medical Science, College of Health Science, Chang Jung Christian University, Guei-Ren, Tainan, Taiwan
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
18
|
Golightly LK, Simendinger BA, Barber GR, Stolpman NM, Kick SD, McDermott MT. Hypoglycemic effects of tramadol analgesia in hospitalized patients: a case-control study. J Diabetes Metab Disord 2017; 16:30. [PMID: 28748177 PMCID: PMC5525300 DOI: 10.1186/s40200-017-0311-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND In outpatient populations, hypoglycemia has been associated with tramadol. We sought to determine the magnitude of risk for hypoglycemia associated with tramadol use in hospitalized patients. METHODS During a 2-year period of observation, adult inpatients who received ≥1 dose of tramadol were identified and their medical records were reviewed. Patients were included if they had blood or plasma glucose (BG) concentrations measured on at least two occasions within five days after the initial administration of tramadol. A contemporary comparator group of hospitalized oxycodone recipients was similarly reviewed. RESULTS Tramadol was administered to 2927 patients who met inclusion criteria. Among these, hypoglycemia (BG ≤70 mg/dL) was documented in 22 (46.8%) of 47 patients with type 1 diabetes, 113 (16.8%) of 673 patients with type 2 diabetes, and 103 (4.7%) of 2207 patients who did not have a diabetes mellitus diagnosis. In those without a diabetes diagnosis, the causality association between hypoglycemia and tramadol use was probable in 77 patients (3.5%). By comparison, hypoglycemia was documented in 8 (1.1%) of 716 matched oxycodone recipients without diabetes (p = 0.002). As compared with tramadol recipients who did not develop low BG concentrations, those who experienced tramadol-related hypoglycemia were relatively young (mean age 52.0 versus 59.8 years; p = 0.027) and predominantly female (74.0% versus 59.8%; p = 0.012). CONCLUSIONS Tramadol use was causally associated with hypoglycemia in hospitalized patients. The proportion of patients without diabetes who developed hypoglycemia was higher among those who received tramadol than among those who received oxycodone. TRIAL REGISTRATION Colorado Multiple Institutional Review Board Protocol № 15-2215. Registered/approved 8 December 2015.
Collapse
Affiliation(s)
- Larry K. Golightly
- University of Colorado Hospital, Aurora, CO USA
- Division of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
- Health Sciences Library/Center for Drug Information, Education, and Evaluation, University of Colorado Hospital, Anschutz Medical Campus Box A-003, 12950 East Montview Boulevard, Aurora, CO 80045-2515 USA
| | - Bonita A. Simendinger
- University of Colorado Hospital, Aurora, CO USA
- Division of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
- Health Sciences Library/Center for Drug Information, Education, and Evaluation, University of Colorado Hospital, Anschutz Medical Campus Box A-003, 12950 East Montview Boulevard, Aurora, CO 80045-2515 USA
| | - Gerard R. Barber
- University of Colorado Hospital, Aurora, CO USA
- Division of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
| | - Nancy M. Stolpman
- University of Colorado Hospital, Aurora, CO USA
- Division of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
| | - Steven D. Kick
- University of Colorado Hospital, Aurora, CO USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO USA
| | - Michael T. McDermott
- University of Colorado Hospital, Aurora, CO USA
- Division of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
- Division of Endocrinology Diabetes and Metabolism, University of Colorado School of Medicine, Aurora, CO USA
| |
Collapse
|
19
|
The BTBR Mouse, Sociability, and Reduced Glutamate Release: A Role for Endogenous Dynorphin? Neurochem Res 2017; 42:2435-2436. [PMID: 28303500 DOI: 10.1007/s11064-017-2231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
|
20
|
Ji H, Wang Y, Liu G, Chang L, Chen Z, Zhou D, Xu X, Cui W, Hong Q, Jiang L, Li J, Zhou X, Li Y, Guo Z, Zha Q, Niu Y, Weng Q, Duan S, Wang Q. Elevated OPRD1 promoter methylation in Alzheimer's disease patients. PLoS One 2017; 12:e0172335. [PMID: 28253273 PMCID: PMC5333823 DOI: 10.1371/journal.pone.0172335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/03/2017] [Indexed: 01/21/2023] Open
Abstract
Aberrant DNA methylation has been observed in the patients with Alzheimer’s disease (AD), a common neurodegenerative disorder in the elderly. OPRD1 encodes the delta opioid receptor, a member of the opioid family of G-protein-coupled receptors. In the current study, we compare the DNA methylation levels of OPRD1 promoter CpG sites (CpG1, CpG2, and CpG3) between 51 AD cases and 63 controls using the bisulfite pyrosequencing technology. Our results show that significantly higher CpG3 methylation is found in AD cases than controls. Significant associations are found between several biochemical parameters (including HDL-C and ALP) and CpG3 methylation. Subsequent luciferase reporter gene assay shows that DNA fragment containing the three OPRD1 promoter CpGs is able to regulate gene expression. In summary, our results suggest that OPRD1 promoter hypermethylation is associated with the risk of AD.
Collapse
Affiliation(s)
- Huihui Ji
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yunliang Wang
- Department of Neurology, the 148 Central Hospital of PLA, Zibo, Shandong, China
| | - Guili Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Lan Chang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | | | | | - Xuting Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qingxiao Hong
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Liting Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jinfeng Li
- Department of Neurology, the 148 Central Hospital of PLA, Zibo, Shandong, China
| | - Xiaohui Zhou
- Department of Internal Medicine for Cadres, the First Affiliated Hospital of Xinjiang Medical University, Urumchi, China
| | - Ying Li
- Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Zhiping Guo
- School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Qin Zha
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (QW); (SD); (QZ)
| | - Yanfang Niu
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qiuyan Weng
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (QW); (SD); (QZ)
| | - Qinwen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (QW); (SD); (QZ)
| |
Collapse
|
21
|
Pan J, Cai H. Opioid system in L-DOPA-induced dyskinesia. Transl Neurodegener 2017; 6:1. [PMID: 28105331 PMCID: PMC5240307 DOI: 10.1186/s40035-017-0071-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
L-3, 4-Dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) is a major clinical complication in the treatment of Parkinson’s disease (PD). This debilitating side effect likely reflects aberrant compensatory responses for a combination of dopaminergic neuron denervation and repeated L-DOPA administration. Abnormal endogenous opioid signal transduction pathways in basal ganglia have been well documented in LID. Opioid receptors have been targeted to alleviate the dyskinesia. However, the exact role of this altered opioid activity is remains under active investigation. In the present review, we discuss the current understanding of opioid signal transduction in the basal ganglia and how the malfunction of opioid signaling contributes to the pathophysiology of LID. Further study of the opioid system in LID may lead to new therapeutic targets and improved treatment of PD patients.
Collapse
Affiliation(s)
- Jing Pan
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892-3707 USA
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892-3707 USA
| |
Collapse
|
22
|
Affiliation(s)
- Eva Tudurí
- Instituto de Investigaciones Sanitarias (IDIS), CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Instituto de Investigaciones Sanitarias (IDIS), CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| |
Collapse
|
23
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
24
|
Signals for increase of μ-opioid receptor expression in muscle by hyperglycemia. Neurosci Lett 2014; 582:109-14. [DOI: 10.1016/j.neulet.2014.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
|