1
|
Li X, Liu X, Chen X, Wang Y, Wu S, Li F, Su Y, Chen L, Xiao J, Ma J, Qin P. Leukocyte mitochondrial DNA copy number and cardiovascular disease: A systematic review and meta-analysis of cohort studies. iScience 2024; 27:110522. [PMID: 39220264 PMCID: PMC11363494 DOI: 10.1016/j.isci.2024.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Increasing cohort studies have examined the link between mitochondrial DNA copy number (mtDNA-CN) and cardiovascular disease (CVD), with inconsistent findings. We searched PubMed, EMBASE, and Web of Science up to July 11, 2023 and used a random-effects model to calculate summary hazard ratios (HRs) and 95% confidence intervals (CIs). This systematic review and meta-analysis included 8 articles encompassing 29 studies with 646,398 participants. Individuals with the lowest mtDNA-CN had a summary HR of 1.27 (95% CI 1.02-1.59) for CVD, 1.18 (95% CI 0.92-1.50) for coronary heart disease (CHD), 1.10 (95% CI 0.89-1.37) for stroke, and 1.30 (95% CI 1.07-1.56) for heart failure (HF). Decreased mtDNA-CN is linked to an increased risk of CVD and HF but not CHD and stroke. These findings suggest mtDNA-CN from leukocytes may be a potential early biomarker for CVD. However, more prospective studies with long follow-up are needed.
Collapse
Affiliation(s)
- Xinying Li
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Xiaoning Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Chen
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Yanqi Wang
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Shuning Wu
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Fengjuan Li
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Yuhao Su
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Lifang Chen
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518000, Guangdong, China
| | - Jian Xiao
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518000, Guangdong, China
| | - Jianping Ma
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Pei Qin
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Martinez AN, Tortelote GG, Pascale CL, Ekanem UOI, Leite APDO, McCormack IG, Dumont AS. Dimethyl Fumarate Mediates Sustained Vascular Smooth Muscle Cell Remodeling in a Mouse Model of Cerebral Aneurysm. Antioxidants (Basel) 2024; 13:773. [PMID: 39061841 PMCID: PMC11274241 DOI: 10.3390/antiox13070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Cerebral aneurysms (CA) are a type of vascular disease that causes significant morbidity and mortality with rupture. Dysfunction of the vascular smooth muscle cells (VSMCs) from circle of Willis (CoW) vessels mediates CA formation, as they are the major cell type of the arterial wall and play a role in maintaining vessel integrity. Dimethyl fumarate (DMF), a first-line oral treatment for relapsing-remitting multiple sclerosis, has been shown to inhibit VSMC proliferation and reduce CA formation in a mouse model. Potential unwanted side effects of DMF on VSMC function have not been investigated yet. The present study characterizes the impact of DMF on VSMC using single-cell RNA-sequencing (scRNA-seq) in CoW vessels following CA induction and further explores its role in mitochondrial function using in vitro VSMC cultures. Two weeks of DMF treatment following CA induction impaired the transcription of the glutathione redox system and downregulated mitochondrial respiration genes in VSMCs. In vitro, DMF treatment increased lactate formation and enhanced the mitochondrial production of reactive oxygen species (ROS). These effects rendered VSMCs vulnerable to oxidative stress and led to mitochondrial dysfunction and enhancement of apoptosis. Taken together, our data support the concept that the DMF-mediated antiproliferative effect on VSMCs is linked to disturbed antioxidative functions resulting in altered mitochondrial metabolism. This negative impact of DMF treatment on VSMCs may be linked to preexisting alterations of cerebrovascular function due to renal hypertension. Therefore, before severe adverse effects emerge, it would be clinically relevant to develop indices or biomarkers linked to this disturbed antioxidative function to monitor patients undergoing DMF treatment.
Collapse
Affiliation(s)
- Alejandra N. Martinez
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Giovane G. Tortelote
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Crissey L. Pascale
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Uduak-Obong I. Ekanem
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Ana Paula de O. Leite
- Department of Pharmacology, The Tulane Center for Sex-Based Biology and Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Isabella G. McCormack
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Aaron S. Dumont
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| |
Collapse
|
3
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
4
|
Wu Q, Hu Z, Wang Z, Che Y, Zhang M, Zheng S, Xing K, Zhong X, Chen Y, Shi F, Yuan S. Glut10 restrains neointima formation by promoting SMCs mtDNA demethylation and improving mitochondrial function. Transl Res 2023; 260:1-16. [PMID: 37220836 DOI: 10.1016/j.trsl.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Neointimal hyperplasia is a major clinical complication of coronary artery bypass graft and percutaneous coronary intervention. Smooth muscle cells (SMCs) play a vital roles in neointimal hyperplasia development and undergo complex phenotype switching. Previous studies have linked glucose transporter member 10(Glut10) to the phenotypic transformation of SMCs. In this research, we reported that Glut10 helps maintain the contractile phenotype of SMCs. The Glut10-TET2/3 signaling axis can arrest neointimal hyperplasia progression by improving mitochondrial function via promotion of mtDNA demethylation in SMCs. Glut10 is significantly downregulated in both human and mouse restenotic arteries. Global Glut10 deletion or SMC-specific Glut10 ablation in the carotid artery of mice accelerated neointimal hyperplasia, while Glut10 overexpression in the carotid artery triggered the opposite effects. All of these changes were accompanied by a significant increase in vascular SMCs migration and proliferation. Mechanistically, Glut10 is expressed primarily in the mitochondria after platelet-derived growth factor-BB (PDGF-BB) treatment. Glut10 ablation induced a reduction in ascorbic acid (VitC) concentrations in mitochondria and mitochondrial DNA (mtDNA) hypermethylation by decreasing the activity and expression of the Ten-eleven translocation (TET) protein family. We also observed that Glut10 deficiency aggravated mitochondrial dysfunction and decreased the adenosinetriphosphate (ATP) content and the oxygen consumption rate, which also caused SMCs to switch their phenotype from contractile to synthetic phenotype. Furthermore, mitochondria-specific TET family inhibition partially reversed these effects. These results suggested that Glut10 helps maintain the contractile phenotype of SMCs. The Glut10-TET2/3 signaling axis can arrest neointimal hyperplasia progression by improving mitochondrial function via the promotion of mtDNA demethylation in SMCs.
Collapse
Affiliation(s)
- Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sihao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Xing
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Xia Y, Zhang X, An P, Luo J, Luo Y. Mitochondrial Homeostasis in VSMCs as a Central Hub in Vascular Remodeling. Int J Mol Sci 2023; 24:3483. [PMID: 36834896 PMCID: PMC9961025 DOI: 10.3390/ijms24043483] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Vascular remodeling is a common pathological hallmark of many cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant cell type lining the tunica media and play a crucial role in maintaining aortic morphology, integrity, contraction and elasticity. Their abnormal proliferation, migration, apoptosis and other activities are tightly associated with a spectrum of structural and functional alterations in blood vessels. Emerging evidence suggests that mitochondria, the energy center of VSMCs, participate in vascular remodeling through multiple mechanisms. For example, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis prevents VSMCs from proliferation and senescence. The imbalance between mitochondrial fusion and fission controls the abnormal proliferation, migration and phenotypic transformation of VSMCs. Guanosine triphosphate-hydrolyzing enzymes, including mitofusin 1 (MFN1), mitofusin 2 (MFN2), optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (DRP1), are crucial for mitochondrial fusion and fission. In addition, abnormal mitophagy accelerates the senescence and apoptosis of VSMCs. PINK/Parkin and NIX/BINP3 pathways alleviate vascular remodeling by awakening mitophagy in VSMCs. Mitochondrial DNA (mtDNA) damage destroys the respiratory chain of VSMCs, resulting in excessive ROS production and decreased ATP levels, which are related to the proliferation, migration and apoptosis of VSMCs. Thus, maintaining mitochondrial homeostasis in VSMCs is a possible way to relieve pathologic vascular remodeling. This review aims to provide an overview of the role of mitochondria homeostasis in VSMCs during vascular remodeling and potential mitochondria-targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Gomes MT, Bai Y, Potje SR, Zhang L, Lockett AD, Machado RF. Signal Transduction during Metabolic and Inflammatory Reprogramming in Pulmonary Vascular Remodeling. Int J Mol Sci 2022; 23:2410. [PMID: 35269553 PMCID: PMC8910500 DOI: 10.3390/ijms23052410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by (mal)adaptive remodeling of the pulmonary vasculature, which is associated with inflammation, fibrosis, thrombosis, and neovascularization. Vascular remodeling in PAH is associated with cellular metabolic and inflammatory reprogramming that induce profound endothelial and smooth muscle cell phenotypic changes. Multiple signaling pathways and regulatory loops act on metabolic and inflammatory mediators which influence cellular behavior and trigger pulmonary vascular remodeling in vivo. This review discusses the role of bioenergetic and inflammatory impairments in PAH development.
Collapse
Affiliation(s)
- Marta T. Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Simone R. Potje
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Biological Science, Minas Gerais State University (UEMG), Passos 37900-106, Brazil
| | - Lu Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Angelia D. Lockett
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| |
Collapse
|
7
|
Yang C, Zhang Y, Yang B. MIAT, a potent CVD-promoting lncRNA. Cell Mol Life Sci 2021; 79:43. [PMID: 34921634 PMCID: PMC11072732 DOI: 10.1007/s00018-021-04046-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
The initial identification of long non-coding RNA myocardial infarction associated transcript (MIAT) as a genetic risk factor of myocardial infarction has made this lncRNA (designated as lncR-MIAT here) a focus of intensive studies worldwide. Emerging evidence supports that lncR-MIAT is susceptible in its expression to multiple deleterious factors like angiotensin II, isoproterenol, hypoxia, and infection and is anomaly overexpressed in serum, plasma, blood cells and myocardial tissues under a variety of cardiovascular conditions including myocardial infarction, cardiac hypertrophy, diabetic cardiomyopathy, dilated cardiomyopathy, sepsis cardiomyopathy, atrial fibrillation and microvascular dysfunction. Experimental results consistently demonstrated that upregulation of lncR-MIAT plays active roles in the pathological processes of the cardiovascular system and knockdown of this lncRNA effectively ameliorates the adverse conditions. The available data revealed that lncR-MIAT acts through multiple mechanisms such as competitive endogenous RNA, natural antisense RNA and RNA/protein interactions. Moreover, the functional domains of lncR-MIAT accounting for certain specific cellular functions of the full-length transcript have been identified and characterized. These insights will not only tremendously advance our understanding of lncRNA biology and pathophysiology, but also offer good opportunities for more innovative and precise design of agents that have the potential to be developed into new drugs for better therapy of cardiovascular diseases (CVDs) in the future. Herein, we provide an overview of lncR-MIAT, focusing on its roles in cardiovascular diseases, underline the unique cellular/molecular mechanisms for its actions, and speculate the perspectives about the translational studies on the potential diagnostic and therapeutic applications of lncR-MIAT.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, People's Republic of China
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang, People's Republic of China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, People's Republic of China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, People's Republic of China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
8
|
Correia Y, Scheel J, Gupta S, Wang K. Placental mitochondrial function as a driver of angiogenesis and placental dysfunction. Biol Chem 2021; 402:887-909. [PMID: 34218539 DOI: 10.1515/hsz-2021-0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
The placenta is a highly vascularized and complex foetal organ that performs various tasks, crucial to a healthy pregnancy. Its dysfunction leads to complications such as stillbirth, preeclampsia, and intrauterine growth restriction. The specific cause of placental dysfunction remains unknown. Recently, the role of mitochondrial function and mitochondrial adaptations in the context of angiogenesis and placental dysfunction is getting more attention. The required energy for placental remodelling, nutrient transport, hormone synthesis, and the reactive oxygen species leads to oxidative stress, stemming from mitochondria. Mitochondria adapt to environmental changes and have been shown to adjust their oxygen and nutrient use to best support placental angiogenesis and foetal development. Angiogenesis is the process by which blood vessels form and is essential for the delivery of nutrients to the body. This process is regulated by different factors, pro-angiogenic factors and anti-angiogenic factors, such as sFlt-1. Increased circulating sFlt-1 levels have been linked to different preeclamptic phenotypes. One of many effects of increased sFlt-1 levels, is the dysregulation of mitochondrial function. This review covers mitochondrial adaptations during placentation, the importance of the anti-angiogenic factor sFlt-1in placental dysfunction and its role in the dysregulation of mitochondrial function.
Collapse
Affiliation(s)
- Yolanda Correia
- Aston Medical School, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Julia Scheel
- Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, Germany
| | - Keqing Wang
- Aston Medical School, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
9
|
Shemiakova T, Ivanova E, Wu WK, Kirichenko TV, Starodubova AV, Orekhov AN. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Front Cardiovasc Med 2021; 8:660473. [PMID: 34017868 PMCID: PMC8129197 DOI: 10.3389/fcvm.2021.660473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a complex pathology that involves both metabolic dysfunction and chronic inflammatory process. During the last decade, a considerable progress was achieved in describing the pathophysiological features of atherosclerosis and developing approaches that target the abnormal lipid metabolism and chronic inflammation. However, early events in the arterial wall that initiate the disease development still remain obscure. Finding effective therapeutic targets in these early processes would allow developing methods for disease prevention and, possibly, atherosclerotic plaque regression. Currently, these early events are being actively studied by several research groups. One of the processes that are being investigated is the development of mitochondrial dysfunction, which was demonstrated to be present in the affected areas of the arterial wall. Detection and characterization of mitochondrial dysfunction associated with several chronic human disorders was made possible by the improved methods of studying mitochondrial biology and detecting mitochondrial DNA (mtDNA) mutations. It was found to be involved in several key atherogenic processes, such as oxidative stress, chronic inflammation, and intracellular lipid accumulation. Mitochondrial dysfunction can occur in all types of cells involved in the pathogenesis of atherosclerosis: monocytes and macrophages, smooth muscle cells, lymphocytes, and the endothelial cells. However, therapies that would specifically target the mitochondria to correct mitochondrial dysfunction and neutralize the defective organelles are still remain to be developed and characterized. The aim of this review is to outline the prospects for mitochondrial therapy for atherosclerosis. We discuss mechanisms of mitochondria-mediated atherogenic processes, known mitochondria-targeting therapy strategies, and novel mitochondria-targeting drugs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Taisiia Shemiakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tatiana V Kirichenko
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia.,Faculty of Therapy, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
10
|
Alesutan I, Moritz F, Haider T, Shouxuan S, Gollmann-Tepeköylü C, Holfeld J, Pieske B, Lang F, Eckardt KU, Heinzmann SS, Voelkl J. Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells. J Mol Med (Berl) 2020; 98:985-997. [PMID: 32488546 PMCID: PMC7343738 DOI: 10.1007/s00109-020-01925-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Abstract In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor β-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to β-glycerophosphate. In VSMCs, β-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. β-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. β-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, β-glycerophosphate increased non-glycolytic acidification. β-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated β-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, β-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. Key messages β-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. β-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. β-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. β-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact β-glycerophosphate-induced VSMC calcification.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01925-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany. .,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | - Franco Moritz
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tatjana Haider
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Sun Shouxuan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Can Gollmann-Tepeköylü
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Burkert Pieske
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Tubingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Sophie Heinzmann
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Koller A, Fazzini F, Lamina C, Rantner B, Kollerits B, Stadler M, Klein-Weigel P, Fraedrich G, Kronenberg F. Mitochondrial DNA copy number is associated with all-cause mortality and cardiovascular events in patients with peripheral arterial disease. J Intern Med 2020; 287:569-579. [PMID: 32037598 PMCID: PMC7318579 DOI: 10.1111/joim.13027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dysfunctional mitochondria have an influence on inflammation and increased oxidative stress due to an excessive production of reactive oxygen species. The mitochondrial DNA copy number (mtDNA-CN) is a potential biomarker for mitochondrial dysfunction and has been associated with various diseases. However, results were partially contrasting which might have been caused by methodological difficulties to quantify mtDNA-CN. OBJECTIVE We aimed to investigate whether mtDNA-CN is associated with peripheral arterial disease (PAD) as well as all-cause mortality and cardiovascular events during seven years of follow-up. METHODS A total of 236 male patients with PAD from the Cardiovascular Disease in Intermittent Claudication (CAVASIC) study were compared with 249 age- and diabetes-matched controls. MtDNA-CN was measured with a well-standardized plasmid-normalized quantitative PCR-based assay determining the ratio between mtDNA-CN and nuclear DNA. RESULTS Individuals in the lowest quartile of mtDNA-CN had a twofold increased risk for PAD which, however, was no longer significant after adjusting for leukocytes and platelets. About 67 of the 236 patients had already experienced a cardiovascular event at baseline and those in the lowest mtDNA-CN quartile had a 2.34-fold increased risk for these events (95% CI 1.08-5.13). During follow-up, 37 PAD patients died and 66 patients experienced a cardiovascular event. Patients in the lowest mtDNA-CN quartile had hazard ratios of 2.66 (95% CI 1.27-5.58) for all-cause-mortality and 1.82 (95% CI 1.02-3.27) for cardiovascular events compared with the combined quartile 2-4 (adjusted for age, smoking, CRP, diabetes, prevalent cardiovascular disease, leukocytes and platelets). CONCLUSION This investigation supports the hypothesis of mitochondrial dysfunction in peripheral arterial disease and shows an association of low mtDNA-CNs with all-cause-mortality and prevalent and incident cardiovascular disease in PAD patients with intermittent claudication.
Collapse
Affiliation(s)
- A Koller
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - F Fazzini
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - C Lamina
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Rantner
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - B Kollerits
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Stadler
- 3rd Medical Department of Metabolic Diseases and Nephrology, Hietzing Hospital, Vienna, Austria.,Diabetes Research Group, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - P Klein-Weigel
- Clinic of Angiology, Center of Vascular Medicine, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - G Fraedrich
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - F Kronenberg
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Veloso CD, Belew GD, Ferreira LL, Grilo LF, Jones JG, Portincasa P, Sardão VA, Oliveira PJ. A Mitochondrial Approach to Cardiovascular Risk and Disease. Curr Pharm Des 2019; 25:3175-3194. [PMID: 31470786 DOI: 10.2174/1389203720666190830163735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a leading risk factor for mortality worldwide and the number of CVDs victims is predicted to rise through 2030. While several external parameters (genetic, behavioral, environmental and physiological) contribute to cardiovascular morbidity and mortality; intrinsic metabolic and functional determinants such as insulin resistance, hyperglycemia, inflammation, high blood pressure and dyslipidemia are considered to be dominant factors. METHODS Pubmed searches were performed using different keywords related with mitochondria and cardiovascular disease and risk. In vitro, animal and human results were extracted from the hits obtained. RESULTS High cardiac energy demand is sustained by mitochondrial ATP production, and abnormal mitochondrial function has been associated with several lifestyle- and aging-related pathologies in the developed world such as diabetes, non-alcoholic fatty liver disease (NAFLD) and kidney diseases, that in turn can lead to cardiac injury. In order to delay cardiac mitochondrial dysfunction in the context of cardiovascular risk, regular physical activity has been shown to improve mitochondrial parameters and myocardial tolerance to ischemia-reperfusion (IR). Furthermore, pharmacological interventions can prevent the risk of CVDs. Therapeutic agents that can target mitochondria, decreasing ROS production and improve its function have been intensively researched. One example is the mitochondria-targeted antioxidant MitoQ10, which already showed beneficial effects in hypertensive rat models. Carvedilol or antidiabetic drugs also showed protective effects by preventing cardiac mitochondrial oxidative damage. CONCLUSION This review highlights the role of mitochondrial dysfunction in CVDs, also show-casing several approaches that act by improving mitochondrial function in the heart, contributing to decrease some of the risk factors associated with CVDs.
Collapse
Affiliation(s)
- Caroline D Veloso
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Getachew D Belew
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Luciana L Ferreira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| |
Collapse
|
13
|
COMP-prohibitin 2 interaction maintains mitochondrial homeostasis and controls smooth muscle cell identity. Cell Death Dis 2018; 9:676. [PMID: 29867124 PMCID: PMC5986769 DOI: 10.1038/s41419-018-0703-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are highly phenotypically plastic, and loss of the contractile phenotype in VSMCs has been recognized at the early onset of the pathology of a variety of vascular diseases. However, the endogenous regulatory mechanism to maintain contractile phenotype in VSMCs remains elusive. Moreover, little has been known about the role of the mitochondrial bioenergetics in terms of VSMC homeostasis. Herein, we asked if glycoprotein COMP (Cartilage oligomeric matrix protein) is involved in mitochondrial bioenergetics and therefore regulates VSMCs homeostasis. By using fluorescence assay, subcellular western blot and liquid chromatography tandem mass spectrometry analysis, we found that extracellular matrix protein COMP unexpectedly localized within mitochondria. Further mitochondrial transplantation revealed that both mitochondrial and non-mitochondrial COMP maintained VSMC identity. Moreover, microarray analysis revealed that COMP deficiency impaired mitochondrial oxidative phosphorylation in VSMCs. Further study confirmed that COMP deficiency caused mitochondrial oxidative phosphorylation dysfunction accompanied by morphological abnormality. Moreover, the interactome of mitochondrial COMP revealed that COMP interacted with prohibitin 2, and COMP-prohibitin 2 interaction maintained mitochondrial homeostasis. Additionally, disruption of COMP-prohibitin 2 interaction caused VSMC dedifferentiation in vitro and enhanced the neointima formation post rat carotid artery injury in vivo. In conclusion, COMP-prohibitin 2 interaction in mitochondria plays an important role in maintaining the contractile phenotype of VSMCs by regulating mitochondrial oxidative phosphorylation. Maintaining the homeostasis of mitochondrial respiration through COMP-prohibitin 2 interaction may shed light on prevention of vascular disease.
Collapse
|
14
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Venter M, van der Westhuizen FH, Elson JL. The aetiology of cardiovascular disease: a role for mitochondrial DNA? Cardiovasc J Afr 2017; 29:122-132. [PMID: 28906532 PMCID: PMC6009096 DOI: 10.5830/cvja-2017-037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease (CVD) is a world-wide cause of mortality in humans and its incidence is on the rise in Africa. In this review, we discuss the putative role of mitochondrial dysfunction in the aetiology of CVD and consequently identify mitochondrial DNA (mtDNA) variation as a viable genetic risk factor to be considered. We then describe the contribution and pitfalls of several current approaches used when investigating mtDNA in relation to complex disease. We also propose an alternative approach, the adjusted mutational load hypothesis, which would have greater statistical power with cohorts of moderate size, and is less likely to be affected by population stratification. We therefore address some of the shortcomings of the current haplogroup association approach. Finally, we discuss the unique challenges faced by studies done on African populations, and recommend the most viable methods to use when investigating mtDNA variation in CVD and other common complex disease.
Collapse
Affiliation(s)
- Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, United Kingdom
| |
Collapse
|
16
|
The incidence of aspirin resistance in heart transplantation recipients. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2017; 14:115-119. [PMID: 28747943 PMCID: PMC5519837 DOI: 10.5114/kitp.2017.68742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022]
Abstract
Introduction Coronary allograft vasculopathy can cause as many deaths as infections or rejection episodes within 3 years following heart transplantation. Aim To compare the aspirin resistance rate in an allograft heart transplantation population and in a control group by laboratory tests including the Aspirin-Resistant Patients Identification Test (ASPItest). Material and methods A total of 24 heart recipients (20 men and 4 women) at a mean age of 48 ±13 years who underwent routine clinical follow-up were consecutively enrolled in group 1. The control group consisted of 24 patients (19 men and 5 women) at a mean age of 64 ±7 years waiting for coronary artery bypass grafting in our department. All patients were treated with a standard dose of 75 mg aspirin (ASA) daily. Results Aspirin resistance was evaluated by the Multiplate platelet function test. The ASPItest revealed a mean value of 27 ±22 U in the transplant group. Results above 30 U were obtained in 8 (34%) patients, with a mean value of 50.3 ±20.6 U, indicating aspirin resistance. In the control group ASPItest results above 30 U were obtained in 5 (20%) patients, with a mean value of 43.3 ±6.4 U. Conclusions There is a high incidence (34% vs. 20%, NS) of ASA resistance in heart transplantation recipients and in the general population, respectively.
Collapse
|
17
|
Yang M, Chadwick AE, Dart C, Kamishima T, Quayle JM. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention. PLoS One 2017; 12:e0177951. [PMID: 28542339 PMCID: PMC5438125 DOI: 10.1371/journal.pone.0177951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022] Open
Abstract
Bioenergetics of artery smooth muscle cells is critical in cardiovascular health and disease. An acute rise in metabolic demand causes vasodilation in systemic circulation while a chronic shift in bioenergetic profile may lead to vascular diseases. A decrease in intracellular ATP level may trigger physiological responses while dedifferentiation of contractile smooth muscle cells to a proliferative and migratory phenotype is often observed during pathological processes. Although it is now possible to dissect multiple building blocks of bioenergetic components quantitatively, detailed cellular bioenergetics of artery smooth muscle cells is still largely unknown. Thus, we profiled cellular bioenergetics of human coronary artery smooth muscle cells and effects of metabolic intervention. Mitochondria and glycolysis stress tests utilizing Seahorse technology revealed that mitochondrial oxidative phosphorylation accounted for 54.5% of ATP production at rest with the remaining 45.5% due to glycolysis. Stress tests also showed that oxidative phosphorylation and glycolysis can increase to a maximum of 3.5 fold and 1.25 fold, respectively, indicating that the former has a high reserve capacity. Analysis of bioenergetic profile indicated that aging cells have lower resting oxidative phosphorylation and reduced reserve capacity. Intracellular ATP level of a single cell was estimated to be over 1.1 mM. Application of metabolic modulators caused significant changes in mitochondria membrane potential, intracellular ATP level and ATP:ADP ratio. The detailed breakdown of cellular bioenergetics showed that proliferating human coronary artery smooth muscle cells rely more or less equally on oxidative phosphorylation and glycolysis at rest. These cells have high respiratory reserve capacity and low glycolysis reserve capacity. Metabolic intervention influences both intracellular ATP concentration and ATP:ADP ratio, where subtler changes may be detected by the latter.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Amy E. Chadwick
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Caroline Dart
- Department of Biochemistry, University of Liverpool, Liverpool, United Kingdom
| | - Tomoko Kamishima
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - John M. Quayle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Ziaaldini MM, Hosseini SR, Fathi M. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training. Physiol Res 2016; 66:1-14. [PMID: 27982690 DOI: 10.33549/physiolres.933329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aging process is associated with a decline in mitochondrial functions. Mitochondria dysfunction is involved in initiation and progression of many health problems including neuromuscular, metabolic and cardiovascular diseases. It is well known that endurance exercise improves mitochondrial function, especially in the elderly. However, recent studies have demonstrated that resistance training lead also to substantial increases in mitochondrial function in skeletal muscle. A comprehensive understanding of the cellular mechanisms involved in the skeletal muscle mitochondrial adaptations to exercise training in healthy elderly subjects, can help practitioners to design and prescribe more effective exercise trainings.
Collapse
Affiliation(s)
- M M Ziaaldini
- Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | | |
Collapse
|
19
|
Ye JX, Wang SS, Ge M, Wang DJ. Suppression of endothelial PGC-1α is associated with hypoxia-induced endothelial dysfunction and provides a new therapeutic target in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1233-42. [PMID: 27084848 DOI: 10.1152/ajplung.00356.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/13/2016] [Indexed: 01/22/2023] Open
Abstract
Endothelial dysfunction plays a principal role in the pathogenesis of pulmonary arterial hypertension (PAH), which is a fatal disease with limited effective clinical treatments. Mitochondrial dysregulation and oxidative stress are involved in endothelial dysfunction. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key regulator of cellular energy metabolism and a master regulator of mitochondrial biogenesis. However, the roles of PGC-1α in hypoxia-induced endothelial dysfunction are not completely understood. We hypothesized that hypoxia reduces PGC-1α expression and leads to endothelial dysfunction in hypoxia-induced PAH. We confirmed that hypoxia has a negative impact on endothelial PGC-1α in experimental PAH in vitro and in vivo. Hypoxia-induced PGC-1α inhibited the oxidative metabolism and mitochondrial function, whereas sustained PGC-1α decreased reactive oxygen species (ROS) formation, mitochondrial swelling, and NF-κB activation and increased ATP formation and endothelial nitric oxide synthase (eNOS) phosphorylation. Furthermore, hypoxia-induced changes in the mean pulmonary arterial pressure and right heart hypertrophy were nearly normal after intervention. These results suggest that PGC-1α is associated with endothelial function in hypoxia-induced PAH and that improved endothelial function is associated with improved cellular mitochondrial respiration, reduced inflammation and oxygen stress, and increased PGC-1α expression. Taken together, these findings indicate that PGC-1α may be a new therapeutic target in PAH.
Collapse
Affiliation(s)
- Jia-Xin Ye
- Department of Cardio-Thoracic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and
| | - Shan-Shan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Ge
- Department of Cardio-Thoracic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and
| | - Dong-Jin Wang
- Department of Cardio-Thoracic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and
| |
Collapse
|
20
|
Lu Y, Li S, Wu H, Bian Z, Xu J, Gu C, Chen X, Yang D. Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells. Int J Mol Med 2015; 36:1223-32. [PMID: 26398547 PMCID: PMC4601744 DOI: 10.3892/ijmm.2015.2345] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II)-induced mitochondrial dysfunction is a prominent characteristic of the majority of cardiovascular diseases. Astragaloside IV (As-IV), the major active ingredient of Astragalus membranaceus (Fisch.) Bge. (a traditional Chinese herbal medicine), possesses antioxidant properties. The present study was carried out to examine whether As-IV can reverse Ang II-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs) and to elucidate the underlying molecular mechanisms. Cultured rat aortic VSMCs treated with Ang II (1 µM) for 24 h exhibited mitochondrial dysfunction, including a decrease in mitochondrial oxygen consumption rates (OCRs), adenosine triphosphate (ATP) production and mitochondrial DNA (mtDNA) levels, as well as the disruption of mitochondrial structural integrity. Following treatment with Ang II, As-IV (50 µg/ml) was added to the culture medium followed by incubation for a further 24 h. The administration of As-IV significantly increased the mitochondrial OCRs, ATP production and the mtDNA levels, and reversed the mitochondrial morphological changes which occurred in the VSMCs. Treatment with As-IV also reversed the Ang II-induced increase in the production of reactive oxygen species (ROS), the increase in NADPH oxidase and xanthine oxidase activity, as well as the decrease in mitochondrial membrane potential (ΔΨm) and manganese superoxide dismutase (Mn-SOD) activity. Furthermore, treatment with As-IV led to an increase in the mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and mitochondrial transcription factor A (Tfam), and in the protein expression of PGC-1α, parkin and dynamin 1-like protein 1 (Drp1) in the VSMCs. These results indicate that As-IV exerts beneficial effects on Ang II-induced mitochondrial dysfunction in rat VSMCs and that these effects are mediated through the inhibition of ROS overproduction, as well as the promotion of mitochondrial autophagy and mitochondrial biogenesis. These data demonstrate the antioxidant properties of As-IV.
Collapse
Affiliation(s)
- Yao Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Su Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hengfang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhiping Bian
- Research Institute of Cardiovascular Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jindan Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chunrong Gu
- Research Institute of Cardiovascular Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiangjian Chen
- Research Institute of Cardiovascular Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
21
|
Rai PK, Russell OM, Lightowlers RN, Turnbull DM. Potential compounds for the treatment of mitochondrial disease. Br Med Bull 2015; 116:5-18. [PMID: 26590387 DOI: 10.1093/bmb/ldv046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Mitochondrial diseases are a group of heterogeneous disorders for which no curative therapy is currently available. Several drugs are currently being pursued as candidates to correct the underlying biochemistry that causes mitochondrial dysfunction. SOURCES OF DATA A systematic review of pharmacological therapeutics tested using in vitro, in vivo models and clinical trials. Results presented from database searches undertaken to ascertain compounds currently being pioneered to treat mitochondrial disease. AREAS OF AGREEMENT Previous clinical research has been hindered by poorly designed trials that have shown some evidence in enhancing mitochondrial function but without significant results. AREAS OF CONTROVERSY Several compounds under investigation display poor pharmacokinetic profiles or numerous off target effects. GROWING POINTS Drug development teams should continue to screen existing and novel compound libraries for therapeutics that can enhance mitochondrial function. Therapies for mitochondrial disorders could hold potential cures for a myriad of other ailments associated with mitochondrial dysfunction such as neurodegenerative diseases.
Collapse
Affiliation(s)
- P K Rai
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - O M Russell
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - R N Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - D M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
22
|
Salidroside stimulates mitochondrial biogenesis and protects against H₂O₂-induced endothelial dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:904834. [PMID: 24868319 PMCID: PMC4020198 DOI: 10.1155/2014/904834] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/19/2014] [Indexed: 02/07/2023]
Abstract
Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙−) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways.
Collapse
|