1
|
Orth T, Pyanova A, Lux S, Kaiser P, Reinheimer I, Nielsen DL, Khalid JA, Rognant S, Jepps TA, Matchkov VV, Schubert R. Vascular smooth muscle BK channels limit ouabain-induced vasocontraction: Dual role of the Na/K-ATPase as a hub for Src-kinase and the Na/Ca-exchanger. FASEB J 2024; 38:e70046. [PMID: 39259502 DOI: 10.1096/fj.202400628rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Large-conductance, calcium-activated potassium channels (BK channels) and the Na/K-ATPase are expressed universally in vascular smooth muscle. The Na/K-ATPase may act via changes in the intracellular Ca2+ concentration mediated by the Na/Ca exchanger (NCX) and via Src kinase. Both pathways are known to regulate BK channels. Whether BK channels functionally interact in vascular smooth muscle cells with the Na/K-ATPase remains to be elucidated. Thus, this study addressed the hypothesis that BK channels limit ouabain-induced vasocontraction. Rat mesenteric arteries were studied using isometric myography, FURA-2 fluorimetry and proximity ligation assay. The BK channel blocker iberiotoxin potentiated methoxamine-induced contractions. The cardiotonic steroid, ouabain (10-5 M), induced a contractile effect of IBTX at basal tension prior to methoxamine administration and enhanced the pro-contractile effect of IBTX on methoxamine-induced contractions. These facilitating effects of ouabain were prevented by the inhibition of either NCX or Src kinase. Furthermore, inhibition of NCX or Src kinase reduced the BK channel-mediated negative feedback regulation of arterial contraction. The effects of NCX and Src kinase inhibition were independent of each other. Co-localization of the Na/K-ATPase and the BK channel was evident. Our data suggest that BK channels limit ouabain-induced vasocontraction by a dual mechanism involving the NCX and Src kinase signaling. The data propose that the NCX and the Src kinase pathways, mediating the ouabain-induced activation of the BK channel, act in an independent manner.
Collapse
Affiliation(s)
- Tobias Orth
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anastasia Pyanova
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Simon Lux
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kaiser
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isabel Reinheimer
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Josef Ali Khalid
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Salomé Rognant
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rudolf Schubert
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Stott JB, Greenwood IA. G protein βγ regulation of KCNQ-encoded voltage-dependent K channels. Front Physiol 2024; 15:1382904. [PMID: 38655029 PMCID: PMC11035767 DOI: 10.3389/fphys.2024.1382904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The KCNQ family is comprised of five genes and the expression products form voltage-gated potassium channels (Kv7.1-7.5) that have a major impact upon cellular physiology in many cell types. Each functional Kv7 channel forms as a tetramer that often associates with proteins encoded by the KCNE gene family (KCNE1-5) and is critically reliant upon binding of phosphatidylinositol bisphosphate (PIP2) and calmodulin. Other modulators like A-kinase anchoring proteins, ubiquitin ligases and Ca-calmodulin kinase II alter Kv7 channel function and trafficking in an isoform specific manner. It has now been identified that for Kv7.4, G protein βγ subunits (Gβγ) can be added to the list of key regulators and is paramount for channel activity. This article provides an overview of this nascent field of research, highlighting themes and directions for future study.
Collapse
Affiliation(s)
| | - Iain A. Greenwood
- Vascular Biology Research Group, Institute of Molecular and Clinical Sciences, St George’s University of London, London, United Kingdom
| |
Collapse
|
3
|
Villegas-Esguevillas M, Cho S, Vera-Zambrano A, Kwon JW, Barreira B, Telli G, Navarro-Dorado J, Morales-Cano D, de Olaiz B, Moreno L, Greenwood I, Pérez-Vizcaíno F, Kim SJ, Climent B, Cogolludo A. The novel K V7 channel activator URO-K10 exerts enhanced pulmonary vascular effects independent of the KCNE4 regulatory subunit. Biomed Pharmacother 2023; 164:114952. [PMID: 37295249 DOI: 10.1016/j.biopha.2023.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.
Collapse
Affiliation(s)
- Marta Villegas-Esguevillas
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Suhan Cho
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Alba Vera-Zambrano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Jae Won Kwon
- Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Göcken Telli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Jorge Navarro-Dorado
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Daniel Morales-Cano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Beatriz de Olaiz
- Department of Thoracic Surgery, Hospital Universitario de Getafe, Getafe, Spain
| | - Laura Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Iain Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| | - Francisco Pérez-Vizcaíno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | - Angel Cogolludo
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| |
Collapse
|
4
|
Gao J, Yin H, Dong Y, Wang X, Liu Y, Wang K. A Novel Role of Uricosuric Agent Benzbromarone in BK Channel Activation and Reduction of Airway Smooth Muscle Contraction. Mol Pharmacol 2023; 103:241-254. [PMID: 36669879 DOI: 10.1124/molpharm.122.000638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023] Open
Abstract
The uricosuric drug benzbromarone, widely used for treatment of gout, hyperpolarizes the membrane potential of airway smooth muscle cells, but how it works remains unknown. Here we show a novel role of benzbromarone in activation of large conductance calcium-activated K+ channels. Benzbromarone results in dose-dependent activation of macroscopic big potassium (BK) currents about 1.7- to 14.5-fold with an EC50 of 111 μM and shifts the voltage-dependent channel activation to a more hyperpolarizing direction about 10 to 54 mV in whole-cell patch clamp recordings. In single-channel recordings, benzbromarone decreases single BKα channel closed dwell time and increases the channel open probability. Coexpressing β1 subunit also enhances BK activation by benzbromarone with an EC50 of 67 μM and a leftward shift of conductance-voltage (G-V) curve about 44 to 138 mV. Site-directed mutagenesis reveals that a motif of three amino acids 329RKK331 in the cytoplasmic linker between S6 and C-terminal regulator of potassium conductance (RCK) gating ring mediates the pharmacological activation of BK channels by benzbromarone. Further ex vivo assay shows that benzbromarone causes reduction of tracheal strip contraction. Taken together, our findings demonstrate that uricosuric benzbromarone activates BK channels through molecular mechanism of action involving the channel RKK motif of S6-RCK linker. Pharmacological activation of BK channel by benzbromarone causes reduction of tracheal strip contraction, holding a repurposing potential for asthma and pulmonary arterial hypertension or BK channelopathies. SIGNIFICANCE STATEMENT: We describe a novel role of uricosuric agent benzbromarone in big potassium (BK) channel activation and relaxation of airway smooth muscle contraction. In this study, we find that benzbromarone is an activator of the large-conductance Ca2+- and voltage-activated K+ channel (BK channel), which serves numerous cellular functions, including control of smooth muscle contraction. Pharmacological activation of BK channel by the FDA-approved drug benzbromarone may hold repurposing potential for treatment of asthma and pulmonary arterial hypertension or BK channelopathies.
Collapse
Affiliation(s)
- Jian Gao
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Hao Yin
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yanqun Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Xintong Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
5
|
Rafieian F, Amani R, Rezaei A, Karaça AC, Jafari SM. Exploring fennel ( Foeniculum vulgare): Composition, functional properties, potential health benefits, and safety. Crit Rev Food Sci Nutr 2023; 64:6924-6941. [PMID: 36803269 DOI: 10.1080/10408398.2023.2176817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Fennel (Foeniculum vulgare Mill), a member of the Apiaceae family (Umbelliferaceae), is a hardy and perennial herb, with grooved stems, intermittent leaves, petiole with sheath, usually bisexual flower and yellow umbrella. Although fennel is a typical aromatic plant generally considered native to the Mediterranean shores, it has become widespread in many regions of the world and has long been used as a medicinal and culinary herb. The aim of this review is to collect recent information from the literature on the chemical composition, functional properties and toxicology of fennel. Collected data show the efficacy of this plant in various in vitro and in vivo pharmacological studies including antibacterial, antifungal, antiviral, antioxidant, anti-inflammatory, antimutagenic, antinociceptive, hepatoprotective, bronchodilatory, and memory enhancing activities. It has also been shown to be effective on infantile colic, dysmenorrhea, polycystic ovarian syndrome and milk production. This review also aims to identify gaps in the literature that require to be filled by future research.
Collapse
Affiliation(s)
- Fatemeh Rafieian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aslı Can Karaça
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Aubin Vega M, Girault A, Adam D, Chebli J, Privé A, Maillé É, Robichaud A, Brochiero E. Impact of KvLQT1 potassium channel modulation on alveolar fluid homeostasis in an animal model of thiourea-induced lung edema. Front Physiol 2023; 13:1069466. [PMID: 36699692 PMCID: PMC9868633 DOI: 10.3389/fphys.2022.1069466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Alveolar ion and fluid absorption is essential for lung homeostasis in healthy conditions as well as for the resorption of lung edema, a key feature of acute respiratory distress syndrome. Liquid absorption is driven by active transepithelial sodium transport, through apical ENaC Na+ channels and basolateral Na+/K+-ATPase. Our previous work unveiled that KvLQT1 K+ channels also participate in the control of Na+/liquid absorption in alveolar epithelial cells. Our aim was to further investigate the function of KvLQT1 channels and their interplay with other channels/transporters involved in ion/liquid transport in vivo using adult wild-type (WT) and KvLQT1 knock-out (KO) mice under physiological conditions and after thiourea-induced lung edema. A slight but significant increase in water lung content (WLC) was observed in naïve KvLQT1-KO mice, relative to WT littermates, whereas lung function was generally preserved and histological structure unaltered. Following thiourea-induced lung edema, KvLQT1-KO did not worsen WLC or lung function. Similarly, lung edema was not aggravated by the administration of a KvLQT1 inhibitor (chromanol). However, KvLQT1 activation (R-L3) significantly reduced WLC in thiourea-challenged WT mice. The benefits of R-L3 were prevented in KO or chromanol-treated WT mice. Furthermore, R-L3 treatment had no effect on thiourea-induced endothelial barrier alteration but restored or enhanced the levels of epithelial alveolar AQP5, Na+/K+-ATPase, and ENaC expressions. Altogether, the results indicate the benefits of KvLQT1 activation in the resolution of lung edema, probably through the observed up-regulation of epithelial alveolar channels/transporters involved in ion/water transport.
Collapse
Affiliation(s)
- Mélissa Aubin Vega
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alban Girault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada,Laboratoire de Physiologie Cellulaire et Moléculaire (LPCM), Amiens, France
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jasmine Chebli
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Anik Privé
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Émilie Maillé
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada,*Correspondence: Emmanuelle Brochiero,
| |
Collapse
|
7
|
Emerging mechanisms involving brain Kv7 channel in the pathogenesis of hypertension. Biochem Pharmacol 2022; 206:115318. [PMID: 36283445 DOI: 10.1016/j.bcp.2022.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Hypertension is a prevalent health problem inducing many organ damages. The pathogenesis of hypertension involves a complex integration of different organ systems including the brain. The elevated sympathetic nerve activity is closely related to the etiology of hypertension. Ion channels are critical regulators of neuronal excitability. Several mechanisms have been proposed to contribute to hypothalamic-driven elevated sympathetic activity, including altered ion channel function. Recent findings indicate one of the voltage-gated potassium channels, Kv7 channels (M channels), plays a vital role in regulating cardiovascular-related neurons activity, and the expression of Kv7 channels is downregulated in hypertension. This review highlights recent findings that the Kv7 channels in the brain, blood vessels, and kidneys are emerging targets involved in the pathogenesis of hypertension, suggesting new therapeutic targets for treating drug-resistant, neurogenic hypertension.
Collapse
|
8
|
Seo MS, Kang M, An JR, Heo R, Jung WK, Choi IW, Han ET, Han JH, Chun W, Park WS. Asenapine, an atypical antipsychotic, blocks voltage-gated potassium channels in rabbit coronary artery smooth muscle cells. Eur J Pharmacol 2022; 934:175318. [DOI: 10.1016/j.ejphar.2022.175318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
|
9
|
The antidiabetic drug teneligliptin induces vasodilation via activation of PKG, Kv channels, and SERCA pumps in aortic smooth muscle. Eur J Pharmacol 2022; 935:175305. [DOI: 10.1016/j.ejphar.2022.175305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
|
10
|
Kang M, An JR, Li H, Zhuang W, Heo R, Park S, Mun SY, Park M, Seo MS, Han ET, Han JH, Chun W, Park WS. Blockade of voltage-dependent K+ channels by benztropine, a muscarinic acetylcholine receptor inhibitor, in coronary arterial smooth muscle cells. Toxicol Sci 2022; 189:260-267. [PMID: 35944222 DOI: 10.1093/toxsci/kfac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the effect of the acetylcholine muscarinic receptor inhibitor benztropine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Benztropine inhibited Kv currents in a concentration-dependent manner, with an apparent IC50 value of 6.11 ± 0.80 μM and Hill coefficient of 0.62 ± 0.03. Benztropine shifted the steady-state activation curves toward a more positive potential, and the steady-state inactivation curves toward a more negative potential, suggesting that benztropine inhibited Kv channels by affecting the channel voltage sensor. Train pulse (1 or 2 Hz)-induced Kv currents were effectively reduced by the benztropine treatment. Furthermore, recovery time constants of Kv current inactivation increased significantly in response to benztropine. These results suggest that benztropine inhibited vascular Kv channels in a use (state)-dependent manner. The inhibitory effect of benztropine was canceled by pretreatment with the Kv 1.5 inhibitor, but there was no obvious change after pretreatment with Kv 2.1 or Kv7 inhibitors. In conclusion, benztropine inhibited the Kv current in a concentration- and use (state)-dependent manner. Inhibition of the Kv channels by benztropine primarily involved the Kv1.5 subtype. Restrictions are required when using benztropine to patients with vascular disease.
Collapse
Affiliation(s)
- Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seojin Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minju Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Konkuk University School of Medicine, Chungju, 27478, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| |
Collapse
|
11
|
Cho HY, Chuang TH, Wu SN. The Effectiveness in Activating M-Type K + Current Produced by Solifenacin ([(3R)-1-azabicyclo[2.2.2]octan-3-yl] (1S)-1-phenyl-3,4-dihydro-1H-isoquinoline-2-carboxylate): Independent of Its Antimuscarinic Action. Int J Mol Sci 2021; 22:12399. [PMID: 34830281 PMCID: PMC8622881 DOI: 10.3390/ijms222212399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Solifenacin (Vesicare®, SOL), known to be a member of isoquinolines, is a muscarinic antagonist that has anticholinergic effect, and it has been beneficial in treating urinary incontinence and neurogenic detrusor overactivity. However, the information regarding the effects of SOL on membrane ionic currents is largely uncertain, despite its clinically wide use in patients with those disorders. In this study, the whole-cell current recordings revealed that upon membrane depolarization in pituitary GH3 cells, the exposure to SOL concentration-dependently increased the amplitude of M-type K+ current (IK(M)) with effective EC50 value of 0.34 μM. The activation time constant of IK(M) was concurrently shortened in the SOL presence, hence yielding the KD value of 0.55 μM based on minimal reaction scheme. As cells were exposed to SOL, the steady-state activation curve of IK(M) was shifted along the voltage axis to the left with no change in the gating charge of the current. Upon an isosceles-triangular ramp pulse, the hysteretic area of IK(M) was increased by adding SOL. As cells were continually exposed to SOL, further application of acetylcholine (1 μM) failed to modify SOL-stimulated IK(M); however, subsequent addition of thyrotropin releasing hormone (TRH, 1 μM) was able to counteract SOL-induced increase in IK(M) amplitude. In cell-attached single-channel current recordings, bath addition of SOL led to an increase in the activity of M-type K+ (KM) channels with no change in the single channel conductance; the mean open time of the channel became lengthened. In whole-cell current-clamp recordings, the SOL application reduced the firing of action potentials (APs) in GH3 cells; however, either subsequent addition of TRH or linopirdine was able to reverse SOL-mediated decrease in AP firing. In hippocampal mHippoE-14 neurons, the IK(M) was also stimulated by adding SOL. Altogether, findings from this study disclosed for the first time the effectiveness of SOL in interacting with KM channels and hence in stimulating IK(M) in electrically excitable cells, and this noticeable action appears to be independent of its antagonistic activity on the canonical binding to muscarinic receptors expressed in GH3 or mHippoE-14 cells.
Collapse
Affiliation(s)
- Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Tzu-Hsien Chuang
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
| |
Collapse
|
12
|
Zhang D, Krause BM, Schmalz HG, Wohlfart P, Yard BA, Schubert R. ET-CORM Mediated Vasorelaxation of Small Mesenteric Arteries: Involvement of Kv7 Potassium Channels. Front Pharmacol 2021; 12:702392. [PMID: 34552483 PMCID: PMC8451721 DOI: 10.3389/fphar.2021.702392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Although the vasoactive properties of carbon monoxide (CO) have been extensively studied, the mechanism by which CO mediates vasodilation is not completely understood. Through-out published studies on CO mediated vasodilation there is inconsistency on the type of K+-channels that are activated by CO releasing molecules (CORMs). Since the vasorelaxation properties of enzyme triggered CORMs (ET-CORMs) have not been studied thus far, we first assessed if ET-CORMs can mediate vasodilation of small mesenteric arteries and subsequently addressed the role of soluble guanylate cyclase (sGC) and that of K-channels herein. To this end, 3 different types of ET-CORMs that either contain acetate (rac-1 and rac-4) or pivalate (rac-8) as ester functionality, were tested ex vivo on methoxamine pre-contracted small rat mesenteric arteries in a myograph setting. Pre-contracted mesenteric arteries strongly dilated upon treatment with both types of acetate containing ET-CORMs (rac-1 and rac-4), while treatment with the pivalate containing ET-CORM (rac-8) resulted in no vasodilation. Pre-treatment of mesenteric arteries with the sGC inhibitor ODQ abolished rac-4 mediated vasodilation, similar as for the known sGC activator SNP. Likewise, rac-4 mediated vasodilation did not occur in KCL pretreated mesenteric arteries. Although mesenteric arteries abundantly expressed a variety of K+-channels only Kv7 channels were found to be of functional relevance for rac-4 mediated vasodilation. In conclusion the current results identified Kv7 channels as the main channel by which rac-4 mediates vasodilation. In keeping with the central role of Kv7 in the control of vascular tone and peripheral resistance these promising ex-vivo data warrant further in vivo studies, particularly in models of primary hypertension or cardiac diseases, to assess the potential use of ET-CORMs in these diseases.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, the Second Hospital of Anhui Medical University, Hefei, China
| | | | | | - Paulus Wohlfart
- Diabetes Research, Sanofi Aventis Deutschland GmbH, Frankfurt, Germany
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany
| | - Rudolf Schubert
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany.,Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
13
|
Babu FS, Majetschak M. Linopirdine-supplemented resuscitation fluids reduce mortality in a model of ischemia-reperfusion injury induced acute respiratory distress syndrome. Physiol Res 2021; 70:649-953. [PMID: 34062081 PMCID: PMC8820536 DOI: 10.33549/physiolres.934679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 11/25/2022] Open
Abstract
Previously, we demonstrated that supplementation of resuscitation fluids with the Kv7 voltage-activated potassium channel inhibitor linopirdine reduces fluid resuscitation requirements and stabilizes hemodynamics in various rat models of hemorrhagic shock. To further evaluate the therapeutic potential of linopirdine, we tested the effects of linopirdine-supplemented resuscitation fluids in a rat model of ischemia-reperfusion injury-induced acute respiratory distress syndrome (ARDS). Ventilated rats underwent unilateral lung ischemia from t=0-75 min, followed by lung reperfusion and fluid resuscitation to a mean arterial blood pressure of 60 mmHg with normal saline (NS, n=9) or NS supplemented with 50 µg/ml linopridine (NS-L), n=7) until t=360 min. As compared with NS, fluid resuscitation with NS-L stabilized blood pressure and reduced fluid requirements by 40% (p<0.05 vs. NS at t=240-360 min). While NS-L did not affect ARDS development, it reduced mortality from 66% with NS to 14% with NS-L (p=0.03, hazard ratio 0.14; 95% confidence interval of the hazard ratio: 0.03-0.65). Median survival time was 240 min with NS and >360 min with NS-L. As compared with NS treated animals that survived the observation period (n=3), however, plasma lactate and creatinine concentrations at t=360 min were higher with NS-L (n=6; p<0.05). Our findings extend therapeutic potential of NS-L from hypovolemic/hemorrhagic shock to hemodynamic instability under normovolemic conditions during organ ischemia-reperfusion injury. Possible adverse effects of NS-L, such as impairment of renal function and/or organ hypoperfusion, require further evaluation in long-term pre-clinical models.
Collapse
Affiliation(s)
- F S Babu
- Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.
| | | |
Collapse
|
14
|
Lin CC, Xu ZY, Wang BH, Zhuang WY, Sun JH, Li H, Chen JG, Wang CM. Relaxation Effect of Schisandra Chinensis Lignans on the Isolated Tracheal Smooth Muscle in Rats and Its Mechanism. J Med Food 2021; 24:825-832. [PMID: 34406878 DOI: 10.1089/jmf.2021.k.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Schisandra chinensis (S. chinensis) is one of the core drugs used for relieving cough and asthma in traditional Chinese medicine. However, there are few basic studies on the treatment of respiratory diseases with S. chinensis in modern pharmacology, and the material basis and mechanism of its antiasthmatic effect are still unclear. Lignans are the main active components of S. chinensis. The aim of this study was to observe the relaxation effect of S. chinensis lignans (SCL) on the tracheal smooth muscle of rats by in vitro tracheal perfusion experiments, and to explore the mechanism by preincubation with L-type calcium channel blocker verapamil, four potassium channel blockers glibenclamide, tetraethylamine, 4-aminopyridine and barium chloride (BaCl2), β-adrenoceptor blocker propranolol, nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME), and the cyclooxygenase inhibitor indomethacin, respectively. The results showed that SCL (0.25-1.75 mg/mL) reduced the contraction of isolated tracheal smooth muscle induced by acetylcholine, the preincubation with verapamil and glibenclamide could attenuate the relaxation effect, whereas propranolol, 4-aminopyridine, BaCl2, tetraethylamine, L-NAME, and indomethacin had no such effect. These results suggest that SCL has a significant relaxation effect on the isolated tracheal smooth muscle of rats, and the mechanism may be related to the inhibition of extracellular calcium influx and intracellular calcium release from the sarcoplasmic reticulum, as well as the activation of ATP-sensitive potassium channels. These findings may provide a pharmacological basis for the traditional use of S. chinensis to treat asthma.
Collapse
Affiliation(s)
- Cheng-Cheng Lin
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Zhi-Ying Xu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Bi-Han Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Wen-Yue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, Jilin, China
| | - Jing-Hui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Jian-Guang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Chun-Mei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, China
| |
Collapse
|
15
|
Jepps TA. Kv7 channel trafficking by the microtubule network in vascular smooth muscle. Acta Physiol (Oxf) 2021; 232:e13692. [PMID: 34021973 PMCID: PMC8365713 DOI: 10.1111/apha.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
In arterial smooth muscle cells, changes in availability of integral membrane proteins influence the regulation of blood flow and blood pressure, which is critical for human health. However, the mechanisms that coordinate the trafficking and membrane expression of specific receptors and ion channels in vascular smooth muscle are poorly understood. In the vasculature, very little is known about microtubules, which form a road network upon which proteins can be transported to and from the cell membrane. This review article summarizes the impact of the microtubule network on arterial contractility, highlighting the importance of the network, with an emphasis on our recent findings regarding the trafficking of the voltage‐dependent Kv7 channels.
Collapse
Affiliation(s)
- Thomas A Jepps
- Vascular Biology Group Department of Biomedical Sciences University of Copenhagen Blegdamsvej 3 2200 Copenhagen N Denmark
| |
Collapse
|
16
|
Naffaa MM, Al-Ewaidat OA. Ligand modulation of KCNQ-encoded (K V7) potassium channels in the heart and nervous system. Eur J Pharmacol 2021; 906:174278. [PMID: 34174270 DOI: 10.1016/j.ejphar.2021.174278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
KCNQ-encoded (KV7) potassium channels are diversely distributed in the human tissues, associated with many physiological processes and pathophysiological conditions. These channels are increasingly used as drug targets for treating diseases. More selective and potent molecules on various types of the KV7 channels are desirable for appropriate therapies. The recent knowledge of the structure and function of human KCNQ-encoded channels makes it more feasible to achieve these goals. This review discusses the role and mechanism of action of many molecules in modulating the function of the KCNQ-encoded potassium channels in the heart and nervous system. The effects of these compounds on KV7 channels help to understand their involvement in many diseases, and to search for more selective and potent ligands to be used in the treatment of many disorders such as various types of cardiac arrhythmias, epilepsy, and pain.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Ola A Al-Ewaidat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
17
|
Chen Q, Jiang Z, Zhang J, Cao L, Chen Z. Arecoline hydrobromide enhances jejunum smooth muscle contractility via voltage-dependent potassium channels in W/Wv mice. Physiol Res 2021; 70:437-446. [PMID: 33982580 DOI: 10.33549/physiolres.934557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gastrointestinal motility was disturbed in W/Wv, which were lacking of interstitial cells of Cajal (ICC). In this study, we have investigated the role of arecoline hydrobromide (AH) on smooth muscle motility in the jejunum of W/Wv and wild-type (WT) mice. The jejunum tension was recorded by an isometric force transducer. Intracellular recording was used to identify whether AH affects slow wave and resting membrane potential (RMP) in vitro. The whole-cell patch clamp technique was used to explore the effects of AH on voltage-dependent potassium channels for jejunum smooth muscle cells. AH enhanced W/Wv and WT jejunum contractility in a dose-dependent manner. Atropine and nicardipine completely blocked the excitatory effect of AH in both W/Wv and WT. TEA did not reduce the effect of AH in WT, but was sufficient to block the excitatory effect of AH in W/Wv. AH significantly depolarized the RMP of jejunum cells in W/Wv and WT. After pretreatment with TEA, the RMP of jejunum cells indicated depolarization in W/Wv and WT, but subsequently perfused AH had no additional effect on RMP. AH inhibited the voltage-dependent K+ currents of acutely isolated mouse jejunum smooth muscle cells. Our study demonstrate that AH enhances the contraction activity of jejunum smooth muscle, an effect which is mediated by voltage-dependent potassium channels that acts to enhance the excitability of jejunum smooth muscle cells in mice.
Collapse
Affiliation(s)
- Q Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China.
| | | | | | | | | |
Collapse
|
18
|
Lo YC, Lin CL, Fang WY, Lőrinczi B, Szatmári I, Chang WH, Fülöp F, Wu SN. Effective Activation by Kynurenic Acid and Its Aminoalkylated Derivatives on M-Type K + Current. Int J Mol Sci 2021; 22:1300. [PMID: 33525680 PMCID: PMC7865226 DOI: 10.3390/ijms22031300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Kynurenic acid (KYNA, 4-oxoquinoline-2-carboxylic acid), an intermediate of the tryptophan metabolism, has been recognized to exert different neuroactive actions; however, the need of how it or its aminoalkylated amide derivative N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-oxo-1,4-dihydroquinoline-2-carboxamide (KYNA-A4) exerts any effects on ion currents in excitable cells remains largely unmet. In this study, the investigations of how KYNA and other structurally similar KYNA derivatives have any adjustments on different ionic currents in pituitary GH3 cells and hippocampal mHippoE-14 neurons were performed by patch-clamp technique. KYNA or KYNA-A4 increased the amplitude of M-type K+ current (IK(M)) and concomitantly enhanced the activation time course of the current. The EC50 value required for KYNA- or KYNA-A4 -stimulated IK(M) was yielded to be 18.1 or 6.4 μM, respectively. The presence of KYNA or KYNA-A4 shifted the relationship of normalized IK(M)-conductance versus membrane potential to more depolarized potential with no change in the gating charge of the current. The voltage-dependent hysteretic area of IK(M) elicited by long-lasting triangular ramp pulse was observed in GH3 cells and that was increased during exposure to KYNA or KYNA-A4. In cell-attached current recordings, addition of KYNA raised the open probability of M-type K+ channels, along with increased mean open time of the channel. Cell exposure to KYNA or KYNA-A4 mildly inhibited delayed-rectifying K+ current; however, neither erg-mediated K+ current, hyperpolarization-activated cation current, nor voltage-gated Na+ current in GH3 cells was changed by KYNA or KYNA-A4. Under whole-cell, current-clamp recordings, exposure to KYNA or KYNA-A4 diminished the frequency of spontaneous action potentials; moreover, their reduction in firing frequency was attenuated by linopirdine, yet not by iberiotoxin or apamin. In hippocampal mHippoE-14 neurons, the addition of KYNA also increased the IK(M) amplitude effectively. Taken together, the actions presented herein would be one of the noticeable mechanisms through which they modulate functional activities of excitable cells occurring in vivo.
Collapse
Affiliation(s)
- Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-Y.F.); (W.-H.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Yu Fang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-Y.F.); (W.-H.C.)
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.); (F.F.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.); (F.F.)
| | - Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-Y.F.); (W.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.); (F.F.)
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
| |
Collapse
|
19
|
Ma D, Gaynullina D, Schmidt N, Mladenov M, Schubert R. The Functional Availability of Arterial Kv7 Channels Is Suppressed Considerably by Large-Conductance Calcium-Activated Potassium Channels in 2- to 3-Month Old but Not in 10- to 15-Day Old Rats. Front Physiol 2020; 11:597395. [PMID: 33384611 PMCID: PMC7770149 DOI: 10.3389/fphys.2020.597395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 01/26/2023] Open
Abstract
Background Voltage-gated potassium (Kv) channels, especially Kv7 channels, are major potassium channels identified in vascular smooth muscle cells with a great, albeit differential functional impact in various vessels. Vascular smooth muscle Kv7 channels always coexist with other K channels, in particular with BK channels. BK channels differ in the extent to which they influence vascular contractility. Whether this difference also causes the variability in the functional impact of Kv7 channels is unknown. Therefore, this study addressed the hypothesis that the functional impact of Kv7 channels depends on BK channels. Experimental Approach Experiments were performed on young and adult rat gracilis and saphenous arteries using real-time PCR as well as pressure and wire myography. Key Results Several subfamily members of Kv7 (KCNQ) and BK channels were expressed in saphenous and gracilis arteries: the highest expression was observed for BKα, BKβ1 and KCNQ4. Arterial contractility was assessed with methoxamine-induced contractions and pressure-induced myogenic responses. In vessels of adult rats, inhibition of Kv7 channels or BK channels by XE991 or IBTX, respectively enhanced arterial contractility to a similar degree, whereas activation of Kv7 channels or BK channels by retigabine or NS19504, respectively reduced arterial contractility to a similar degree. Further, IBTX increased both the contractile effect of XE991 and the anticontractile effect of retigabine, whereas NS19504 reduced the effect of retigabine and impaired the effect of XE991. In vessels of young rats, inhibition of Kv7 channels by XE991 enhanced arterial contractility much stronger than inhibition of BK channels by IBTX, whereas activation of Kv7 by retigabine reduced arterial contractility to a greater extent than activation of BK channels by NS19504. Further, IBTX increased the anticontractile effect of retigabine but not the contractile effect of XE991, whereas NS19504 reduced the effect of retigabine and impaired the effect of XE991. Conclusion Kv7 and BK channels are expressed in young and adult rat arteries and function as negative feedback modulators in the regulation of contractility of these arteries. Importantly, BK channels govern the extent of functional impact of Kv7 channels. This effect depends on the relationship between the functional activities of BK and Kv7 channels.
Collapse
Affiliation(s)
- Dongyu Ma
- European Center for Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Dina Gaynullina
- European Center for Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Nadine Schmidt
- European Center for Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mitko Mladenov
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia.,Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, Skopje, Macedonia
| | - Rudolf Schubert
- European Center for Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
20
|
Wray S, Arrowsmith S. Uterine Excitability and Ion Channels and Their Changes with Gestation and Hormonal Environment. Annu Rev Physiol 2020; 83:331-357. [PMID: 33158376 DOI: 10.1146/annurev-physiol-032420-035509] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We address advances in the understanding of myometrial physiology, focusing on excitation and the effects of gestation on ion channels and their relevance to labor. This review moves through pioneering studies to exciting new findings. We begin with the myometrium and its myocytes and describe how excitation might initiate and spread in this myogenic smooth muscle. We then review each of the ion channels in the myometrium: L- and T-type Ca2+ channels, KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), and intermediate (KCNN4) conductance, Na-activated K channels (Slo2), voltage-gated (SCN) Na+ and Na+ leak channels, nonselective (NALCN) channels, the Na K-ATPase, and hyperpolarization-activated cation channels. We finish by assessing how three key hormones- oxytocin, estrogen, and progesterone-modulate and integrate excitability throughout gestation.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| | - Sarah Arrowsmith
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| |
Collapse
|
21
|
Lee JE, Park CH, Kang H, Ko J, Cho S, Woo J, Chae MR, Lee SW, Kim SJ, Kim J, So I. The agonistic action of URO-K10 on Kv7.4 and 7.5 channels is attenuated by co-expression of KCNE4 ancillary subunit. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:503-516. [PMID: 33093272 PMCID: PMC7585595 DOI: 10.4196/kjpp.2020.24.6.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022]
Abstract
KCNQ family constitutes slowly-activating potassium channels among voltage-gated potassium channel superfamily. Recent studies suggested that KCNQ4 and 5 channels are abundantly expressed in smooth muscle cells, especially in lower urinary tract including corpus cavernosum and that both channels can exert membrane stabilizing effect in the tissues. In this article, we examined the electrophysiological characteristics of overexpressed KCNQ4, 5 channels in HEK293 cells with recently developed KCNQ-specific agonist. With submicromolar EC50, the drug not only increased the open probability of KCNQ4 channel but also increased slope conductance of the channel. The overall effect of the drug in whole-cell configuration was to increase maximal whole-cell conductance, to prolongate the activation process, and left-shift of the activation curve. The agonistic action of the drug, however, was highly attenuated by the co-expression of one of the β ancillary subunits of KCNQ family, KCNE4. Strong in vitro interactions between KCNQ4, 5 and KCNE4 were found through Foster Resonance Energy Transfer and co-immunoprecipitation. Although the expression levels of both KCNQ4 and KCNE4 are high in mesenteric arterial smooth muscle cells, we found that 1 μM of the agonist was sufficient to almost completely relax phenylephrine-induced contraction of the muscle strip. Significant expression of KCNQ4 and KCNE4 in corpus cavernosum together with high tonic contractility of the tissue grants highly promising relaxational effect of the KCNQ-specific agonist in the tissue.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Christine Haewon Park
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hana Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Suhan Cho
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - JooHan Woo
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Mee Ree Chae
- Department of Urology, Samsung Medical Center, Seoul 06351, Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Seoul 06351, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
22
|
Mondéjar-Parreño G, Barreira B, Callejo M, Morales-Cano D, Barrese V, Esquivel-Ruiz S, Olivencia MA, Macías M, Moreno L, Greenwood IA, Perez-Vizcaino F, Cogolludo A. Uncovered Contribution of Kv7 Channels to Pulmonary Vascular Tone in Pulmonary Arterial Hypertension. Hypertension 2020; 76:1134-1146. [DOI: 10.1161/hypertensionaha.120.15221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
K
+
channels play a fundamental role regulating membrane potential of pulmonary artery (PA) smooth muscle cells and their impairment is a common feature in pulmonary arterial hypertension (PAH). K
+
voltage-gated channel subfamily Q (
KCNQ1-5
) or Kv7 channels and their regulatory subunits subfamily E (KCNE) regulatory subunits are known to regulate vascular tone, but whether Kv7 channel function is impaired in PAH and how this can affect the rationale for targeting Kv7 channels in PAH remains unknown. Here, we have studied the role of Kv7/KCNE subunits in rat PA and their possible alteration in PAH. Using the patch-clamp technique, we found that the total K
+
current is reduced in PA smooth muscle cells from pulmonary hypertension animals (SU5416 plus hypoxia) and Kv7 currents made a higher contribution to the net K
+
current. Likewise, enhanced vascular responses to Kv7 channel modulators were found in pulmonary hypertension rats. Accordingly, KCNE4 subunit was highly upregulated in lungs from pulmonary hypertension animals and patients. Additionally, Kv7 channel activity was enhanced in the presence of Kv1.5 and TASK-1 channel inhibitors and this was associated with an increased KCNE4 membrane abundance. Compared with systemic arteries, PA showed a poor response to Kv7 channel modulators which was associated with reduced expression and membrane abundance of Kv7.4 and KCNE4. Our data indicate that Kv7 channel function is preserved and KCNE4 is upregulated in PAH. Therefore, compared with other downregulated channels, the contribution of Kv7 channels is increased in PAH resulting in an enhanced sensitivity to Kv7 channel modulators. This study provides insight into the potential usefulness of targeting Kv7 channels in PAH.
Collapse
Affiliation(s)
- Gema Mondéjar-Parreño
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Bianca Barreira
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - María Callejo
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (D.M.-C.)
| | - Vincenzo Barrese
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, United Kingdom (V.B., I.A.G.)
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy (V.B.)
| | - Sergio Esquivel-Ruiz
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Miguel A. Olivencia
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Miguel Macías
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Laura Moreno
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Iain A. Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, United Kingdom (V.B., I.A.G.)
| | - Francisco Perez-Vizcaino
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Angel Cogolludo
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| |
Collapse
|
23
|
Serrano-Novillo C, Oliveras A, Ferreres JC, Condom E, Felipe A. Remodeling of Kv7.1 and Kv7.5 Expression in Vascular Tumors. Int J Mol Sci 2020; 21:ijms21176019. [PMID: 32825637 PMCID: PMC7503939 DOI: 10.3390/ijms21176019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Voltage-dependent potassium (Kv) channels contribute to the excitability of nerves and muscles. In addition, Kv participates in several cell functions, including cell cycle progression and proliferation. Kv channel remodeling has been associated with neoplastic cell growth and cancer. Kv7 channels are expressed in blood vessels, and they participate in the maintenance of vascular tone and are implicated in myocyte proliferation. Although evidence links Kv7 remodeling to different types of cancer, its expression in vascular tumors has never been studied. Endothelium-derived vascular neoplasms range from indolent lesions to highly aggressive and metastasizing cancers. Here, we show that Kv7.1 and Kv7.5 are evenly distributed in tunicas as well as the endothelium of healthy veins and arteries. The layered structure of vessels is lost in vascular tumors. By studying eight vascular tumors with different origins and characteristics, we found that Kv7.1 and Kv7.5 expression was changed in vascular cancers. While both channels were generally downregulated, Kv7.5 expression was clearly correlated with neoplastic malignancy. The vascular tumors did not contract; therefore, the role of Kv7 channels is probably related to proliferation rather than controlling vascular tone. Our results identify vascular Kv7 channels as targets for cancer detection and anticancer therapies.
Collapse
Affiliation(s)
- Clara Serrano-Novillo
- Molecular Physiology Laboratory, Department de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (C.S.-N.); (A.O.)
| | - Anna Oliveras
- Molecular Physiology Laboratory, Department de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (C.S.-N.); (A.O.)
| | - Joan Carles Ferreres
- Consorci Corporació Sanitària Parc Taulí-Parc Taulí Hospital Universitari, Universitat Autónoma de Barcelona, 08208 Sabadell, Spain;
| | - Enric Condom
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain;
| | - Antonio Felipe
- Molecular Physiology Laboratory, Department de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (C.S.-N.); (A.O.)
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934034616; Fax: +34-934021559
| |
Collapse
|
24
|
Barrese V, Stott JB, Baldwin SN, Mondejar-Parreño G, Greenwood IA. SMIT (Sodium-Myo-Inositol Transporter) 1 Regulates Arterial Contractility Through the Modulation of Vascular Kv7 Channels. Arterioscler Thromb Vasc Biol 2020; 40:2468-2480. [PMID: 32787517 PMCID: PMC7505149 DOI: 10.1161/atvbaha.120.315096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: The SMIT1 (sodium:myo-inositol transporter 1) regulates myo-inositol movement into cells and responses to hypertonic stimuli. Alteration of myo-inositol levels has been associated with several diseases, including hypertension, but there is no evidence of a functional role of SMIT1 in the vasculature. Recent evidence showed that in the nervous system SMIT1 interacted and modulated the function of members of the Kv7 family of voltage-gated potassium channels, which are also expressed in the vasculature where they regulate arterial contractility. Therefore, in this study, we evaluated whether SMIT1 was functionally relevant in arterial smooth muscle. Approach and Results: Immunofluorescence and polymerase chain reaction experiments revealed that SMIT1 was expressed in rat renal and mesenteric vascular smooth muscle cells. Isometric tension recordings showed that incubation of renal arteries with raffinose and myo-inositol (which increases SMIT1 expression) reduced the contractile responses to methoxamine, an effect that was abolished by preincubation with the pan-Kv7 blocker linopirdine and by molecular knockdown of Kv7.4 and Kv7.5. Knockdown of SMIT1 increased the contraction of renal arteries induced by methoxamine, impaired the response to the Kv7.2–Kv7.5 activator ML213 but did not interfere with the relaxant responses induced by openers of other potassium channels. Proximity ligation assay showed that SMIT1 interacted with heteromeric channels formed by Kv7.4 and Kv7.5 proteins in both renal and mesenteric vascular smooth muscle cells. Patch-clamp experiments showed that incubation with raffinose plus myo-inositol increased Kv7 currents in vascular smooth muscle cells. Conclusions: SMIT1 protein is expressed in vascular smooth muscle cells where it modulates arterial contractility through an association with Kv7.4/Kv7.5 heteromers.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.).,Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, Italy (V.B.)
| | - Jennifer B Stott
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| | - Samuel N Baldwin
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| | - Gema Mondejar-Parreño
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Spain (G.M.-P.)
| | - Iain A Greenwood
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| |
Collapse
|
25
|
Diniz AFA, Ferreira RC, de Souza ILL, da Silva BA. Ionic Channels as Potential Therapeutic Targets for Erectile Dysfunction: A Review. Front Pharmacol 2020; 11:1120. [PMID: 32848741 PMCID: PMC7396897 DOI: 10.3389/fphar.2020.01120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is a prevalent condition, especially in men over 40 years old, characterized by the inability to obtain and/or maintain penile erection sufficient for satisfactory sexual intercourse. Several psychological and/or organic factors are involved in the etiopathogenesis of ED. In this context, we gathered evidence of the involvement of Large-conductance, Ca2+-activated K+ channels (BKCa), Small-conductance, Ca2+-activated K+ channels (SKCa), KCNQ-encoded voltage-dependent K+ channels (KV7), Transient Receptor Potential channels (TRP), and Calcium-activated Chloride channels (CaCC) dysfunctions on ED. In addition, the use of modulating agents of these channels are involved in relaxation of the cavernous smooth muscle cell and, consequent penile erection, suggesting that these channels are promising therapeutic targets for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Anderson Fellyp Avelino Diniz
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Rafael Carlos Ferreira
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Iara Leão Luna de Souza
- Departamento de Ciências Biológicas e da Saúde, Universidade Estadual de Roraima, Boa Vista, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
26
|
Hansen J, Johnsen J, Nielsen JM, Sørensen CB, Elkjær CC, Jespersen NR, Bøtker HE. Impact of Administration Time and Kv7 Subchannels on the Cardioprotective Efficacy of Kv7 Channel Inhibition. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2549-2560. [PMID: 32669836 PMCID: PMC7337438 DOI: 10.2147/dddt.s226406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/15/2020] [Indexed: 01/12/2023]
Abstract
Purpose The mechanism of cardioprotection by Kv7.1-5 (KCNQ1-5) channels inhibition by XE991 is unclear. We examined the impact of administration time on the cardioprotective efficacy of XE991, the involvement of key pro-survival kinases, and the importance of the Kv7 subchannels. Methods Isolated perfused rat hearts were divided into five groups: 1) vehicle, 2) pre-, 3) post- or 4) pre- and post-ischemic administration of XE991 or 5) chromanol 293B (Kv7.1 inhibitor) followed by infarct size quantification. HL-1 cells undergoing simulated ischemia/reperfusion were exposed to either a) vehicle, b) pre-, c) per-, d) post-ischemic administration of XE991 or pre-, per- and post-ischemic administration of e) XE991, f) Chromanol 293B or g) HMR1556 (Kv7.1 inhibitor). HL-1 cell injury was evaluated by propidium iodide/Hoechst staining. Pro-survival kinase activation of Akt, Erk and STAT3 in XE991-mediated HL-1 cell protection was evaluated using phosphokinase inhibitors. Kv7 subtype expression was examined by RT-PCR and qPCR. Results XE991, but not Chromanol 293B, reduced infarct size and improved hemodynamic recovery in all isolated heart groups. XE991 protected HL-1 cells when administered during simulated ischemia. Minor activation of the survival kinases was observed in cells exposed to XE991 but pharmacological inhibition of kinase activation did not reduce XE991-mediated protection. Kv7 subchannels 1-5 were all present in rat hearts but predominately Kv7.1 and Kv7.4 were present in HL-1 cells and selective Kv7.1 did not reduce ischemia/reperfusion injury. Conclusion The cardioprotective efficacy of XE991 seems to depend on its presence during ischemia and early reperfusion and do not rely on RISK (p-Akt and p-Erk) and SAFE (p-STAT3) pathway activation. The protective effect of XE991 seems mainly mediated through the Kv7.4 subchannel.
Collapse
Affiliation(s)
- Jan Hansen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Johnsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Møller Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Charlotte Brandt Sørensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Carlsen Elkjær
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Abstract
Kv7 channels (Kv7.1-7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1-5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2-7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2-7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.
Collapse
Affiliation(s)
- Emely Thompson
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
28
|
van der Horst J, Greenwood IA, Jepps TA. Cyclic AMP-Dependent Regulation of Kv7 Voltage-Gated Potassium Channels. Front Physiol 2020; 11:727. [PMID: 32695022 PMCID: PMC7338754 DOI: 10.3389/fphys.2020.00727] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023] Open
Abstract
Voltage-gated Kv7 potassium channels, encoded by KCNQ genes, have major physiological impacts cardiac myocytes, neurons, epithelial cells, and smooth muscle cells. Cyclic adenosine monophosphate (cAMP), a well-known intracellular secondary messenger, can activate numerous downstream effector proteins, generating downstream signaling pathways that regulate many functions in cells. A role for cAMP in ion channel regulation has been established, and recent findings show that cAMP signaling plays a role in Kv7 channel regulation. Although cAMP signaling is recognized to regulate Kv7 channels, the precise molecular mechanism behind the cAMP-dependent regulation of Kv7 channels is complex. This review will summarize recent research findings that support the mechanisms of cAMP-dependent regulation of Kv7 channels.
Collapse
Affiliation(s)
- Jennifer van der Horst
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Mondejar-Parreño G, Perez-Vizcaino F, Cogolludo A. Kv7 Channels in Lung Diseases. Front Physiol 2020; 11:634. [PMID: 32676036 PMCID: PMC7333540 DOI: 10.3389/fphys.2020.00634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. Kv7 channel α-subunits are regulated by KCNE1–5 ancillary β-subunits, which modulate several characteristics of Kv7 channels such as biophysical properties, cell-location, channel trafficking, and pharmacological sensitivity. Kv7 channels are mainly expressed in two large groups of lung tissues: pulmonary arteries (PAs) and bronchial tubes. In PA, Kv7 channels are expressed in pulmonary artery smooth muscle cells (PASMCs); while in the airway (trachea, bronchus, and bronchioles), Kv7 channels are expressed in airway smooth muscle cells (ASMCs), airway epithelial cells (AEPs), and vagal airway C-fibers (VACFs). The functional role of Kv7 channels may vary depending on the cell type. Several studies have demonstrated that the impairment of Kv7 channel has a strong impact on pulmonary physiology contributing to the pathophysiology of different respiratory diseases such as cystic fibrosis, asthma, chronic obstructive pulmonary disease, chronic coughing, lung cancer, and pulmonary hypertension. Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
30
|
Abstract
The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
31
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
32
|
Greenwood IA, Stott JB. The Gβ1 and Gβ3 Subunits Differentially Regulate Rat Vascular Kv7 Channels. Front Physiol 2020; 10:1573. [PMID: 31992990 PMCID: PMC6971187 DOI: 10.3389/fphys.2019.01573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022] Open
Abstract
Within the vasculature Kv7 channels are key regulators of basal tone and contribute to a variety of receptor mediated vasorelaxants. The Kv7.4 isoform, abundant within the vasculature, is key to these processes and was recently shown to have an obligatory requirement of G-protein βγ subunits for its voltage dependent activity. There is an increasing appreciation that with 5 Gβ subunits and 12 Gγ subunits described in mammalian cells that different Gβxγx combinations can confer selectivity in Gβγ effector stimulation. Therefore, we aimed to characterize the Gβ subunit(s) which basally regulate Kv7.4 channels and native vascular Kv7 channels. In Chinese Hamster Ovary cells overexpressing Kv7.4 and different Gβx subunits only Gβ1, Gβ3, and Gβ5 enhanced Kv7.4 currents, increasing the activation kinetics and negatively shifting the voltage dependence of activation. In isolated rat renal artery myocytes, proximity ligation assay detected an interaction of Kv7.4 with Gβ1 and Gβ3 subunits, but not other isoforms. Morpholino directed knockdown of Gβ1 in rat renal arteries did not alter Kv7 dependent currents but reduced Kv7.4 protein expression. Knockdown of Gβ3 in rat renal arteries resulted in decreased basal K+ currents which were not sensitive to pharmacological inhibition of Kv7 channels. These studies implicate the Gβ1 subunit in the synthesis or stability of Kv7.4 proteins, whilst revealing that the Gβ3 isoform is responsible for the basal activity of Kv7 channels in native rat renal myocytes. These findings demonstrate that different Gβ subunits have important individual roles in ion channel regulation.
Collapse
Affiliation(s)
- Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Jennifer B Stott
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| |
Collapse
|
33
|
Zavaritskaya O, Dudem S, Ma D, Rabab KE, Albrecht S, Tsvetkov D, Kassmann M, Thornbury K, Mladenov M, Kammermeier C, Sergeant G, Mullins N, Wouappi O, Wurm H, Kannt A, Gollasch M, Hollywood MA, Schubert R. Vasodilation of rat skeletal muscle arteries by the novel BK channel opener GoSlo is mediated by the simultaneous activation of BK and K v 7 channels. Br J Pharmacol 2020; 177:1164-1186. [PMID: 31658366 PMCID: PMC7042121 DOI: 10.1111/bph.14910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/17/2023] Open
Abstract
Background and Purpose BK channels play important roles in various physiological and pathophysiological processes and thus have been the target of several drug development programmes focused on creating new efficacious BK channel openers, such as the GoSlo‐SR compounds. However, the effect of GoSlo‐SR compounds on vascular smooth muscle has not been studied. Therefore, we tested the hypothesis that GoSlo‐SR compounds dilate arteries exclusively by activating BK channels. Experimental Approach Experiments were performed on rat Gracilis muscle, saphenous, mesenteric and tail arteries using isobaric and isometric myography, sharp microelectrodes, digital droplet PCR and the patch‐clamp technique. Key Results GoSlo‐SR compounds dilated isobaric and relaxed and hyperpolarised isometric vessel preparations and their effects were abolished after (a) functionally eliminating K+ channels by pre‐constriction with 50 mM KCl or (b) blocking all K+ channels known to be expressed in vascular smooth muscle. However, these effects were not blocked when BK channels were inhibited. Surprisingly, the Kv7 channel inhibitor XE991 reduced their effects considerably, but neither Kv1 nor Kv2 channel blockers altered the inhibitory effects of GoSlo‐SR. However, the combined blockade of BK and Kv7 channels abolished the GoSlo‐SR‐induced relaxation. GoSlo‐SR compounds also activated Kv7.4 and Kv7.5 channels expressed in HEK 293 cells. Conclusion and Implications This study shows that GoSlo‐SR compounds are effective relaxants in vascular smooth muscle and mediate their effects by a combined activation of BK and Kv7.4/Kv7.5 channels. Activation of Kv1, Kv2 or Kv7.1 channels or other vasodilator pathways seems not to be involved.
Collapse
Affiliation(s)
- Olga Zavaritskaya
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Srikanth Dudem
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Dongyu Ma
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Kaneez E Rabab
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Sarah Albrecht
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Keith Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland.,Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mitko Mladenov
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Biology, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius, University of Skopje, Skopje, Macedonia.,Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Claire Kammermeier
- Sanofi Diabetes Research, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Gerard Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland.,Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Nicholas Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Ornella Wouappi
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hannah Wurm
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Aimo Kannt
- Sanofi Diabetes Research, Industriepark Hoechst, Frankfurt am Main, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland.,Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Medicine, Department of Physiology, Augsburg University, Augsburg, Germany
| |
Collapse
|
34
|
Characterization and functional roles of KCNQ-encoded voltage-gated potassium (Kv7) channels in human corpus cavernosum smooth muscle. Pflugers Arch 2020; 472:89-102. [PMID: 31919767 DOI: 10.1007/s00424-019-02343-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 12/23/2022]
Abstract
The group of KCNQ-encoded voltage-gated potassium (Kv7) channels includes five family members (Kv7.1-7.5). We examined the molecular expression and functional roles of Kv7 channels in corporal smooth muscle (CSM). Isolated rabbit CSM strips were mounted in an organ bath system to characterize Kv7 channels during CSM relaxation. Intracellular Ca2+ levels were measured in the CSM using the Ca2+ dye Fluo-4 AM. The expression of the KCNQ1-5 (the encoding genes for Kv7.1-7.5) and KCNE1-5 subtypes was determined by quantitative real-time PCR. Electrophysiological recordings and an in situ proximity ligation assay (PLA) were also performed. ML213 (a Kv7.2/7.4/7.5 activator) exhibited the most potent relaxation effect. XE911 (a Kv7.1-7.5 blocker) significantly inhibited the relaxation caused by ML213. Removal of the endothelium from the CSM did not affect the relaxation effect of ML213. H-89 (a protein kinase A inhibitor) and ESI-09 (an exchange protein directly activated by cAMP inhibitor) significantly inhibited ML213-induced relaxation (H-89: 31.3%; ESI-09: 52.7%). XE991 significantly increased basal [Ca2+]i in hCSM cells. KCNQ4 (the Kv7.4-encoding gene) and KCNE4 in CSM were the most abundantly expressed subtypes in humans and rats, respectively. KCNQ4 and KCNE4 expression was significantly decreased in diabetes mellitus rats. ML213 significantly increased the outward current amplitude. XE991 inhibited the ML213-induced outward currents. ML213 hyperpolarized the hCSM cell membrane potential. Subsequent addition of XE991 completely reversed the ML213-induced hyperpolarizing effects. A combination of Kv7.4 and Kv7.5 antibodies generated a strong PLA signal. We found that the Kv7.4 channel is a potential target for ED treatment.
Collapse
|
35
|
Affiliation(s)
- Ivan Rivera-Arconada
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Jorge Vicente-Baz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
36
|
Stott JB, Barrese V, Suresh M, Masoodi S, Greenwood IA. Investigating the Role of G Protein βγ in Kv7-Dependent Relaxations of the Rat Vasculature. Arterioscler Thromb Vasc Biol 2019; 38:2091-2102. [PMID: 30002060 DOI: 10.1161/atvbaha.118.311360] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Objective- In renal arteries, inhibitors of G protein βγ subunits (Gβγ) reduce Kv7 activity and inhibit Kv7-dependent receptor-mediated vasorelaxations. However, the mechanisms underlying receptor-mediated relaxation are artery specific. Consequently, the aim of this study was to ascertain the role of Gβγ in Kv7-dependent vasorelaxations of the rat vasculature. Approach and Results- Isometric tension recording was performed in isolated rat renal, mesenteric, and cerebral arteries to study isoproterenol and calcitonin gene-related peptide relaxations. Kv7.4 was knocked down via morpholino transfection while inhibition of Gβγ was investigated with gallein and M119K. Proximity ligation assay was performed on isolated myocytes to study the association between Kv7.4 and G protein β subunits or signaling intermediaries. Isoproterenol or calcitonin gene-related peptide-induced relaxations were attenuated by Kv7.4 knockdown in all arteries studied. Inhibition of Gβγ with gallein or M119K had no effect on isoproterenol-mediated relaxations in mesenteric artery but had a marked effect on calcitonin gene-related peptide-induced responses in mesenteric artery and cerebral artery and isoproterenol responses in renal artery. Isoproterenol increased association with Kv7.4 and Rap1a in mesenteric artery which were not sensitive to gallein, whereas in renal artery, isoproterenol increased Kv7.4-AKAP (A-kinase anchoring protein) associations in a gallein-sensitive manner. Conclusions- The Gβγ-Kv7 relationship differs between vessels and is an essential requirement for AKAP, but not Rap-mediated regulation of the channel.
Collapse
Affiliation(s)
- Jennifer B Stott
- From the Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| | - Vincenzo Barrese
- From the Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| | - Malavika Suresh
- From the Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| | - Shirou Masoodi
- From the Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| | - Iain A Greenwood
- From the Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| |
Collapse
|
37
|
Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:502-510. [PMID: 31147021 DOI: 10.1016/j.msec.2019.04.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
As a first step towards the production of functional cell sheets applicable for the regeneration of gut muscle layer, microstructured bacterial cellulose (mBC) was assessed for its ability to support the growth of enteric nervous system (ENS) and gut smooth muscle cells (SMCs). To improve the cellular response, mBC was modified with silk sericin (SS) which has renowned abilities in supporting tissue regeneration. While SS did not impair the line structures imparted to BC by PDMS templates, similarly to the patterns, it affected its physical properties, ultimately leading to variations in the behavior of cells cultured onto these substrates. Enabled by the stripes on mBC, both SMCs and ENS cells were aligned in vitro, presenting the in vivo-like morphology essential for peristalsis and gut function. Interestingly, cell growth and differentiation remarkably enhanced upon SS addition to the samples, indicating the promise of the mBC-SS constructs as biomaterial not only for gut engineering, but also for tissues where cellular alignment is required for function, namely the heart, blood vessels, and similars.
Collapse
|
38
|
Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R. Negative feedback regulation of vasocontraction by potassium channels in 10- to 15-day-old rats: Dominating role of K v 7 channels. Acta Physiol (Oxf) 2019; 225:e13176. [PMID: 30136434 DOI: 10.1111/apha.13176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/11/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
AIM Potassium channels are key regulators of smooth muscle membrane potential and arterial tone. However, the roles of potassium channels in vascular tone regulation in the systemic circulation during early postnatal development are poorly understood. Therefore, this study tested the hypothesis that the negative feedback regulation of vasocontraction by potassium channels changes during maturation. METHODS Experiments were performed on endothelium-denuded saphenous arteries from 10- to 15-day-old and 2- to 3-month-old male rats. Isometric force and membrane potential were recorded using wire myography and the sharp microelectrode technique respectively; mRNA and protein contents were determined by qPCR and Western blotting. RESULTS The effects of Kv 1, Kir and Kv 7 channel blockers (DPO-1, BaCl2 , XE991) on methoxamine-induced contraction were larger in arteries of 10- to 15-day-old compared to 2- to 3-month-old animals. In contrast, the BKC a channel blocker iberiotoxin had a stronger influence in 2- to 3- month-old rats. The effects of KATP and Kv 2 channel blockers (glibenclamide, stromatoxin) were not pronounced at both ages. The larger influence of Kv 7 and Kir channel blockade on arterial contraction in 10- to 15-day-old rats was associated with more prominent smooth muscle depolarization. The developmental alterations in potassium channel functioning were generally consistent with their mRNA and protein expression levels in arterial smooth muscle. CONCLUSION The negative feedback regulation of vasocontraction by potassium channels varies during maturation depending on the channel type. A dominating contribution of Kv 7 channels to the regulation of basal tone and agonist-induced contraction was observed in arteries of 10- to 15-day-old animals.
Collapse
Affiliation(s)
- Anastasia A. Shvetsova
- Centre for Biomedicine and Medical Technology Mannheim (CBTM); European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Medical Faculty Mannheim; Heidelberg University; Heidelberg Germany
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
| | - Dina K. Gaynullina
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
- Department of Physiology; Russian National Research Medical University; Moscow Russia
| | - Olga S. Tarasova
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim (CBTM); European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Medical Faculty Mannheim; Heidelberg University; Heidelberg Germany
| |
Collapse
|
39
|
Abstract
The highly structurally similar drugs flupirtine and retigabine have been regarded as safe and effective for many years but lately they turned out to exert intolerable side effects. While the twin molecules share the mode of action, both stabilize the open state of voltage-gated potassium channels, the form and severity of adverse effects is different. The analgesic flupirtine caused drug-induced liver injury in rare but fatal cases, whereas prolonged use of the antiepileptic retigabine led to blue tissue discoloration. Because the adverse effects seem unrelated to the mode of action, it is likely, that both drugs that occupied important therapeutic niches, could be replaced. Reasons for the clinically relevant toxicity will be clarified and future substitutes for these drugs presented in this review.
Collapse
|
40
|
Wang L, Qiao GH, Hu HN, Gao ZB, Nan FJ. Discovery of Novel Retigabine Derivatives as Potent KCNQ4 and KCNQ5 Channel Agonists with Improved Specificity. ACS Med Chem Lett 2019; 10:27-33. [PMID: 30655942 DOI: 10.1021/acsmedchemlett.8b00315] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Recent research suggests that KCNQ isoforms, particularly the KCNQ4 and KCNQ5 subtypes expressed in smooth muscle cells, are involved in both establishing and maintaining resting membrane potentials and regulating smooth muscle contractility. Retigabine (RTG) is a first-in-class antiepileptic drug that potentiates neuronal KCNQ potassium channels, but poor subtype selectivity limits its further application as a pharmacological tool. In this study, we improved the subtype specificity of retigabine by altering the N-1/3 substituents and discovered several compounds that show better selectivity for KCNQ4 and KCNQ5 channels. Among these compounds, 10g is highly selective for KCNQ4 and KCNQ5 channels without potentiating KCNQ1 and KCNQ2 channels. These results are an advance in the exploration of small molecule modifiers that selectively activate different KCNQ isoforms. The developed compounds could also serve as new pharmacological tools for elucidating the function of KCNQ channels natively expressed in various tissues.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Guan-Hua Qiao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Hai-Ning Hu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhao-Bing Gao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fa-Jun Nan
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
41
|
Gollasch M, Welsh DG, Schubert R. Perivascular adipose tissue and the dynamic regulation of K v 7 and K ir channels: Implications for resistant hypertension. Microcirculation 2018; 25. [PMID: 29211322 DOI: 10.1111/micc.12434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Resistant hypertension is defined as high blood pressure that remains uncontrolled despite treatment with at least three antihypertensive drugs at adequate doses. Resistant hypertension is an increasingly common clinical problem in older age, obesity, diabetes, sleep apnea, and chronic kidney disease. Although the direct vasodilator minoxidil was introduced in the early 1970s, only recently has this drug been shown to be particularly effective in a subgroup of patients with treatment-resistant or uncontrolled hypertension. This pharmacological approach is interesting from a mechanistic perspective as minoxidil is the only clinically used K+ channel opener today, which targets a subclass of K+ channels, namely KATP channels in VSMCs. Beside KATP channels, two other classes of VSMC K+ channels could represent novel effective targets for treatment of resistant hypertension, namely Kv 7 (KCNQ) and inward rectifier potassium (Kir 2.1) channels. Interestingly, these channels are unique among VSMC potassium channels. First, both have been implicated in the control of microvascular tone by perivascular adipose tissue. Second, they exhibit biophysical properties strongly controlled and regulated by membrane voltage, but not intracellular calcium. This review focuses on Kv 7 (Kv 7.1-5) and Kir (Kir 2.1) channels in VSMCs as potential novel drug targets for treatment of resistant hypertension, particularly in comorbid conditions such as obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Maik Gollasch
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC) - a joint cooperation between the Charité - University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
42
|
Byron KL, Brueggemann LI. Kv7 potassium channels as signal transduction intermediates in the control of microvascular tone. Microcirculation 2018; 25. [PMID: 28976052 DOI: 10.1111/micc.12419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
Potassium channels are recognized as important regulators of cellular functions in most, if not all cell types. These cellular proteins assemble to form gated pores in the plasma membrane, which serve to regulate the flow of potassium ions (K+ ) from the cytosol to the extracellular space. In VSMCs, the open state of potassium channels enables the efflux of K+ and thereby establishes a negative resting voltage across the plasma membrane that inhibits the opening of VSCCs. Under these conditions, cytosolic Ca2+ concentrations are relatively low and Ca2+ -dependent contraction is inhibited. Recent research has identified Kv7 family potassium channels as important contributors to resting membrane voltage in VSMCs, with much of the research focusing on the effects of drugs that specifically activate or block these channels to produce corresponding effects on VSMC contraction and vascular tone. Increasingly, evidence is emerging that these channels are not just good drug targets-they are also essential intermediates in vascular signal transduction, mediating vasoconstrictor or vasodilator responses to a variety of physiological stimuli. This review will summarize recent research findings that support a crucial function of Kv7 channels in both positive (vasoconstrictive) and negative (vasorelaxant) regulation of microvascular tone.
Collapse
Affiliation(s)
- Kenneth L Byron
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Lyubov I Brueggemann
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
43
|
Mechanisms of PKA-Dependent Potentiation of Kv7.5 Channel Activity in Human Airway Smooth Muscle Cells. Int J Mol Sci 2018; 19:ijms19082223. [PMID: 30061510 PMCID: PMC6121446 DOI: 10.3390/ijms19082223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
β-adrenergic receptor (βAR) activation promotes relaxation of both vascular and airway smooth muscle cells (VSMCs and ASMCs, respectively), though the signaling mechanisms have not been fully elucidated. We previously found that the activity of Kv7.5 voltage-activated potassium channels in VSMCs is robustly enhanced by activation of βARs via a mechanism involving protein kinase A (PKA)-dependent phosphorylation. We also found that enhancement of Kv7 channel activity in ASMCs promotes airway relaxation. Here we provide evidence that Kv7.5 channels are natively expressed in primary cultures of human ASMCs and that they conduct currents which are robustly enhanced in response to activation of the βAR/cyclic adenosine monophosphate (cAMP)/PKA pathway. MIT Scansite software analysis of putative PKA phosphorylation sites on Kv7.5 identified 8 candidate serine or threonine residues. Each residue was individually mutated to an alanine to prevent its phosphorylation and then tested for responses to βAR activation or to stimuli that elevate cAMP levels. Only the mutation of serine 53 (S53A), located on the amino terminus of Kv7.5, significantly reduced the increase in Kv7.5 current in response to these stimuli. A phospho-mimic mutation (S53D) exhibited characteristics of βAR-activated Kv7.5. Serine-to-alanine mutations of 6 putative PKA phosphorylation sites on the Kv7.5 C-terminus, individually or in combination, did not significantly reduce the enhancement of the currents in response to forskolin treatment (to elevate cAMP levels). We conclude that phosphorylation of S53 on the amino terminus of Kv7.5 is essential for PKA-dependent enhancement of channel activity in response to βAR activation in vascular and airway smooth muscle cells.
Collapse
|
44
|
Akoumianakis I, Antoniades C. The interplay between adipose tissue and the cardiovascular system: is fat always bad? Cardiovasc Res 2018; 113:999-1008. [PMID: 28582523 DOI: 10.1093/cvr/cvx111] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
Obesity is a risk factor for cardiovascular disease (CVD). However, clinical research has revealed a paradoxically protective role for obesity in patients with chronic diseases including CVD, suggesting that the biological 'quality' of adipose tissue (AT) may be more important than overall AT mass or body weight. Importantly, AT is recognised as a dynamic organ secreting a wide range of biologically active adipokines, microRNAs, gaseous messengers, and other metabolites that affect the cardiovascular system in both endocrine and paracrine ways. Despite being able to mediate normal cardiovascular function under physiological conditions, AT undergoes a phenotypic shift characterised by acquisition of pro-oxidant and pro-inflammatory properties in cases of CVD. Crucially, recent evidence suggests that AT depots such as perivascular AT and epicardial AT are able to modify their phenotype in response to local signals of vascular and myocardial origin, respectively. Utilisation of this unique property of certain AT depots to dynamically track cardiovascular biology may reveal novel diagnostic and prognostic tools against CVD. Better understanding of the mechanisms controlling the 'quality' of AT secretome, as well as the communication links between AT and the cardiovascular system, is required for the efficient management of CVD.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Nassoiy SP, Babu FS, LaPorte HM, Byron KL, Majetschak M. Effects of the Kv7 voltage-activated potassium channel inhibitor linopirdine in rat models of haemorrhagic shock. Clin Exp Pharmacol Physiol 2018; 45:10.1111/1440-1681.12958. [PMID: 29702725 PMCID: PMC6204121 DOI: 10.1111/1440-1681.12958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
Recently, we demonstrated that Kv7 voltage-activated potassium channel inhibitors reduce fluid resuscitation requirements in short-term rat models of haemorrhagic shock. The aim of the present study was to further delineate the therapeutic potential and side effect profile of the Kv7 channel blocker linopirdine in various rat models of severe haemorrhagic shock over clinically relevant time periods. Intravenous administration of linopirdine, either before (1 or 3 mg/kg) or after (3 mg/kg) a 40% blood volume haemorrhage, did not affect blood pressure and survival in lethal haemorrhage models without fluid resuscitation. A single bolus of linopirdine (3 mg/kg) at the beginning of fluid resuscitation after haemorrhagic shock transiently reduced early fluid requirements in spontaneously breathing animals that were resuscitated for 3.5 hours. When mechanically ventilated rats were resuscitated after haemorrhagic shock with normal saline (NS) or with linopirdine-supplemented (10, 25 or 50 μg/mL) NS for 4.5 hours, linopirdine significantly and dose-dependently reduced fluid requirements by 14%, 45% and 55%, respectively. Lung and colon wet/dry weight ratios were reduced with linopirdine (25/50 μg/mL). There was no evidence for toxicity or adverse effects based on measurements of routine laboratory parameters and inflammation markers in plasma and tissue homogenates. Our findings support the concept that linopirdine-supplementation of resuscitation fluids is a safe and effective approach to reduce fluid requirements and tissue oedema formation during resuscitation from haemorrhagic shock.
Collapse
Affiliation(s)
- Sean P. Nassoiy
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago, Stritch School of Medicine
| | - Favin S. Babu
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago, Stritch School of Medicine
| | - Heather M. LaPorte
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago, Stritch School of Medicine
| | - Kenneth L. Byron
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago, Stritch School of Medicine
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine
| |
Collapse
|
46
|
Barrese V, Stott JB, Figueiredo HB, Aubdool AA, Hobbs AJ, Jepps TA, McNeish AJ, Greenwood IA. Angiotensin II Promotes K V7.4 Channels Degradation Through Reduced Interaction With HSP90 (Heat Shock Protein 90). Hypertension 2018; 71:1091-1100. [PMID: 29686000 DOI: 10.1161/hypertensionaha.118.11116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
Voltage-gated Kv7.4 channels have been implicated in vascular smooth muscle cells' activity because they modulate basal arterial contractility, mediate responses to endogenous vasorelaxants, and are downregulated in several arterial beds in different models of hypertension. Angiotensin II (Ang II) is a key player in hypertension that affects the expression of several classes of ion channels. In this study, we evaluated the effects of Ang II on the expression and function of vascular Kv7.4. Western blot and quantitative polymerase chain reaction revealed that in whole rat mesenteric artery, Ang II incubation for 1 to 7 hours decreased Kv7.4 protein expression without reducing transcript levels. Moreover, Ang II decreased XE991 (Kv7)-sensitive currents and attenuated membrane potential hyperpolarization and relaxation induced by the Kv7 activator ML213. Ang II also reduced Kv7.4 staining at the plasma membrane of vascular smooth muscle cells. Proteasome inhibition with MG132 prevented Ang II-induced decrease of Kv7.4 levels and counteracted the functional impairment of ML213-induced relaxation in myography experiments. Proximity ligation assays showed that Ang II impaired the interaction of Kv7.4 with the molecular chaperone HSP90 (heat shock protein 90), enhanced the interaction of Kv7.4 with the E3 ubiquitin ligase CHIP (C terminus of Hsp70-interacting protein), and increased Kv7.4 ubiquitination. Similar alterations were found in mesenteric vascular smooth muscle cells isolated from Ang II-infused mice. The effect of Ang II was emulated by 17-AAG (17-demethoxy-17-(2-propenylamino) geldanamycin) that inhibits HSP90 interactions with client proteins. These results show that Ang II downregulates Kv7.4 by altering protein stability through a decrease of its interaction with HSP90. This leads to the recruitment of CHIP and Kv7.4 ubiquitination and degradation via the proteasome.
Collapse
Affiliation(s)
- Vincenzo Barrese
- From the Vascular Research Centre, Institute of Molecular and Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., H.B.F., I.A.G.)
| | - Jennifer B Stott
- From the Vascular Research Centre, Institute of Molecular and Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., H.B.F., I.A.G.)
| | - Hericka B Figueiredo
- From the Vascular Research Centre, Institute of Molecular and Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., H.B.F., I.A.G.)
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary, University of London, United Kingdom (A.A.A., A.J.H.)
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary, University of London, United Kingdom (A.A.A., A.J.H.)
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Denmark (T.A.J.)
| | - Alister J McNeish
- and Reading School of Pharmacy, University of Reading, United Kingdom (A.J.M.)
| | - Iain A Greenwood
- From the Vascular Research Centre, Institute of Molecular and Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., H.B.F., I.A.G.)
| |
Collapse
|
47
|
Barrese V, Stott JB, Greenwood IA. KCNQ-Encoded Potassium Channels as Therapeutic Targets. Annu Rev Pharmacol Toxicol 2018; 58:625-648. [DOI: 10.1146/annurev-pharmtox-010617-052912] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Iain A. Greenwood
- Vascular Biology Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, SW17 0RE, United Kingdom;, ,
| |
Collapse
|
48
|
Provence A, Angoli D, Petkov GV. K V7 Channel Pharmacological Activation by the Novel Activator ML213: Role for Heteromeric K V7.4/K V7.5 Channels in Guinea Pig Detrusor Smooth Muscle Function. J Pharmacol Exp Ther 2018; 364:131-144. [PMID: 29084816 PMCID: PMC5741046 DOI: 10.1124/jpet.117.243162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023] Open
Abstract
Voltage-gated KV7 channels (KV7.1 to KV7.5) are important regulators of the cell membrane potential in detrusor smooth muscle (DSM) of the urinary bladder. This study sought to further the current knowledge of KV7 channel function at the molecular, cellular, and tissue levels in combination with pharmacological tools. We used isometric DSM tension recordings, ratiometric fluorescence Ca2+ imaging, amphotericin-B perforated patch-clamp electrophysiology, and in situ proximity ligation assay (PLA) in combination with the novel compound N-(2,4,6-trimethylphenyl)-bicyclo[2.2.1]heptane-2-carboxamide (ML213), an activator of KV7.2, KV7.4, and KV7.5 channels, to examine their physiologic roles in guinea pig DSM function. ML213 caused a concentration-dependent (0.1-30 µM) inhibition of spontaneous phasic contractions in DSM isolated strips; effects blocked by the KV7 channel inhibitor XE991 (10 µM). ML213 (0.1-30 µM) also reduced pharmacologically induced and nerve-evoked contractions in DSM strips. Consistently, ML213 (10 µM) decreased global intracellular Ca2+ concentrations in Fura-2-loaded DSM isolated strips. Perforated patch-clamp electrophysiology revealed that ML213 (10 µM) caused an increase in the amplitude of whole-cell KV7 currents. Further, in current-clamp mode of the perforated patch clamp, ML213 hyperpolarized DSM cell membrane potential in a manner reversible by washout or XE991 (10 µM), consistent with ML213 activation of KV7 channel currents. Preapplication of XE991 (10 µM) not only depolarized the DSM cells, but also blocked ML213-induced hyperpolarization, confirming ML213 selectivity for KV7 channel subtypes. In situ PLA revealed colocalization and expression of heteromeric KV7.4/KV7.5 channels in DSM isolated cells. These combined results suggest that ML213-sensitive KV7.4- and KV7.5-containing channels are essential regulators of DSM excitability and contractility.
Collapse
Affiliation(s)
- Aaron Provence
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (A.P., D.A., G.V.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (G.V.P.)
| | - Damiano Angoli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (A.P., D.A., G.V.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (G.V.P.)
| | - Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (A.P., D.A., G.V.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (G.V.P.)
| |
Collapse
|
49
|
Fosmo AL, Skraastad ØB. The Kv7 Channel and Cardiovascular Risk Factors. Front Cardiovasc Med 2017; 4:75. [PMID: 29259974 PMCID: PMC5723334 DOI: 10.3389/fcvm.2017.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
Potassium channels play a pivotal role in the regulation of excitability in cells such as neurons, cardiac myocytes, and vascular smooth muscle cells. The KCNQ (Kv7) family of voltage-activated K+ channels hyperpolarizes the cell and stabilizes the membrane potential. Here, we outline how Kv7 channel activity may contribute to the development of the cardiovascular risk factors such as hypertension, diabetes, and obesity. Questions and hypotheses regarding previous and future research have been raised. Alterations in the Kv7 channel may contribute to the development of cardiovascular disease (CVD). Pharmacological modification of Kv7 channels may represent a possible treatment for CVD in the future.
Collapse
Affiliation(s)
- Andreas L Fosmo
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Øyvind B Skraastad
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
50
|
Haick JM, Brueggemann LI, Cribbs LL, Denning MF, Schwartz J, Byron KL. PKC-dependent regulation of Kv7.5 channels by the bronchoconstrictor histamine in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L822-L834. [PMID: 28283479 DOI: 10.1152/ajplung.00567.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Kv7 potassium channels have recently been found to be expressed and functionally important for relaxation of airway smooth muscle. Previous research suggests that native Kv7 currents are inhibited following treatment of freshly isolated airway smooth muscle cells with bronchoconstrictor agonists, and in intact airways inhibition of Kv7 channels is sufficient to induce bronchiolar constriction. However, the mechanism by which Kv7 currents are inhibited by bronchoconstrictor agonists has yet to be elucidated. In the present study, native Kv7 currents in cultured human trachealis smooth muscle cells (HTSMCs) were observed to be inhibited upon treatment with histamine; inhibition of Kv7 currents was associated with membrane depolarization and an increase in cytosolic Ca2+ ([Ca2+]cyt). The latter response was inhibited by verapamil, a blocker of L-type voltage-sensitive Ca2+ channels (VSCCs). Protein kinase C (PKC) has been implicated as a mediator of bronchoconstrictor actions, although the targets of PKC are not clearly established. We found that histamine treatment significantly and dose-dependently suppressed currents through overexpressed wild-type human Kv7.5 (hKv7.5) channels in cultured HTSMCs, and this effect was inhibited by the PKC inhibitor Ro-31-8220 (3 µM). The PKC-dependent suppression of hKv7.5 currents corresponded with a PKC-dependent increase in hKv7.5 channel phosphorylation. Knocking down or inhibiting PKCα, or mutating hKv7.5 serine 441 to alanine, abolished the inhibitory effects of histamine on hKv7.5 currents. These findings provide the first evidence linking PKC activation to suppression of Kv7 currents, membrane depolarization, and Ca2+ influx via L-type VSCCs as a mechanism for histamine-induced bronchoconstriction.
Collapse
Affiliation(s)
- Jennifer M Haick
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Leanne L Cribbs
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Mitchell F Denning
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois; and
| | - Jeffrey Schwartz
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois;
| |
Collapse
|