1
|
Liu X, Lam SM, Zheng Y, Mo L, Li M, Sun T, Long X, Peng S, Zhang X, Mei M, Shui G, Bao S. Palmitoyl-carnitine Regulates Lung Development by Promoting Pulmonary Mesenchyme Proliferation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0620. [PMID: 40104443 PMCID: PMC11914330 DOI: 10.34133/research.0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 03/20/2025]
Abstract
Disruption of acylcarnitine homeostasis results in life-threatening outcomes in humans. Carnitine-acylcarnitine translocase deficiency (CACTD) is a scarce autosomal recessive genetic disease and may result in patients' death due to heart arrest or respiratory insufficiency. However, the reasons and mechanism of CACTD inducing respiratory insufficiency have never been elucidated. Herein, we employed lipidomic techniques to create comprehensive lipidomic maps of entire lungs throughout both prenatal and postnatal developmental stages in mice. We found that the acylcarnitines manifested notable variations and coordinated the expression levels of carnitine-acylcarnitine translocase (Cact) across these lung developmental stages. Cact-null mice were all dead with a symptom of respiratory distress and exhibited failed lung development. Loss of Cact resulted in an accumulation of palmitoyl-carnitine (C16-acylcarnitine) in the lungs and promoted the proliferation of mesenchymal progenitor cells. Mesenchymal cells with elevated C16-acylcarnitine levels displayed minimal changes in energy metabolism but, upon investigation, revealed an interaction with sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (Samhd1), leading to decreased protein abundance and enhanced cell proliferation. Thus, our findings present a mechanism addressing respiratory distress in CACTD, offering a valuable reference point for both the elucidation of pathogenesis and the exploration of treatment strategies for neonatal respiratory distress.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Respiratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lesong Mo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Long
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Peng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwei Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Kuipers ME, van Doorn-Wink KCJ, Hiemstra PS, Slats AM. Predicting Radiation-Induced Lung Injury in Patients With Lung Cancer: Challenges and Opportunities. Int J Radiat Oncol Biol Phys 2024; 118:639-649. [PMID: 37924986 DOI: 10.1016/j.ijrobp.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Radiation-induced lung injury (RILI) is one of the main dose-limiting toxicities in radiation therapy (RT) for lung cancer. Approximately 10% to 20% of patients show signs of RILI of variable severity. The reason for the wide range of RILI severity and the mechanisms underlying its development are only partially understood. A number of clinical risk factors have been identified that can aid in clinical decision making. Technological advancements in RT and the use of strict organ-at-risk dose constraints have helped to reduce RILI. Predicting patients at risk for RILI may be further improved with a combination of cytokine assessments, γH2AX-assays in leukocytes, or epigenetic markers. A complicating factor is the lack of an objective definition of RILI. Tools such as computed tomography densitometry, fluorodeoxyglucose-positron emission tomography uptake, changes in lung function measurements, and exhaled breath analysis can be implemented to better define and quantify RILI. This can aid in the search for new biomarkers, which can be accelerated by omics techniques, single-cell RNA sequencing, mass cytometry, and advances in patient-specific in vitro cell culture models. An objective quantification of RILI combined with these novel techniques can aid in the development of biomarkers to better predict patients at risk and allow personalized treatment decisions.
Collapse
Affiliation(s)
- Merian E Kuipers
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelies M Slats
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Assou S, Ahmed E, Morichon L, Nasri A, Foisset F, Bourdais C, Gros N, Tieo S, Petit A, Vachier I, Muriaux D, Bourdin A, De Vos J. The Transcriptome Landscape of the In Vitro Human Airway Epithelium Response to SARS-CoV-2. Int J Mol Sci 2023; 24:12017. [PMID: 37569398 PMCID: PMC10418806 DOI: 10.3390/ijms241512017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Airway-liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (IFI44, IFIT1, IFIT3, IFI35, IRF9, MX1, OAS1, OAS3 and ISG15) and inflammatory genes (NFKBIA, CSF1, FOSL1, IL32 and CXCL10) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus. Extracellular matrix genes (ITGB6, ITGB1 and GJA1) were also altered in infected cells. Single-cell RNA sequencing data revealed that SARS-CoV-2 infection damaged the respiratory epithelium, particularly mature ciliated cells. The expression of genes encoding intercellular communication and adhesion proteins was also deregulated, suggesting a mechanism to promote shedding of infected epithelial cells. These data demonstrate that ALI/iALI models help to explain the airway epithelium response to SARS-CoV-2 infection and are a key tool for developing COVID-19 treatments.
Collapse
Affiliation(s)
- Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Engi Ahmed
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - Lisa Morichon
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
- CEMIPAI, Université de Montpellier, CNRS UAR3725, 34090 Montpellier, France; (N.G.); (D.M.)
| | - Amel Nasri
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Florent Foisset
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Carine Bourdais
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Nathalie Gros
- CEMIPAI, Université de Montpellier, CNRS UAR3725, 34090 Montpellier, France; (N.G.); (D.M.)
| | - Sonia Tieo
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34090 Montpellier, France;
| | - Aurelie Petit
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - Delphine Muriaux
- CEMIPAI, Université de Montpellier, CNRS UAR3725, 34090 Montpellier, France; (N.G.); (D.M.)
- IRIM, Université de Montpellier, CNRS UMR9004, 34090 Montpellier, France
| | - Arnaud Bourdin
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - John De Vos
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
- Department of Cell and Tissue Engineering, University of Montpellier, CHU Montpellier, 34090 Montpellier, France
| |
Collapse
|
4
|
Differentiation of Human Induced Pluripotent Stem Cells from Patients with Severe COPD into Functional Airway Epithelium. Cells 2022; 11:cells11152422. [PMID: 35954266 PMCID: PMC9368529 DOI: 10.3390/cells11152422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms. Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease, including the impact of genetic susceptibility. Methods: We developed a simple and reliable method for reprogramming peripheral blood mononuclear cells into hiPSCs and to differentiate them into air−liquid interface bronchial epithelium within 45 days. Importantly, this method does not involve any cell sorting step. We reprogrammed blood cells from one healthy control and three patients with very severe COPD. Results: The mean cell purity at the definitive endoderm and ventral anterior foregut endoderm (vAFE) stages was >80%, assessed by quantifying C-X-C Motif Chemokine Receptor 4/SRY-Box Transcription Factor 17 (CXCR4/SOX17) and NK2 Homeobox 1 (NKX2.1) expression, respectively. vAFE cells from all four hiPSC lines differentiated into bronchial epithelium in air−liquid interface conditions, with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells, as found in vivo. The hiPSC-derived airway epithelium (iALI) from patients with very severe COPD and from the healthy control were undistinguishable. Conclusions: iALI bronchial epithelium is ready for better understanding lung disease pathogenesis and accelerating drug discovery.
Collapse
|
5
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
6
|
Lange P, Ahmed E, Lahmar ZM, Martinez FJ, Bourdin A. Natural history and mechanisms of COPD. Respirology 2021; 26:298-321. [PMID: 33506971 DOI: 10.1111/resp.14007] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The natural history of COPD is complex, and the disease is best understood as a syndrome resulting from numerous interacting factors throughout the life cycle with smoking being the strongest inciting feature. Unfortunately, diagnosis is often delayed with several longitudinal cohort studies shedding light on the long 'preclinical' period of COPD. It is now accepted that individuals presenting with different COPD phenotypes may experience varying natural history of their disease. This includes its inception, early stages and progression to established disease. Several scenarios regarding lung function course are possible, but it may conceptually be helpful to distinguish between individuals with normal maximally attained lung function in their early adulthood who thereafter experience faster than normal FEV1 decline, and those who may achieve a lower than normal maximally attained lung function. This may be the main mechanism behind COPD in the latter group, as the decline in FEV1 during their adult life may be normal or only slightly faster than normal. Regardless of the FEV1 trajectory, continuous smoking is strongly associated with disease progression, development of structural lung disease and poor prognosis. In developing countries, factors such as exposure to biomass and sequelae after tuberculosis may lead to a more airway-centred COPD phenotype than seen in smokers. Mechanistically, COPD is characterized by a combination of structural and inflammatory changes. It is unlikely that all patients share the same individual or combined mechanisms given the heterogeneity of resultant phenotypes. Lung explants, bronchial biopsies and other tissue studies have revealed important features. At the small airway level, progression of COPD is clinically imperceptible, and the pathological course of the disease is poorly described. Asthmatic features can further add confusion. However, the small airway epithelium is likely to represent a key focus of the disease, combining impaired subepithelial crosstalk and structural/inflammatory changes. Insufficient resolution of inflammatory processes may facilitate these changes. Pathologically, epithelial metaplasia, inversion of the goblet to ciliated cell ratio, enlargement of the submucosal glands and neutrophil and CD8-T-cell infiltration can be detected. Evidence of type 2 inflammation is gaining interest in the light of new therapeutic agents. Alarmin biology is a promising area that may permit control of inflammation and partial reversal of structural changes in COPD. Here, we review the latest work describing the development and progression of COPD with a focus on lung function trajectories, exacerbations and survival. We also review mechanisms focusing on epithelial changes associated with COPD and lack of resolution characterizing the underlying inflammatory processes.
Collapse
Affiliation(s)
- Peter Lange
- Department of Internal Medicine, Section of Respiratory Medicine, Copenhagen University Hospital - Herlev, Herlev, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Engi Ahmed
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Zakaria Mohamed Lahmar
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arnaud Bourdin
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| |
Collapse
|
7
|
Katsumiti A, Ruenraroengsak P, Cajaraville MP, Thorley AJ, Tetley TD. Immortalisation of primary human alveolar epithelial lung cells using a non-viral vector to study respiratory bioreactivity in vitro. Sci Rep 2020; 10:20486. [PMID: 33235275 PMCID: PMC7686381 DOI: 10.1038/s41598-020-77191-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023] Open
Abstract
To overcome the scarcity of primary human alveolar epithelial cells for lung research, and the limitations of current cell lines to recapitulate the phenotype, functional and molecular characteristics of the healthy human alveolar epithelium, we have developed a new method to immortalise primary human alveolar epithelial lung cells using a non-viral vector to transfect the telomerase catalytic subunit (hTERT) and the simian virus 40 large-tumour antigen (SV40). Twelve strains of immortalised cells (ICs) were generated and characterised using molecular, immunochemical and morphological techniques. Cell proliferation and sensitivity to polystyrene nanoparticles (PS) were evaluated. ICs expressed caveolin-1, podoplanin and receptor for advanced glycation end-products (RAGE), and most cells were negative for alkaline phosphatase staining, indicating characteristics of AT1-like cells. However, most strains also contained some cells that expressed pro-surfactant protein C, classically described to be expressed only by AT2 cells. Thus, the ICs mimic the cellular heterogeneity in the human alveolar epithelium. These ICs can be passaged, replicate rapidly and remain confluent beyond 15 days. ICs showed differential sensitivity to positive and negatively charged PS nanoparticles, illustrating their potential value as an in vitro model to study respiratory bioreactivity. These novel ICs offer a unique resource to study human alveolar epithelial biology.
Collapse
Affiliation(s)
- Alberto Katsumiti
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Plentzia, Basque Country, Spain. .,National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
| | - Pakatip Ruenraroengsak
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, SW7 2AZ, UK.,Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Miren P Cajaraville
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Plentzia, Basque Country, Spain
| | - Andrew J Thorley
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
8
|
Di Sano C, D'Anna C, Ferraro M, Chiappara G, Sangiorgi C, Di Vincenzo S, Bertani A, Vitulo P, Bruno A, Dino P, Pace E. Impaired activation of Notch-1 signaling hinders repair processes of bronchial epithelial cells exposed to cigarette smoke. Toxicol Lett 2020; 326:61-69. [DOI: 10.1016/j.toxlet.2020.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023]
|
9
|
Bourguignon C, Vernisse C, Mianné J, Fieldès M, Ahmed E, Petit A, Vachier I, Bertrand TL, Assou S, Bourdin A, De Vos J. [Lung organoids]. Med Sci (Paris) 2020; 36:382-388. [PMID: 32356715 DOI: 10.1051/medsci/2020056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As burden of chronic respiratory diseases is constantly increasing, improving in vitro lung models is essential in order to reproduce as closely as possible the complex pulmonary architecture, responsible for oxygen uptake and carbon dioxide clearance. The study of diseases that affect the respiratory system has benefited from in vitro reconstructions of the respiratory epithelium with inserts in air/liquid interface (2D) or in organoids able to mimic up to the arborescence of the respiratory tree (3D). Recent development in the fields of pluripotent stem cells-derived organoids and genome editing technologies has provided new insights to better understand pulmonary diseases and to find new therapeutic perspectives.
Collapse
Affiliation(s)
- Chloé Bourguignon
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Charlotte Vernisse
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France
| | - Joffrey Mianné
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Mathieu Fieldès
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Engi Ahmed
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France - Département de pneumologie, CHU de Montpellier, Montpellier, France
| | - Aurélie Petit
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France
| | - Isabelle Vachier
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France
| | | | - Said Assou
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Arnaud Bourdin
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France - Département de pneumologie, CHU de Montpellier, Montpellier, France
| | - John De Vos
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France - Département d'ingénierie cellulaire et tissulaire, CHU de Montpellier, Montpellier, France
| |
Collapse
|
10
|
The Eupentacta fraudatrix transcriptome provides insights into regulation of cell transdifferentiation. Sci Rep 2020; 10:1522. [PMID: 32001787 PMCID: PMC6992634 DOI: 10.1038/s41598-020-58470-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
The holothurian Eupentacta fraudatrix is a unique organism for studying regeneration mechanisms. Moreover, E. fraudatrix can quickly restore parts of its body and entire organ systems, yet at the moment, there is no data on the participation of stem cells in the process. To the contrary, it has been repeatedly confirmed that this process is only due to the transformation of terminally differentiated cells. In this study, we examine changes in gene expression during gut regeneration of the holothurian E. fraudatrix. Transcriptomes of intestinal anlage of the three stages of regeneration, as well as the normal gut, were sequenced with an Illumina sequencer (San Diego, CA, USA). We identified 14,617 sea urchin protein homologs, of which 308 were transcription factors. After analysing the dynamics of gene expression during regeneration and the map of biological processes in which they participate, we identified 11 factors: Ef-EGR1, Ef-ELF, Ef-GATA3, Ef-ID2, Ef-KLF1/2/4, Ef-MSC, Ef-PCGF2, Ef-PRDM9, Ef-SNAI2, Ef-TBX20, and Ef-TCF24. With the exception of TCF24, they are all involved in the regeneration, development, epithelial-mesenchymal transition, and immune response in other animals. We suggest that these transcription factors may also be involved in the transdifferentiation of coelomic epithelial cells into enterocytes in holothurians.
Collapse
|
11
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
12
|
Surendran H, Rajamoorthy M, Pal R. Differentiating Human Induced Pluripotent Stem Cells (iPSCs) Into Lung Epithelial Cells. ACTA ACUST UNITED AC 2019; 49:e86. [DOI: 10.1002/cpsc.86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Harshini Surendran
- Eyestem Research, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences (NCBS) Campus Bengaluru India
| | - Mohanapriya Rajamoorthy
- The University of Trans‐Disciplinary Health Sciences and Technology Yelahanka Bengaluru India
| | - Rajarshi Pal
- Eyestem Research, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences (NCBS) Campus Bengaluru India
- The University of Trans‐Disciplinary Health Sciences and Technology Yelahanka Bengaluru India
| |
Collapse
|
13
|
Faber SC, McCullough SD. Through the Looking Glass: In Vitro Models for Inhalation Toxicology and Interindividual Variability in the Airway. ACTA ACUST UNITED AC 2018; 4:115-128. [PMID: 31380467 DOI: 10.1089/aivt.2018.0002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With 7 million deaths reported annually from air pollution alone, it is evident that adverse effects of inhaled toxicant exposures remain a major public health concern in the 21st century. Assessment and characterization of the impacts of air pollutants on human health stems from epidemiological and clinical studies, which have linked both outdoor and indoor air contaminant exposure to adverse pulmonary and cardiovascular health outcomes. Studies in animal models support epidemiological findings and have been critical in identifying systemic effects of environmental chemicals on cognitive abilities, liver disease, and metabolic dysfunction following inhalation exposure. Likewise, traditional monoculture systems have aided in identifying biomarkers of susceptibility to inhaled toxicants and served as a screening platform for safety assessment of pulmonary toxicants. Despite their contributions, in vivo and classic in vitro models have not been able to accurately represent the heterogeneity of the human population and account for interindividual variability in response to inhaled toxicants and susceptibility to the adverse health effects. Development of new technologies that can investigate genetic predisposition, are cost and time efficient, and are ethically sound, will enhance elucidation of mechanisms of inhalation toxicity, and aid in the development of novel pharmaceuticals and/or safety evaluation. This review will describe the classic and novel cell-based inhalation toxicity models and how these emerging technologies can be incorporated into regulatory or nonregulatory testing to address interindividual variability and improve overall human health.
Collapse
Affiliation(s)
- Samantha C Faber
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|