1
|
Jimenez-Torres AC, Hastie JA, Davis SE, Porter KD, Lei B, Moukha-Chafiq O, Zhang S, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhu J. Identification of pyrimidine structure-based compounds as allosteric ligands of the dopamine transporter as therapeutic agents for NeuroHIV. J Pharmacol Exp Ther 2025; 392:100021. [PMID: 40023582 DOI: 10.1124/jpet.124.002138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 01/22/2025] Open
Abstract
The disruption of dopamine (DA) neurotransmission by the HIV-1 transactivator of transcription (Tat) during HIV-1 infection has been linked to the development of neurocognitive disorders, even under combined antiretroviral therapy treatment. We have demonstrated that Southern Research Institute (SRI) 32742, a novel allosteric modulator of DA transporter (DAT), attenuates cocaine- and Tat-binding to DAT, alleviates Tat-induced cognitive deficits and potentiation of cocaine reward in inducible Tat transgenic mice. The current study determined the in vitro pharmacological profile of SRI-32743 and its optimized second-generation analogs and their effects as allosteric modulators. Through structure-activity relationship studies of SRI-32743, 170 compounds were synthesized and evaluated for their ability to modulate DAT function. We identified 21 analogs as atypical competitors of DAT (maximum attributable drug effect, ≤60%). Four compounds, SRI-46564, SRI-47056, SRI-46286, and SRI-47867, displayed IC50 values for [3H]DA uptake inhibition from 9.33 ± 0.50 to 0.96 ± 0.05 μM and from 3.96 ± 1.36 to 1.29 ± 0.19 for DAT binding, respectively. The 4 analogs also displayed high potency at 2 different concentrations (0.5 nM and 0.05 nM) to attenuate Tat-induced inhibition of [3H]DA uptake and cocaine-mediated dissociation of [3H]WIN35,428 binding in Chinese hamster ovary cells expressing human DAT, suggesting that the effects occur through an allosteric mechanism. In further ex vivo studies using fast scan cyclic voltammetry, we demonstrated that the analogs do not disrupt the baseline phasic-like DA release. These findings provide a new insight into the potential for development of novel therapeutic agents to attenuate DAT-Tat interactions to normalize DA neurotransmission in NeuroHIV. SIGNIFICANCE STATEMENT: The allosteric inhibition of the dopamine (DA) transporter by the HIV-1 transactivator of transcription (Tat) disrupts DA homeostasis, leading to HIV-associated neurocognitive disorders. Analogs of Southern Research Institute 32743, a novel allosteric modulator of the Tat-DA transporter (DAT) interaction, were evaluated in the current study and characterized as atypical ligands of DA uptake. Four novel lead compounds demonstrated high potency to attenuate Tat-induced inhibition of human DAT-mediated DA uptake in an allosteric modulatory manner with no effects on the dynamics of DA uptake-release in DAT.
Collapse
Affiliation(s)
- Ana Catya Jimenez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Jamison A Hastie
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Katherine D Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Bin Lei
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Theresa H Nguyen
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina.
| |
Collapse
|
2
|
Zhu J, Cirincione AB, Strauss MJ, Davis SE, Eans SO, Tribbitt DK, Alshakhshir N, McLaughlin JP. Impact of HIV-1 tat protein on methamphetamine-induced inhibition of vesicular monoamine transporter2-mediated dopamine transport and methamphetamine conditioned place preference in HIV-1 tat transgenic mice. Eur J Pharmacol 2024; 984:177030. [PMID: 39366503 PMCID: PMC11563864 DOI: 10.1016/j.ejphar.2024.177030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Perturbation of dopamine transmission has been implicated as a contributing factor in HIV-1 associated neurocognitive disorders with concurrent methamphetamine (METH) abuse. We have demonstrated that the HIV-1 protein, transactivator of transcription (Tat), decreases dopamine transport through inhibition of vesicular monoamine transporter2 (VMAT2). This study determined the effects of Tat protein on METH-inhibited VMAT2 function and METH-conditioned place preference (CPP). In vitro exposure of isolated mouse whole brain vesicles to recombinant Tat1-86 or METH displayed a concentration-dependent inhibition of the vesicular [3H]Dopamine uptake, in which a combination of Tat and METH induced a greater reduction of dopamine uptake compared to Tat or METH alone. In vivo, the maximal velocity (Vmax) of vesicular [3H]Dopamine uptake was decreased in inducible Tat transgenic (iTat-tg) mice harvested after treatment with either 21-day doxycycline (Dox) or 14-day METH (3 mg/kg, i.p., daily), whereas these mice treated with both Dox and METH displayed an additive reduction of the Vmax compared to either Tat or METH alone. Moreover, Dox-induced Tat expression increased METH-CPP in an exposure-dependent manner, with iTat-tg mice demonstrating a 2.3-fold potentiation of METH-CPP compared with Tat null control mice upon administration of Dox for 14 days. Furthermore, a 7-day administration of Dox reinstated extinguished METH-CPP. Collectively, these results suggest a synergistic effect of Tat protein and METH on inhibition of VMAT2-mediated DA transport, potentially contributing to potentiation of METH-CPP in iTat-tg mice.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| | - Abagail B Cirincione
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Danielle K Tribbitt
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Nadine Alshakhshir
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
3
|
Miao L, Wang H, Li Y, Huang J, Wang C, Teng H, Xu L, Yang X, Tian Y, Yang G, Li J, Zeng X. Mechanisms and treatments of methamphetamine and HIV-1 co-induced neurotoxicity: a systematic review. Front Immunol 2024; 15:1423263. [PMID: 39224601 PMCID: PMC11366655 DOI: 10.3389/fimmu.2024.1423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Combination antiretroviral therapy (cART) has dramatically reduced mortality in people with human immunodeficiency virus (HIV), but it does not completely eradicate the virus from the brain. Patients with long-term HIV-1 infection often show neurocognitive impairment, which severely affects the quality of life of those infected. Methamphetamine (METH) users are at a significantly higher risk of contracting HIV-1 through behaviors such as engaging in high-risk sex or sharing needles, which can lead to transmission of the virus. In addition, HIV-1-infected individuals who abuse METH exhibit higher viral loads and more severe cognitive dysfunction, suggesting that METH exacerbates the neurotoxicity associated with HIV-1. Therefore, this review focuses on various mechanisms underlying METH and HIV-1 infection co-induced neurotoxicity and existing interventions targeting the sigma 1 receptor, dopamine transporter protein, and other relevant targets are explored. The findings of this review are envisaged to systematically establish a theoretical framework for METH abuse and HIV-1 infection co-induced neurotoxicity, and to suggest novel clinical treatment targets.
Collapse
Affiliation(s)
- Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lisha Xu
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Chengcheng M, Panpan A, Yalong Y, Mingyu S, Wei X, Jing C, Chuanxi T. GDNF improves the cognitive ability of PD mice by promoting glycosylation and membrane distribution of DAT. Sci Rep 2024; 14:17845. [PMID: 39090173 PMCID: PMC11294596 DOI: 10.1038/s41598-024-68609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
The core of clinic treatment of Parkinson's disease (PD) is to enhance dopamine (DA) signaling within the brain. The regulation of dopamine transporter (DAT) is integral to this process. This study aims to explore the regulatory mechanism of glial cell line-derived neurotrophic factor (GDNF) on DAT, thereby gaining a profound understanding its potential value in treating PD. In this study, we investigated the effects of GDNF on both cellular and mouse models of PD, including the glycosylation and membrane transport of DAT detected by immunofluorescence and immunoblotting, DA signal measured by neurotransmitter fiber imaging technology, Golgi morphology observed by electron microscopic, as well as cognitive ability assessed by behavior tests. This study revealed that in animal trials, MPTP-induced Parkinson's Disease (PD) mice exhibited a marked decline in cognitive function. Utilizing ELISA and neurotransmitter fiber imaging techniques, we observed a decrease in dopamine levels and a significant reduction in the intensity of dopamine signal release in the Prefrontal Cortex (PFC) of PD mice induced by MPTP. Intriguingly, these alterations were reversed by Glial Cell Line-Derived Neurotrophic Factor (GDNF). In cellular experiments, following MPP + intervention, there was a decrease in Gly-DAT modification in both the cell membrane and cytoplasm, coupled with an increase in Nongly-DAT expression and aggregation of DAT within the cytoplasm. Conversely, GDNF augmented DAT glycosylation and facilitated its membrane transport in damaged dopaminergic neurons, concurrently reversing the effects of GRASP65 depletion and Golgi fragmentation, thereby reducing the accumulation of DAT in the Golgi apparatus. Furthermore, overexpression of GRASP65 enhanced DAT transport in PD cells and mice, while suppression of GRASP65 attenuated the efficacy of GDNF on DAT. Additionally, GDNF potentiated the reutilization of neurotransmitters by the PFC presynaptic membrane, boosting the effective release of dopamine following a single electrical stimulation, ultimately ameliorating the cognitive impairments in PD mice.Therefore, we propose that GDNF enhances the glycosylation and membrane trafficking of DAT by facilitating the re-aggregation of the Golgi apparatus, thereby amplifying the utilization of DA signals. This ultimately leads to the improvement of cognitive abilities in PD mouse models. Our study illuminates, from a novel angle, the beneficial role of GDNF in augmenting DA utilization and cognitive function in PD, providing fresh insights into its therapeutic potential.
Collapse
Affiliation(s)
- Ma Chengcheng
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - An Panpan
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan Yalong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Su Mingyu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xu Wei
- Jinhu County People's Hospital, 160 Shenhua Avenue, Jinhu County, Huai'an City, Jiangsu, China
| | - Chen Jing
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Tang Chuanxi
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
5
|
Hammond HR, Eans SO, Cirino TJ, Ananthan S, Jimenez-Torres AC, Zhu J, McLaughlin JP. SRI-30827, a novel allosteric modulator of the dopamine transporter, alleviates HIV-1 Tat-induced potentiation of cocaine conditioned place preference in mice. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:1-6. [PMID: 38711842 PMCID: PMC11073800 DOI: 10.1515/nipt-2023-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Objectives HIV-1 Tat (transactivator of transcription) protein disrupts dopaminergic transmission and potentiates the rewarding effects of cocaine. Allosteric modulators of the dopamine transporter (DAT) have been shown to reverse Tat-induced DAT dysfunction. We hypothesized that a novel DAT allosteric modulator, SRI-30827, would counteract Tat-induced potentiation of cocaine reward. Methods Doxycycline (Dox)-inducible Tat transgenic (iTat-tg) mice and their G-tg (Tat-null) counterparts were tested in a cocaine conditioned place preference (CPP) paradigm. Mice were treated 14 days with saline, or Dox (100 mg/kg/day, i.p.) to induce Tat protein. Upon induction, mice were place conditioned two days with cocaine (10 mg/kg/day) after a 1-h daily intracerebroventricular (i.c.v.) pretreatment with SRI-30827 (1 nmol) or a vehicle control, and final place preference assessed as a measure of cocaine reward. Results Dox-treatment significantly potentiated cocaine-CPP in iTat-tg mice over the response of saline-treated control littermates. SRI-30827 treatment eliminated Tat-induced potentiation without altering normal cocaine-CPP in saline-treated mice. Likewise, SRI-30827 did not alter cocaine-CPP in both saline- and Dox-treated G-tg mice incapable of expressing Tat protein. Conclusions These findings add to a growing body of evidence that allosteric modulation of DAT could provide a promising therapeutic intervention for patients with comorbid HIV-1 and cocaine use disorder (CUD).
Collapse
Affiliation(s)
- Haylee R. Hammond
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas J. Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Subramaniam Ananthan
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, AL 35205, USA
| | - Ana Catya Jimenez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1345 Center Drive, Building JHMHC, P.O. Box 100487, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Vines L, Sotelo D, Giddens N, Manza P, Volkow ND, Wang GJ. Neurological, Behavioral, and Pathophysiological Characterization of the Co-Occurrence of Substance Use and HIV: A Narrative Review. Brain Sci 2023; 13:1480. [PMID: 37891847 PMCID: PMC10605099 DOI: 10.3390/brainsci13101480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Combined antiretroviral therapy (cART) has greatly reduced the severity of HIV-associated neurocognitive disorders in people living with HIV (PLWH); however, PLWH are more likely than the general population to use drugs and suffer from substance use disorders (SUDs) and to exhibit risky behaviors that promote HIV transmission and other infections. Dopamine-boosting psychostimulants such as cocaine and methamphetamine are some of the most widely used substances among PLWH. Chronic use of these substances disrupts brain function, structure, and cognition. PLWH with SUD have poor health outcomes driven by complex interactions between biological, neurocognitive, and social factors. Here we review the effects of comorbid HIV and psychostimulant use disorders by discussing the distinct and common effects of HIV and chronic cocaine and methamphetamine use on behavioral and neurological impairments using evidence from rodent models of HIV-associated neurocognitive impairments (Tat or gp120 protein expression) and clinical studies. We also provide a biopsychosocial perspective by discussing behavioral impairment in differentially impacted social groups and proposing interventions at both patient and population levels.
Collapse
Affiliation(s)
- Leah Vines
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Diana Sotelo
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Natasha Giddens
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA;
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| |
Collapse
|
7
|
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The Impact of Neurotransmitters on the Neurobiology of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:15340. [PMID: 37895020 PMCID: PMC10607327 DOI: 10.3390/ijms242015340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative diseases result from progressive damage to nerve cells in the brain or peripheral nervous system connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunction of these brain and nerve functions is associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these, 50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems have a pathological correlation and play a critical role in developing neurodegenerative diseases. Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegenerative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate neurotransmission systems for their role in the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (S.E.D.); (A.B.C.); (A.C.J.-T.)
| |
Collapse
|
8
|
Lark ARS, Silva LK, Nass SR, Marone MG, Ohene-Nyako M, Ihrig TM, Marks WD, Yarotskyy V, Rory McQuiston A, Knapp PE, Hauser KF. Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cell Mol Neurobiol 2023; 43:1105-1127. [PMID: 35695980 PMCID: PMC9976699 DOI: 10.1007/s10571-022-01232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.
Collapse
Affiliation(s)
- Arianna R S Lark
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Lindsay K Silva
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- PPD®, Part of Thermo Fisher Scientific, Richmond, VA, 23230-3323, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael G Marone
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - William D Marks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, TX, 75235, USA
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
9
|
Young JW, Kenton JA, Milienne-Petiot M, Deben D, Achim C, Geyer MA, Perry W, Grant IE, Minassian A. Chronic methamphetamine exposure exerts few effects on the iTat mouse model of HIV, but blocks Tat expression-induced slowed reward retrieval. Behav Brain Res 2023; 437:114109. [PMID: 36108778 PMCID: PMC10878174 DOI: 10.1016/j.bbr.2022.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Human immunodeficiency virus (HIV) continues to infect millions worldwide, negatively impacting neurobehavioral function. Further understanding of the combined effects of HIV and methamphetamine use is crucial, as methamphetamine use is prevalent in people with HIV. The HIV-associated protein Tat may contribute to cognitive dysfunction, modeled preclinically in mice using doxycycline (DOX)-inducible Tat expression (iTat). Tat may exert its effects on cognitive function via disruption of the dopamine transporter, similar to the action of methamphetamine. Additionally, Tat and methamphetamine both decrease interneuron populations, including those expressing calbindin. It is important to understand the combined effects of Tat and methamphetamine in preclinical models of HIV infection. Here, we used iTat transgenic mice and a chronic binge regimen of methamphetamine exposure to determine their combined impact on reward learning and motivation. We also measured calbindin expression in behavior-relevant brain regions. Before induction with DOX, iTat mice exhibited no differences in behavior. Chronic methamphetamine exposure before Tat induction impaired initial reward learning but did not affect motivation. Furthermore, DOX-induced Tat expression did not alter behavior, but slowed latencies to retrieve rewards. This effect of Tat, however, was not observed in methamphetamine-treated mice, indicative of a potential protective effect. Finally, Tat expression was associated with an increase in calbindin-expressing cells in the VTA, while methamphetamine exposure did not alter calbindin numbers. These findings may indicate a protective role of methamphetamine in HIV neuropathology, which in turn may help in our understanding of why people with HIV use methamphetamine at disproportionately higher rates.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| | - Johnny A Kenton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | | | - Debbie Deben
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - William Perry
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Igor E Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States
| |
Collapse
|
10
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
11
|
Nepal B, Das S, Reith ME, Kortagere S. Overview of the structure and function of the dopamine transporter and its protein interactions. Front Physiol 2023; 14:1150355. [PMID: 36935752 PMCID: PMC10020207 DOI: 10.3389/fphys.2023.1150355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The dopamine transporter (DAT) plays an integral role in dopamine neurotransmission through the clearance of dopamine from the extracellular space. Dysregulation of DAT is central to the pathophysiology of numerous neuropsychiatric disorders and as such is an attractive therapeutic target. DAT belongs to the solute carrier family 6 (SLC6) class of Na+/Cl- dependent transporters that move various cargo into neurons against their concentration gradient. This review focuses on DAT (SCL6A3 protein) while extending the narrative to the closely related transporters for serotonin and norepinephrine where needed for comparison or functional relevance. Cloning and site-directed mutagenesis experiments provided early structural knowledge of DAT but our contemporary understanding was achieved through a combination of crystallization of the related bacterial transporter LeuT, homology modeling, and subsequently the crystallization of drosophila DAT. These seminal findings enabled a better understanding of the conformational states involved in the transport of substrate, subsequently aiding state-specific drug design. Post-translational modifications to DAT such as phosphorylation, palmitoylation, ubiquitination also influence the plasma membrane localization and kinetics. Substrates and drugs can interact with multiple sites within DAT including the primary S1 and S2 sites involved in dopamine binding and novel allosteric sites. Major research has centered around the question what determines the substrate and inhibitor selectivity of DAT in comparison to serotonin and norepinephrine transporters. DAT has been implicated in many neurological disorders and may play a role in the pathology of HIV and Parkinson's disease via direct physical interaction with HIV-1 Tat and α-synuclein proteins respectively.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sanjay Das
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maarten E. Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Sandhya Kortagere,
| |
Collapse
|
12
|
Zhu J, Quizon PM, Wang Y, Adeniran CA, Strauss MJ, Jiménez-Torres AC, Patel P, Cirino TJ, Eans SO, Hammond HR, Deliscar LS, O'Hara P, Saini SK, Ofori E, Vekariya RH, Zhang S, Moukha-Chafiq O, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhan CG, McLaughlin JP. SRI-32743, a novel allosteric modulator, attenuates HIV-1 Tat protein-induced inhibition of the dopamine transporter and alleviates the potentiation of cocaine reward in HIV-1 Tat transgenic mice. Neuropharmacology 2022; 220:109239. [PMID: 36126727 DOI: 10.1016/j.neuropharm.2022.109239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Cocaine abuse increases the incidence of HIV-1-associated neurocognitive disorders. We have demonstrated that HIV-1 transactivator of transcription (Tat) allosterically modulates dopamine (DA) reuptake through the human DA transporter (hDAT), potentially contributing to Tat-induced cognitive impairment and potentiation of cocaine conditioned place preference (CPP). This study determined the effects of a novel allosteric modulator of DAT, SRI-32743, on the interactions of HIV-1 Tat, DA, cocaine, and [3H]WIN35,428 with hDAT in vitro. SRI-32743 (50 nM) attenuated Tat-induced inhibition of [3H]DA uptake and decreased the cocaine-mediated dissociation of [3H]WIN35,428 binding in CHO cells expressing hDAT, suggesting a SRI-32743-mediated allosteric modulation of the Tat-DAT interaction. In further in vivo studies utilizing doxycycline-inducible Tat transgenic (iTat-tg) mice, 14 days of Tat expression significantly reduced the recognition index by 31.7% in the final phase of novel object recognition (NOR) and potentiated cocaine-CPP 2.7-fold compared to responses of vehicle-treated control iTat-tg mice. The Tat-induced NOR deficits and potentiation of cocaine-CPP were not observed in saline-treated iTat-tg or doxycycline-treated G-tg (Tat-null) mice. Systemic administration (i.p.) of SRI-32743 prior to behavioral testing ameliorated Tat-induced impairment of NOR (at a dose of 10 mg/kg) and the Tat-induced potentiation of cocaine-CPP (at doses of 1 or 10 mg/kg). These findings demonstrate that Tat and cocaine interactions with DAT may be regulated by compounds interacting at the DAT allosteric modulatory sites, suggesting a potential therapeutic intervention for HIV-infected patients with concurrent cocaine abuse.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Yingying Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Charles A Adeniran
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ana C Jiménez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Palak Patel
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Thomas J Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Haylee R Hammond
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Laure S Deliscar
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Priscilla O'Hara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Surendra K Saini
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Edward Ofori
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Rakesh H Vekariya
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Theresa H Nguyen
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | | | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Du C, Hua Y, Clare K, Park K, Allen CP, Volkow ND, Hu XT, Pan Y. Memantine Attenuates Cocaine and neuroHIV Neurotoxicity in the Medial Prefrontal Cortex. Front Pharmacol 2022; 13:895006. [PMID: 35694269 PMCID: PMC9174902 DOI: 10.3389/fphar.2022.895006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals with substance use disorder are at a higher risk of contracting HIV and progress more rapidly to AIDS as drugs of abuse, such as cocaine, potentiate the neurotoxic effects of HIV-associated proteins including, but not limited to, HIV-1 trans-activator of transcription (Tat) and the envelope protein Gp120. Neurotoxicity and neurodegeneration are hallmarks of HIV-1-associated neurocognitive disorders (HANDs), which are hypothesized to occur secondary to excitotoxicity from NMDA-induced neuronal calcium dysregulation, which could be targeted with NMDA antagonist drugs. Multiple studies have examined how Gp120 affects calcium influx and how cocaine potentiates this influx; however, they mostly focused on single cells and did not analyze effects in neuronal and vascular brain networks. Here, we utilize a custom multi-wavelength imaging platform to simultaneously study the neuronal activity (detected using genetically encoded Ca2+ indicator, GcaMP6f, expressed in neurons) and hemodynamic changes (measured by total hemoglobin and oxygenated hemoglobin within the tissue) in the prefrontal cortex (PFC) of HIV-1 Tg rats in response to cocaine and evaluate the effects of the selective NMDA antagonist drug memantine on cocaine and HIV neurotoxicity compared to those of non-HIV-1 Tg animals (controls). Our results show that memantine improved cocaine-induced deficit in cerebral blood volume while also attenuating an abnormal increase of the neuronal calcium influx and influx duration in both control rats and HIV-1 Tg rats. Cocaine-induced neuronal and hemodynamic dysregulations were significantly greater in HIV-1 Tg rats than in control rats. With memantine pretreatment, HIV-1 Tg rats showed attenuated cocaine’s effects on neuronal and hemodynamic responses, with responses similar to those observed in control rats. These imaging results document an enhancement of neuronal Ca2+ influx, hypoxemia, and ischemia with cocaine in the PFC of HIV-1 Tg rats that were attenuated by memantine pretreatment. Thus, the potential utility of memantine in the treatment of HAND and of cocaine-induced neurotoxicity deserves further investigation.
Collapse
Affiliation(s)
- Congwu Du
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
- *Correspondence: Congwu Du, ; Nora D. Volkow, ; Xiu-Ti Hu,
| | - Yueming Hua
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Kevin Clare
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Craig P. Allen
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Nora D. Volkow
- National Institute on Drug Abuse, Bethesda, MD, United States
- *Correspondence: Congwu Du, ; Nora D. Volkow, ; Xiu-Ti Hu,
| | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- *Correspondence: Congwu Du, ; Nora D. Volkow, ; Xiu-Ti Hu,
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| |
Collapse
|
14
|
Yılmaz O, Mutlu BÖ, Yaman H, Bayazıt D, Demirhan H, Bayazıt YA. Assessment of balance after recovery from Covid-19 disease. Auris Nasus Larynx 2022; 49:291-298. [PMID: 34503884 PMCID: PMC8405449 DOI: 10.1016/j.anl.2021.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To answer the question whether balance related systems have been affected in adults who recovered from Covid-19 disease. This is the first case-control study to assess balance objectively and quantitatively in Covid-19 disease. METHODS Thirty-seven patients who recovered from Covid-19 disease and 30 healthy controls were compared using Dizziness Handicap Inventory (DHI), Computerized Dynamic Posturography (CDP), Vestibular Evoked Myogenic Potentials(VEMP) and Video Head Impulse Test (v-HIT). RESULTS On CDP, the composite and visual general scores of the patients were significantly lower than controls (p<0.01). The v-HIT gains of the patients significantly decreased in the vertical semicircular canals compared to controls (p<0.01).There was a significant difference between the patients and controls regarding the absence of o-VEMPs (p<0.01) while the amplitudes and latencies were similar between the groups (p>0.05). Decreased P1/N1 amplitudes and elongated N1 latencies were found on c-VEMP testing (p<0.05). Anosmia, taste disorder and gender were not associated with subjective and objective test results (p>0.05). CONCLUSION The Covid-19 disease can cause dizziness rather that incapacitating vertigo. Dizziness can be seen in almost one-fifth of the adult covid19 out-patients, which may be due to involvement of vestibular and visual systems,ortheir central connections. The squeals created in the balance related systems may be irreversible as they have persisted after the recovery of the patients. It is also plausible to anticipate more severe condition in the older patients who were treated in the intensive care units. In the long term follow up of the survivors, the need for balance rehabilitation programs should be remembered in order to minimize risks of falling down.
Collapse
Affiliation(s)
- Oğuz Yılmaz
- Department of Audiology, Istanbul Medipol University, Istanbul, Turkey.
| | - Berna Özge Mutlu
- Department of Audiology, Istanbul Medipol University, Istanbul, Turkey
| | - Handan Yaman
- Department of Audiology, Istanbul Medipol University, Istanbul, Turkey
| | - Dilara Bayazıt
- Department of Audiology, Istanbul Medipol University, Istanbul, Turkey
| | - Hasan Demirhan
- ENT Department, Medipol Mega University Hospital, Istanbul, Turkey
| | | |
Collapse
|
15
|
Assis MA, Carranza PG, Ambrosio E. A "Drug-Dependent" Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses 2021; 13:v13050722. [PMID: 33919273 PMCID: PMC8143316 DOI: 10.3390/v13050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Psychostimulant use is a major comorbidity in people living with HIV, which was initially explained by them adopting risky behaviors that facilitate HIV transmission. However, the effects of drug use on the immune system might also influence this phenomenon. Psychostimulants act on peripheral immune cells even before they reach the central nervous system (CNS) and their effects on immunity are likely to influence HIV infection. Beyond their canonical activities, classic neurotransmitters and neuromodulators are expressed by peripheral immune cells (e.g., dopamine and enkephalins), which display immunomodulatory properties and could be influenced by psychostimulants. Immune receptors, like Toll-like receptors (TLRs) on microglia, are modulated by cocaine and amphetamine exposure. Since peripheral immunocytes also express TLRs, they may be similarly affected by psychostimulants. In this review, we will summarize how psychostimulants are currently thought to influence peripheral immunity, mainly focusing on catecholamines, enkephalins and TLR4, and shed light on how these drugs might affect HIV infection. We will try to shift from the classic CNS perspective and adopt a more holistic view, addressing the potential impact of psychostimulants on the peripheral immune system and how their systemic effects could influence HIV infection.
Collapse
Affiliation(s)
- María Amparo Assis
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
- Correspondence:
| | - Pedro Gabriel Carranza
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Santiago del Estero G4206, Argentina
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| |
Collapse
|
16
|
Mutations of Human DopamineTransporter at Tyrosine88, Aspartic Acid206, and Histidine547 Influence Basal and HIV-1 Tat-inhibited Dopamine Transport. J Neuroimmune Pharmacol 2021; 16:854-869. [PMID: 33537927 PMCID: PMC8329121 DOI: 10.1007/s11481-021-09984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
HIV-1 transactivator of transcription (Tat) has a great impact on the development of HIV-1 associated neurocognitive disorders through disrupting dopamine transmission. This study determined the mutational effects of human dopamine transporter (hDAT) on basal and Tat-induced inhibition of dopamine transport. Compared to wild-type hDAT, the maximal velocity (Vmax) of [3H]dopamine uptake was decreased in D381L and Y88F/D206L/H547A, increased in D206L/H547A, and unaltered in D206L. Recombinant TatR1 − 86 inhibited dopamine uptake in wild-type hDAT, which was attenuated in either DAT mutants (D206L, D206L/H547A, and Y88F/D206L/H547A) or mutated TatR1 − 86 (K19A and C22G), demonstrating perturbed Tat-DAT interaction. Mutational effects of hDAT on the transporter conformation were evidenced by attenuation of zinc-induced increased [3H]WIN35,428 binding in D206L/H547A and Y88F/D206A/H547A and enhanced basal MPP+ efflux in D206L/H547A. H547A-induced outward-open transport conformational state was further validated by enhanced accessibility to MTSET ([2-(trimethylammonium)ethyl]-methanethiosulfonate) of an inserted cysteine (I159C) on a hDAT background.. Furthermore, H547A displayed an increase in palmitoylation inhibitor-induced inhibition of dopamine uptake relative to wide-type hDAT, indicating a change in basal palmitoylation in H547A. These results demonstrate that Y88F, D206L, and H547A attenuate Tat inhibition while preserving DA uptake, providing insights into identifying targets for improving DAT-mediated dopaminergic dysregulation.
Collapse
|
17
|
Up-regulation of the p75 neurotrophin receptor is an essential mechanism for HIV-gp120 mediated synaptic loss in the striatum. Brain Behav Immun 2020; 89:371-379. [PMID: 32717404 PMCID: PMC7572812 DOI: 10.1016/j.bbi.2020.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022] Open
Abstract
Reduced synaptodendritic complexity appears to be a key feature in human immunodeficiency virus (HIV)-associated neurological disorder (HAND). Viral proteins, and in particular the envelope protein gp120, play a role in the pathology of synapses. Gp120 has been shown to increase both in vitro and in vivo the proneurotrophin brain-derived neurotrophic factor, which promotes synaptic simplification through the activation of the p75 neurotrophin receptor (p75NTR). To provide evidence that p75NTR plays a role in gp120-mediated loss of synapses in vivo, we intercrossed gp120tg mice with p75NTR null mice and used molecular, histological and behavioral analyses to establish a link between p75NTR and gp120-mediated synaptic simplification. Synaptosomes obtained from the striatum of gp120tg mice exhibited a significant increase in p75NTR levels concomitantly to a decrease in synaptic markers such as TrkB and PSD95. Analysis of striatal dendritic spines by Golgi staining revealed that gp120tg mice display a reduced proportion of mushroom-type spines in addition to fewer spines overall, when compared to wild type or gp120tg lacking one or two p75NTR alleles. Moreover, removal of one p75NTR allele in gp120 transgenic mice abolished the gp120-driven impairment on a task of striatal-dependent motor learning. These data indicate that p75NTR could be a key player in HIV-mediated synaptic simplification in the striatum.
Collapse
|
18
|
Strauss M, O'Donovan B, Ma Y, Xiao Z, Lin S, Bardo MT, Ortinski PI, McLaughlin JP, Zhu J. [ 3H]Dopamine Uptake through the Dopamine and Norepinephrine Transporters is Decreased in the Prefrontal Cortex of Transgenic Mice Expressing HIV-1 Transactivator of Transcription Protein. J Pharmacol Exp Ther 2020; 374:241-251. [PMID: 32461322 PMCID: PMC7366287 DOI: 10.1124/jpet.120.266023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/21/2020] [Indexed: 01/16/2023] Open
Abstract
Dysregulation of dopamine neurotransmission has been linked to the development of human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND). To investigate the mechanisms underlying this phenomenon, this study used an inducible HIV-1 transactivator of transcription (Tat) transgenic (iTat-tg) mouse model, which demonstrates brain-specific Tat expression induced by administration of doxycycline. We found that induction of Tat expression in the iTat-tg mice for either 7 or 14 days resulted in a decrease (∼30%) in the V max of [3H]dopamine uptake via both the dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex (PFC), which was comparable to the magnitude (∼35%) of the decrease in B max for [3H]WIN 35,428 and [3H]nisoxetine binding to DAT and NET, respectively. The decreased V max was not accompanied by a reduction of total or plasma membrane expression of DAT and NET. Consistent with the decreased V max for DAT and NET in the PFC, the current study also found an increase in the tissue content of DA and dihydroxyphenylacetic acid in the PFC of iTat-tg mice after 7 days' administration of doxycycline. Electrophysiological recordings in layer V pyramidal neurons of the prelimbic cortex from iTat-tg mice found a significant reduction in action potential firing, which was not sensitive to selective inhibitors for DAT and NET, respectively. These findings provide a molecular basis for using the iTat-tg mouse model in the studies of NeuroHIV. Determining the mechanistic basis underlying the interaction between Tat and DAT/NET may reveal novel therapeutic possibilities for preventing the increase in comorbid conditions as well as HAND. SIGNIFICANCE STATEMENT: Human immunodeficiency virus (HIV)-1 infection disrupts dopaminergic neurotransmission, leading to HIV-associated neurocognitive disorders (HANDs). Based on our in vitro and in vivo studies, dopamine uptake via both dopamine and norepinephrine transporters is decreased in the prefrontal cortex of HIV-1 Tat transgenic mice, which is consistent with the increased dopamine and dihydroxyphenylacetic acid contents in this brain region. Thus, these plasma membrane transporters are an important potential target for therapeutic intervention for patients with HAND.
Collapse
Affiliation(s)
- Matthew Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Bernadette O'Donovan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Yizhi Ma
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Ziyu Xiao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Steven Lin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Michael T Bardo
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Pavel I Ortinski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Jay P McLaughlin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| |
Collapse
|
19
|
Thomas Broome S, Louangaphay K, Keay KA, Leggio GM, Musumeci G, Castorina A. Dopamine: an immune transmitter. Neural Regen Res 2020; 15:2173-2185. [PMID: 32594028 PMCID: PMC7749467 DOI: 10.4103/1673-5374.284976] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dopaminergic system controls several vital central nervous system functions, including the control of movement, reward behaviors and cognition. Alterations of dopaminergic signaling are involved in the pathogenesis of neurodegenerative and psychiatric disorders, in particular Parkinson’s disease, which are associated with a subtle and chronic inflammatory response. A substantial body of evidence has demonstrated the non-neuronal expression of dopamine, its receptors and of the machinery that governs synthesis, secretion and storage of dopamine across several immune cell types. This review aims to summarize current knowledge on the role and expression of dopamine in immune cells. One of the goals is to decipher the complex mechanisms through which these cell types respond to dopamine, in order to address the impact this has on neurodegenerative and psychiatric pathologies such as Parkinson’s disease. A further aim is to illustrate the gaps in our understanding of the physiological roles of dopamine to encourage more targeted research focused on understanding the consequences of aberrant dopamine production on immune regulation. These highlights may prompt scientists in the field to consider alternative functions of this important neurotransmitter when targeting neuroinflammatory/neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Krystal Louangaphay
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Kevin A Keay
- Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney; Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Nickoloff E, Mackie P, Runner K, Matt S, Khoshbouei H, Gaskill P. Dopamine increases HIV entry into macrophages by increasing calcium release via an alternative signaling pathway. Brain Behav Immun 2019; 82:239-252. [PMID: 31470080 PMCID: PMC6941734 DOI: 10.1016/j.bbi.2019.08.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Dopaminergic dysfunction has long been connected to the development of HIV infection in the CNS. Our previous data showed that dopamine increases HIV infection in human macrophages by increasing the susceptibility of primary human macrophages to HIV entry through stimulation of both D1-like and D2-like receptors. These data suggest that, in macrophages, both dopamine receptor subtypes may act through a common signaling mechanism. To define better the mechanism(s) underlying this effect, this study examines the specific signaling processes activated by dopamine in primary human monocyte-derived macrophages (hMDM). In addition to confirming that the increase in entry is unique to dopamine, these studies show that dopamine increases HIV entry through a PKA insensitive, Ca2+ dependent pathway. Further examination demonstrated that dopamine can signal through a previously defined, non-canonical pathway in human macrophages. This pathway involves both Ca2+ release and PKC phosphorylation, and these data show that dopamine mediates both of these effects and that both were partially inhibited by the Gq/11 specific inhibitor YM-254890. Studies have shown that Gq/11 preferentially couples to the D1-like receptor D5, indicating an important role of the D1-like receptors in mediating these effects. These data indicate a role for Ca2+ flux in the HIV entry process, and suggest a distinct signaling mechanism mediating some of the effects of dopamine in macrophages. Together, the data indicate that targeting this alternative dopamine signaling pathway might provide new therapeutic options for individuals with elevated CNS dopamine suffering from NeuroHIV.
Collapse
Affiliation(s)
- E.A. Nickoloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - P. Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611
| | - K. Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - S.M. Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - H. Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611,Department of Psychiatry, University of Florida, Gainesville, FL, 32611
| | - P.J. Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
21
|
Wenzel ED, Avdoshina V, Mocchetti I. HIV-associated neurodegeneration: exploitation of the neuronal cytoskeleton. J Neurovirol 2019; 25:301-312. [PMID: 30850975 DOI: 10.1007/s13365-019-00737-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 01/23/2023]
Abstract
Human immunodeficiency virus-1 (HIV) infection of the central nervous system damages synapses and promotes axonal injury, ultimately resulting in HIV-associated neurocognitive disorders (HAND). The mechanisms through which HIV causes damage to neurons are still under investigation. The cytoskeleton and associated proteins are fundamental for axonal and dendritic integrity. In this article, we review evidence that HIV proteins, such as the envelope protein gp120 and transactivator of transcription (Tat), impair the structure and function of the neuronal cytoskeleton. Investigation into the effects of viral proteins on the neuronal cytoskeleton may provide a better understanding of HIV neurotoxicity and suggest new avenues for additional therapies.
Collapse
Affiliation(s)
- Erin D Wenzel
- Department of Pharmacology & Physiology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Department of Pharmacology & Physiology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.
| |
Collapse
|
22
|
Sun WL, Quizon PM, Yuan Y, Strauss MJ, McCain R, Zhan CG, Zhu J. Mutational effects of human dopamine transporter at tyrosine88, lysine92, and histidine547 on basal and HIV-1 Tat-inhibited dopamine transport. Sci Rep 2019; 9:3843. [PMID: 30846720 PMCID: PMC6405875 DOI: 10.1038/s41598-019-39872-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2018] [Indexed: 01/06/2023] Open
Abstract
Dysregulation of dopaminergic system induced by HIV-1 Tat protein-mediated direct inhibition of the dopamine transporter (DAT) has been implicated as a mediating factor of HIV-1 associated neurocognitive disorders. We have reported that single point mutations on human DAT (hDAT) at tyrosine88 (Y88F), lysine92 (K92M), and histidine547 (H547A) differentially regulate basal dopamine uptake but diminish Tat-induced inhibition of dopamine uptake by changing dopamine transport process. This study evaluated the effects of double (Y88F/H547A) and triple (Y88F/K92M/H547A) mutations on basal dopamine uptake, Tat-induced inhibition of DAT function, and dynamic transport process. Compared to wild-type hDAT, the Vmax values of [3H]Dopamine uptake were increased by 96% in Y88F/H547A but decreased by 97% in Y88F/K92M/H547A. [3H]WIN35,428 binding sites were not altered in Y88F/H547A but decreased in Y88F/K92M/H547A. Y88F/H547A mutant attenuated Tat-induced inhibition of dopamine uptake observed in wild-type hDAT. Y88F/H547A displayed an attenuation of zinc-augmented [3H]WIN35,428 binding, increased basal dopamine efflux, and reduced amphetamine-induced dopamine efflux, indicating this mutant alters transporter conformational transitions. These findings further demonstrate that both tyrosine88 and histidine547 on hDAT play a key role in stabilizing basal dopamine transport and Tat-DAT integration. This study provides mechanistic insights into developing small molecules to block multiple sites in DAT for Tat binding.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Richard McCain
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|