1
|
Bacchetti T, Morresi C, Simonetti O, Ferretti G. Effect of Diet on HDL in Obesity. Molecules 2024; 29:5955. [PMID: 39770044 PMCID: PMC11677490 DOI: 10.3390/molecules29245955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations of plasma lipoprotein levels and oxidative stress are frequently observed in obese patients, including low high-density lipoprotein (HDL) cholesterol (HDL-C) levels and alterations of HDL composition. Dysfunctional HDL with lower antioxidant and anti-inflammatory properties have also been demonstrated in obesity. There is increasing evidence that white adipose tissue (WAT) participates in several metabolic activities and modulates HDL-C levels and function. In obese subjects, the changes in morphology and function of adipose tissue lead to impaired regulatory function and are associated with a state of low-grade chronic inflammation, with increased release of pro-inflammatory adipokines and cytokines. These alterations may affect HDL metabolism and functions; thus, adipose tissue is considered a potential target for the prevention and treatment of obesity. A cornerstone of obesity prevention and therapy is lifestyle modification through dietary changes, which is reflected in the modulation of plasma lipoprotein metabolism. Some dietary components and metabolites directly affect the composition and structure of HDL and modulate its anti-inflammatory and vasoprotective properties. The aims of the review are to summarize the crosstalk between adipocytes and HDL dysfunction in human obesity and to highlight recent discoveries on beneficial dietary patterns as well as nutritional components on inflammation and HDL function in human obesity.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology, Research Center of Health Education and Health Promotion and Research Center of Obesity, Polytechnic University of Marche, 60126 Ancona, Italy;
| |
Collapse
|
2
|
Yue X, Yu S, Luan Y, Wang J, Zhao J, Zhang M, Wang Q. Taraxacum Mongolicum Polysaccharides Reverses Mice Obesity via Activation of AKT/mTOR Pathway. Nutrients 2024; 16:3330. [PMID: 39408297 PMCID: PMC11478787 DOI: 10.3390/nu16193330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES The global prevalence of obesity and its associated health complications represent significant public health concerns. Plant polysaccharides have been demonstrated to possess a range of beneficial pharmacological effects. This experiment was designed to elucidate the mechanisms of dietary Taraxacum mongolicum polysaccharides involved in the regulation of obesity and fat browning. METHODS Male C57BL/6J mice were randomly divided into three groups: a control group, a high-fat diet (HFD) group, and an HFD group supplemented with 0.3% TMPs. The mice were fed their respective diets for 10 weeks, after which their body weight, food consumption, and serum lipid levels were measured. Histological analysis was performed to assess lipid deposition in adipose tissue and liver. Western blot was used to assess the expression of proteins involved in the AKT/mTOR pathway. RESULTS The results show that compared with the HFD group, the TMP supplementation group's body-weight gain (12.17 ± 1.77) significantly decreased. TMPs also reduced serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol. Histological analysis showed that TMPs reduced lipid deposition in both adipose tissue and the liver. CONCLUSIONS In addition, TMPs increased the expression of phosphorylated AKT and the mechanistic target of rapamycin (mTOR), indicating that TMPs exert their beneficial effects on lipid metabolism via the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xiaoyu Yue
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.Y.); (S.Y.); (Y.L.); (J.W.)
| | - Shilong Yu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.Y.); (S.Y.); (Y.L.); (J.W.)
| | - Yue Luan
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.Y.); (S.Y.); (Y.L.); (J.W.)
| | - Jianpeng Wang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.Y.); (S.Y.); (Y.L.); (J.W.)
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Mu Zhang
- College of Economics and Management, Shenyang Agricultural University, Shenyang 110065, China;
| | - Qin Wang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.Y.); (S.Y.); (Y.L.); (J.W.)
| |
Collapse
|
3
|
Rao Y, Su R, Wu C, Yang G, Fu R, Wu J, Liang J, Liu J, Jiang Z, Xu C, Huang L. Marine fungus Aspergillus c1. sp metabolite activates the HSF1/PGC-1α axis, inducing a thermogenic program for treating obesity. Front Pharmacol 2024; 15:1320040. [PMID: 38333010 PMCID: PMC10851286 DOI: 10.3389/fphar.2024.1320040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Background and aims: Obesity is one of the most prevalent diseases worldwide with less ideal approved agents in clinic. Activating the HSF1/PGC-1α axis in adipose tissues has been reported to induce thermogenesis in mice, which presents a promising therapeutic avenue for obesity treatment. The present study aimed to identified novel natural HSF1 activator and evaluated the therapeutic effects of the newly discovered compound on obesity-associated metabolic disorders and the molecular mechanisms of these effects. Methods: Our previous reported HSF1/PGC-1α activator screening system was used to identify novel natural HSF1 activator. The PGC-1α luciferase activity, immunoblot, protein nuclear-translocation, immunofluorescence, chromatin immunoprecipitation assays were used to evaluate the activity of compound HN-001 in activating HSF1. The experiments of mitochondrial number measurement, TG assay and imaging, cellular metabolic assay, gene assays, and CRISPR/Cas 9 were applied for investigating the metabolic effect of HN-001 in C3H10-T1/2 adipocytes. The in vivo anti-obesity efficacies and beneficial metabolic effects of HN-001 were evaluated by performing body and fat mass quantification, plasma chemical analysis, GTT, ITT, cold tolerance test, thermogenesis analysis. Results: HN-001 dose- and time-dependently activated HSF1 and induced HSF1 nuclear translocation, resulting in an enhancement in binding with the gene Pgc-1α. This improvement induced activation of adipose thermogenesis and enhancement of mitochondrial oxidation capacity, thus inhibiting adipocyte maturation. Deletion of HSF1 in adipocytes impaired mitochondrial oxidation and abolished the above beneficial metabolic effects of HN-001, including adipocyte browning induction, improvements in mitogenesis and oxidation capacity, and lipid-lowering ability. In mice, HN-001 treatment efficiently alleviated diet-induced obesity and metabolic disorders. These changes were associated with increased body temperature in mice and activation of the HSF1/PGC-1α axis in adipose tissues. UCP1 expression and mitochondrial biogenesis were increased in both white and brown adipose tissues of HN-001-treated mice. Conclusion: These data indicate that HN-001 may have therapeutic potential for obesity-related metabolic diseases by increasing the capacity of energy expenditure in adipose tissues through a mechanism involving the HSF1/PGC-1α axis, which shed new light on the development of novel anti-obesity agents derived from marine sources.
Collapse
Affiliation(s)
- Yong Rao
- *Correspondence: Yong Rao, ; Ling Huang,
| | | | | | | | | | | | | | | | | | | | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
4
|
Chlorophyll Inhibits the Digestion of Soybean Oil in Simulated Human Gastrointestinal System. Nutrients 2022; 14:nu14091749. [PMID: 35565719 PMCID: PMC9101154 DOI: 10.3390/nu14091749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, much available processed and highly palatable food such as cream products and fried and convenient food, which usually showed a high energy density, had caused an increase in the intake of dietary lipids, further leading to significant growth in the prevalence of obesity. Chlorophyll, widespread in fruits and vegetables, was proven to have beneficial effects on alleviating obesity. This study investigated the effects of chlorophyll on the digestive characteristics of lipids under in vitro simulated adult and infant gastrointestinal systems. Chlorophyll decreased the release rate of free fatty acid (FFA) during in vitro adult and infant intestinal digestion by 69.2% and 60.0%, respectively. Meanwhile, after gastrointestinal digestion, chlorophyll changed the FFA composition of soybean oil emulsion and increased the particle size of oil droplets. Interestingly, with the addition of chlorophyll, the activity of pancreatic lipase was inhibited during digestion, which may be related to pheophytin (a derivative of chlorophyll after gastric digestion). Therefore, the results obtained from isothermal titration calorimetry and molecular docking further elucidated that pheophytin could bind to pancreatic lipase with a strong affinity of (4.38 ± 0.76) × 107 M-1 (Ka), while the binding site was amino acid residue Trp253. The investigation not only explained why chlorophyll inhibited digestive enzyme activity to reduce lipids digestion but also provided exciting opportunities for developing novel chlorophyll-based healthy products for dietary application in preventing obesity.
Collapse
|
5
|
Zekri Y, Flamant F, Gauthier K. Central vs. Peripheral Action of Thyroid Hormone in Adaptive Thermogenesis: A Burning Topic. Cells 2021; 10:1327. [PMID: 34071979 PMCID: PMC8229489 DOI: 10.3390/cells10061327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (TH) contribute to the control of adaptive thermogenesis, which is associated with both higher energy expenditure and lower body mass index. While it was clearly established that TH act directly in the target tissues to fulfill its metabolic activities, some studies have rather suggested that TH act in the hypothalamus to control these processes. This paradigm shift has subjected the topic to intense debates. This review aims to recapitulate how TH control adaptive thermogenesis and to what extent the brain is involved in this process. This is of crucial importance for the design of new pharmacological agents that would take advantage of the TH metabolic properties.
Collapse
Affiliation(s)
- Yanis Zekri
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d’Italie, 69007 Lyon, France; (F.F.); (K.G.)
| | | | | |
Collapse
|
6
|
Jia XW, Fang DL, Shi XY, Lu T, Yang C, Gao Y. Inducible beige adipocytes improve impaired glucose metabolism in interscapular BAT-removal mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158871. [PMID: 33346159 DOI: 10.1016/j.bbalip.2020.158871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/08/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022]
Abstract
Inducible beige adipocytes are emerging as an interesting issue in obesity and metabolism research. There is a neglected possibility that brown adipocytes are equally activated when external stimuli induce the formation of beige adipocytes. Thus, the question is whether beige adipocytes have the same functions as brown adipocytes when brown adipose tissue (BAT) is lacking. This question has not been well studied. Therefore we determine the beneficial effects of beige adipocytes upon cold challenge or CL316243 treatments in animal models of interscapular BAT (iBAT) ablation by surgical denervation. We found that denervated iBAT were activated by cold exposure and CL316243 treatments. The data show that beige adipocytes partly contribute to the improvement of impaired glucose metabolism resulting from denervated iBAT. Thus, we further used iBAT-removal animal models to abolish iBAT functions completely. We found that beige adipocytes upon cold exposure or CL316243 treatments improved impaired glucose metabolism and enhanced glucose uptake in iBAT-removal mice. The insulin signaling was activated in iBAT-removal mice upon cold exposure. Both the activation of insulin signaling and up-regulation of glucose transporter expression were observed in iBAT-removal mice with CL316243 treatments. The data show that inducible beige adipocytes may have different mechanisms to improve impaired glucose metabolism. Inducible beige adipocytes can also enhance energy expenditure and lipolytic activity of white adipose tissues when iBAT is lacking. We provide direct evidences for the beneficial effect of inducible beige adipocytes in glucose metabolism and energy expenditure in the absence of iBAT in vivo.
Collapse
Affiliation(s)
- Xiao-Wei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong-Liang Fang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xin-Yi Shi
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chun Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Niu N, Xing H, Wang X, Ding J, Hao Z, Ren C, Ba J, Zheng L, Fu C, Zhao H, Huo L. Comparative [ 18F]FDG and [ 18F]DPA714 PET imaging and time-dependent changes of brown adipose tissue in tumour-bearing mice. Adipocyte 2020; 9:542-549. [PMID: 32902340 PMCID: PMC7714432 DOI: 10.1080/21623945.2020.1814546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue (BAT) is important in monitoring energy homeostasis and cancer cachexia. Different from white adipose tissue, BAT is characterized by the presence of a large number of mitochondria in adipocytes. Translocator protein 18 kDa (TSPO), a critical transporter, is expressed in the outer membrane of mitochondria. We speculated that [18F]DPA714, a specific TSPO tracer, may monitor BAT activity in tumor-bearing mice in vivo. We first analyzed the radioactive uptake of positron emission tomography (PET) tracers in BAT of CT26 xenograft mice with 18F-fluorodeoxyglucose ([18F]FDG) and [18F]DPA714. We also studied the BAT uptake of [18F]DPA714 in CT26, A549 and LLC tumor models. The dynamic distribution of [18F]FDG is quite variable among animals, even in mice of the same tumor model (%ID/g-mean: mean ± SDM, 8.61 ± 8.90, n = 16). Contrarily, [18F]DPA714 produced high-quality and stable BAT imaging in different tumor models and different animals of the same model. Interestingly, %ID/g-mean of [18F]DPA714 in BAT was significantly higher on day 26 than that on day 7 in CT26 xenograft model. Taken together, these results strongly indicate the potential feasibility of [18F]DPA714 PET imaging in investigating BAT and energy metabolism during tumor progression in preclinical and clinical study.
Collapse
Affiliation(s)
- Na Niu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haiqun Xing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xuezhu Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jie Ding
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Zhixin Hao
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Chao Ren
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jiantao Ba
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Chao Fu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haiyan Zhao
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
8
|
Xiang AS, Giles C, Loh RK, Formosa MF, Eikelis N, Lambert GW, Meikle PJ, Kingwell BA, Carey AL. Plasma Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations Are Positively Associated with Brown Adipose Tissue Activity in Humans. Metabolites 2020; 10:metabo10100388. [PMID: 32998426 PMCID: PMC7601733 DOI: 10.3390/metabo10100388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Brown adipose tissue (BAT) activation is a possible therapeutic strategy to increase energy expenditure and improve metabolic homeostasis in obesity. Recent studies have revealed novel interactions between BAT and circulating lipid species—in particular, the non-esterified fatty acid (NEFA) and oxylipin lipid classes. This study aimed to identify individual lipid species that may be associated with cold-stimulated BAT activity in humans. A panel of 44 NEFA and 41 oxylipin species were measured using mass-spectrometry-based lipidomics in the plasma of fourteen healthy male participants before and after 90 min of mild cold exposure. Lipid measures were correlated with BAT activity measured via 18F-fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT), along with norepinephrine (NE) concentration (a surrogate marker of sympathetic activity). The study identified a significant increase in total NEFA concentration following cold exposure that was positively associated with NE concentration change. Individually, 33 NEFA and 11 oxylipin species increased significantly in response to cold exposure. The concentration of the omega-3 NEFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at baseline was significantly associated with BAT activity, and the cold-induced change in 18 NEFA species was significantly associated with BAT activity. No significant associations were identified between BAT activity and oxylipins.
Collapse
Affiliation(s)
- Angie S. Xiang
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
- Central Clinical School, Monash University, Clayton, Melbourne 3004, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia;
- Correspondence: ; Tel.: +61-3-8532-1536
| | - Rebecca K.C. Loh
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
- Department of Physiology, Monash University, Clayton, Melbourne 3800, Australia
| | - Melissa F. Formosa
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
| | - Nina Eikelis
- Iverson Health Innovation Research Institute, Swinburne Institute of Technology, Melbourne 3122, Australia; (N.E.); (G.W.L.)
| | - Gavin W. Lambert
- Iverson Health Innovation Research Institute, Swinburne Institute of Technology, Melbourne 3122, Australia; (N.E.); (G.W.L.)
| | - Peter J. Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia;
| | - Bronwyn A. Kingwell
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
- Central Clinical School, Monash University, Clayton, Melbourne 3004, Australia
- Department of Physiology, Monash University, Clayton, Melbourne 3800, Australia
- Research Therapeutic Area, CSL Limited, Parkville 3052, Australia
| | - Andrew L. Carey
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
- Department of Physiology, Monash University, Clayton, Melbourne 3800, Australia
| |
Collapse
|
9
|
Klepac K, Georgiadi A, Tschöp M, Herzig S. The role of brown and beige adipose tissue in glycaemic control. Mol Aspects Med 2019; 68:90-100. [PMID: 31283940 DOI: 10.1016/j.mam.2019.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022]
Abstract
For the past decade, brown adipose tissue (BAT) has been extensively studied as a potential therapy for obesity and metabolic diseases due to its thermogenic and glucose-consuming properties. It is now clear that the function of BAT goes beyond heat production, as it also plays an important endocrine role by secreting the so-called batokines to communicate with other metabolic tissues and regulate systemic energy homeostasis. However, despite numerous studies showing the benefits of BAT in rodents, it is still not clear whether recruitment of BAT can be utilized to treat human patients. Here, we review the advances on understanding the role of BAT in metabolism and its benefits on glucose and lipid homeostasis in both humans and rodents. Moreover, we discuss the latest methodological approaches to assess the contribution of BAT to human metabolism as well as the possibility to target BAT, pharmacologically or by lifestyle adaptations, to treat metabolic disorders.
Collapse
Affiliation(s)
- Katarina Klepac
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Inner Medicine 1, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Anastasia Georgiadi
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Inner Medicine 1, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Matthias Tschöp
- Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Inner Medicine 1, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany; Chair Molecular Metabolic Control, Technical University Munich, Germany.
| |
Collapse
|