1
|
Williams E, Taujanskaite U, Kamboj SK, Murphy SE, Harmer CJ. Examining memory reconsolidation as a mechanism of nitrous oxide's antidepressant action. Neuropsychopharmacology 2025; 50:609-617. [PMID: 39825109 PMCID: PMC11845508 DOI: 10.1038/s41386-024-02049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
There is an ongoing need to identify novel pharmacological agents for the effective treatment of depression. One emerging candidate, which has demonstrated rapid-acting antidepressant effects in treatment-resistant groups, is nitrous oxide (N2O)-a gas commonly used for sedation and pain management in clinical settings and with a range of pharmacological effects, including antagonism of NMDA glutamate receptors. A growing body of evidence suggests that subanaesthetic doses of N2O (50%) can interfere with the reconsolidation of maladaptive memories in healthy participants and across a range of disorders. Negative biases in memory play a key role in the onset, maintenance, and recurrence of depressive episodes, and the disruption of affective memory reconsolidation is one plausible mechanism through which N2O exerts its therapeutic effects. Understanding N2O's mechanisms of action may facilitate future treatment development in depression. In this narrative review, we introduce the evidence supporting an antidepressant profile of N2O and evaluate its clinical use compared to other treatments. With a focus on the specific memory processes that are thought to be disrupted in depression, we consider the effects of N2O on memory reconsolidation and propose a memory-based mechanism of N2O antidepressant action.
Collapse
Affiliation(s)
- Ella Williams
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, UK
| | - Ursule Taujanskaite
- Clinical Psychopharmacology Unit, Research Department for Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London, UK
| | - Sunjeev K Kamboj
- Clinical Psychopharmacology Unit, Research Department for Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London, UK
| | - Susannah E Murphy
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
2
|
Gencturk S, Unal G. Rodent tests of depression and anxiety: Construct validity and translational relevance. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:191-224. [PMID: 38413466 PMCID: PMC11039509 DOI: 10.3758/s13415-024-01171-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Behavioral testing constitutes the primary method to measure the emotional states of nonhuman animals in preclinical research. Emerging as the characteristic tool of the behaviorist school of psychology, behavioral testing of animals, particularly rodents, is employed to understand the complex cognitive and affective symptoms of neuropsychiatric disorders. Following the symptom-based diagnosis model of the DSM, rodent models and tests of depression and anxiety focus on behavioral patterns that resemble the superficial symptoms of these disorders. While these practices provided researchers with a platform to screen novel antidepressant and anxiolytic drug candidates, their construct validity-involving relevant underlying mechanisms-has been questioned. In this review, we present the laboratory procedures used to assess depressive- and anxiety-like behaviors in rats and mice. These include constructs that rely on stress-triggered responses, such as behavioral despair, and those that emerge with nonaversive training, such as cognitive bias. We describe the specific behavioral tests that are used to assess these constructs and discuss the criticisms on their theoretical background. We review specific concerns about the construct validity and translational relevance of individual behavioral tests, outline the limitations of the traditional, symptom-based interpretation, and introduce novel, ethologically relevant frameworks that emphasize simple behavioral patterns. Finally, we explore behavioral monitoring and morphological analysis methods that can be integrated into behavioral testing and discuss how they can enhance the construct validity of these tests.
Collapse
Affiliation(s)
- Sinem Gencturk
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
3
|
Zhang B, Rolls ET, Wang X, Xie C, Cheng W, Feng J. Roles of the medial and lateral orbitofrontal cortex in major depression and its treatment. Mol Psychiatry 2024; 29:914-928. [PMID: 38212376 DOI: 10.1038/s41380-023-02380-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
We describe evidence for dissociable roles of the medial and lateral orbitofrontal cortex (OFC) in major depressive disorder (MDD) from structure, functional activation, functional connectivity, metabolism, and neurochemical systems. The reward-related medial orbitofrontal cortex has lower connectivity and less reward sensitivity in MDD associated with anhedonia symptoms; and the non-reward related lateral OFC has higher functional connectivity and more sensitivity to non-reward/aversive stimuli in MDD associated with negative bias symptoms. Importantly, we propose that conventional antidepressants act to normalize the hyperactive lateral (but not medial) OFC to reduce negative bias in MDD; while other treatments are needed to operate on the medial OFC to reduce anhedonia, with emerging evidence suggesting that ketamine may act in this way. The orbitofrontal cortex is the key cortical region in emotion and reward, and the current review presents much new evidence about the different ways that the medial and lateral OFC are involved in MDD.
Collapse
Affiliation(s)
- Bei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, PR China
- Medical Psychological Institute, Central South University, Changsha, PR China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, PR China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China.
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China.
- Department of Computer Science, University of Warwick, Coventry, UK.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China.
- Zhangjiang Fudan International Innovation Center, Shanghai, PR China.
| |
Collapse
|
4
|
Kamenish K, Robinson ESJ. Neuropsychological Effects of Antidepressants: Translational Studies. Curr Top Behav Neurosci 2024; 66:101-130. [PMID: 37955824 DOI: 10.1007/7854_2023_446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Pharmacological treatments that improve mood were first identified serendipitously, but more than half a century later, how these drugs induce their antidepressant effects remains largely unknown. With the help of animal models, a detailed understanding of their pharmacological targets and acute and chronic effects on brain chemistry and neuronal function has been achieved, but it remains to be elucidated how these effects translate to clinical efficacy. Whilst the field has been dominated by the monoamine and neurotrophic hypotheses, the idea that the maladaptive cognitive process plays a critical role in the development and perpetuation of mood disorders has been discussed since the 1950s. Recently, studies using objective methods to quantify changes in emotional processing found acute effects with conventional antidepressants in both healthy volunteers and patients. These positive effects on emotional processing and cognition occur without a change in the subjective ratings of mood. Building from these studies, behavioural methods for animals that quantify similar cognitive affective processes have been developed. Integrating these behavioural approaches with pharmacology and targeted brain manipulations, a picture is beginning to emerge of the underlying mechanisms that may link the pharmacology of antidepressants, these neuropsychological constructs and clinical efficacy. In this chapter, we discuss findings from animal studies, experimental medicine and patients investigating the neuropsychological effects of antidepressant drugs. We discuss the possible neural circuits that contribute to these effects and discuss whether a neuropsychological model of antidepressant effects could explain the temporal differences in clinical benefits observed with conventional delayed-onset antidepressants versus rapid-acting antidepressants.
Collapse
Affiliation(s)
- Katie Kamenish
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
5
|
Ahmed N, Bone JK, Lewis G, Freemantle N, Harmer CJ, Duffy L, Lewis G. The effect of sertraline on emotional processing: secondary analyses of the PANDA randomised controlled trial. Psychol Med 2022; 52:2814-2821. [PMID: 33431087 PMCID: PMC9647512 DOI: 10.1017/s0033291720004985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/29/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND According to the cognitive neuropsychological model, antidepressants reduce symptoms of depression and anxiety by increasing positive relative to negative information processing. Most studies of whether antidepressants alter emotional processing use small samples of healthy individuals, which lead to low statistical power and selection bias and are difficult to generalise to clinical practice. We tested whether the selective serotonin reuptake inhibitor (SSRI) sertraline altered recall of positive and negative information in a large randomised controlled trial (RCT) of patients with depressive symptoms recruited from primary care. METHODS The PANDA trial was a pragmatic multicentre double-blind RCT comparing sertraline with placebo. Memory for personality descriptors was tested at baseline and 2 and 6 weeks after randomisation using a computerised emotional categorisation task followed by a free recall. We measured the number of positive and negative words correctly recalled (hits). Poisson mixed models were used to analyse longitudinal associations between treatment allocation and hits. RESULTS A total of 576 participants (88% of those randomised) completed the recall task at 2 and 6 weeks. We found no evidence that positive or negative hits differed according to treatment allocation at 2 or 6 weeks (adjusted positive hits ratio = 0.97, 95% CI 0.90-1.05, p = 0.52; adjusted negative hits ratio = 0.99, 95% CI 0.90-1.08, p = 0.76). CONCLUSIONS In the largest individual placebo-controlled trial of an antidepressant not funded by the pharmaceutical industry, we found no evidence that sertraline altered positive or negative recall early in treatment. These findings challenge some assumptions of the cognitive neuropsychological model of antidepressant action.
Collapse
Affiliation(s)
- Norin Ahmed
- Division of Psychiatry, University College London, Faculty of Brain Sciences, London, UK
| | - Jessica K. Bone
- Division of Psychiatry, University College London, Faculty of Brain Sciences, London, UK
| | - Gemma Lewis
- Division of Psychiatry, University College London, Faculty of Brain Sciences, London, UK
| | - Nick Freemantle
- Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Catherine J. Harmer
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Larisa Duffy
- Division of Psychiatry, University College London, Faculty of Brain Sciences, London, UK
| | - Glyn Lewis
- Division of Psychiatry, University College London, Faculty of Brain Sciences, London, UK
| |
Collapse
|
6
|
Pro-cognitive effect of acute imipramine administration correlates with direct interaction of BDNF with its receptor, Trkβ. Brain Res 2022; 1789:147948. [PMID: 35597327 DOI: 10.1016/j.brainres.2022.147948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 01/18/2023]
Abstract
Given the important role of brain-derived neurotrophic factor (BDNF)-mediated Trkβ signalling in the mechanism of action of antidepressants (ADs), we examined ligand-receptor interactions in the rat cingulate cortex using a proximity ligation assay (PLA) in response to acute and repeated administration of imipramine (IMI), followed by various drug-free periods. Both the acute and chronic administration of IMI increased the BDNF-Trkβ interaction observed 3 h after drug administration. Withdrawal of IMI for 72 h or 7 days did not alter BDNF-Trkβ interaction. A significant reduction in this interaction after chronic IMI administration followed by 21 drug-free days was observed, but it returned to the control value when a new dose of IMI was given after this time. The level of mRNA encoding BDNF or Trkβ did not change in the experimental groups of animals, so one can conclude that alterations in the BDNF-Trkβ interaction depend not on acute vs. repeated treatment with IMI but on the presence of the drug in the body. This effect correlates well with the strong pro-cognitive effect of acute IMI, assessed by the novel object recognition (NOR) test.
Collapse
|
7
|
Ramli FF, Cowen PJ, Godlewska BR. The Potential Use of Ebselen in Treatment-Resistant Depression. Pharmaceuticals (Basel) 2022; 15:485. [PMID: 35455482 PMCID: PMC9030939 DOI: 10.3390/ph15040485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Ebselen is an organoselenium compound developed as an antioxidant and subsequently shown to be a glutathione peroxidase (GPx) mimetic. Ebselen shows some efficacy in post-stroke neuroprotection and is currently in trial for the treatment and prevention of hearing loss, Meniere's Disease and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro screening studies show that ebselen is also an effective inhibitor of the enzyme inositol monophosphatase (IMPase), which is a key target of the mood-stabilising drug lithium. Further, in animal experimental studies, ebselen produces effects on the serotonin system very similar to those of lithium and also decreases behavioural impulsivity. The antidepressant effects of lithium in treatment-resistant depression (TRD) have been attributed to its ability to facilitate presynaptic serotonin activity; this suggests that ebselen might also have a therapeutic role in this condition. Human studies utilising magnetic resonance spectroscopy support the notion that ebselen, at therapeutic doses, inhibits IMPase in the human brain. Moreover, neuropsychological studies support an antidepressant profile for ebselen based on positive effects on emotional processing and reward seeking. Ebselen also lowers a human laboratory measure of impulsivity, a property that has been associated with lithium's anti-suicidal effects in patients with mood disorders. Current clinical studies are directed towards assessment of the neuropsychological effects of ebselen in TRD patients. It will also be important to ascertain whether ebselen is able to lower impulsivity and suicidal behaviour in clinical populations. The objective of this review is to summarise the developmental history, pre-clinical and clinical psychopharmacological properties of ebselen in psychiatric disorders and its potential application as a treatment for TRD.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Philip J. Cowen
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| | - Beata R. Godlewska
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| |
Collapse
|
8
|
Noworyta K, Cieslik A, Rygula R. Neuromolecular Underpinnings of Negative Cognitive Bias in Depression. Cells 2021; 10:cells10113157. [PMID: 34831380 PMCID: PMC8621066 DOI: 10.3390/cells10113157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
This selective review aims to summarize the recent advances in understanding the neuromolecular underpinnings of biased cognition in depressive disorder. We begin by considering the cognitive correlates of depressed mood and the key brain systems implicated in its development. We then review the core findings across two domains of biased cognitive function in depression: pessimistic judgment bias and abnormal response to negative feedback. In considering their underlying substrates, we focus on the neurochemical mechanisms identified by genetic, molecular and pharmacological challenge studies. We conclude by discussing experimental approaches to the treatment of depression, which are derived largely from an improved understanding of its cognitive substrates.
Collapse
|
9
|
Godlewska BR, Harmer CJ. Cognitive neuropsychological theory of antidepressant action: a modern-day approach to depression and its treatment. Psychopharmacology (Berl) 2021; 238:1265-1278. [PMID: 31938879 PMCID: PMC8062380 DOI: 10.1007/s00213-019-05448-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
Abstract
Depression is a leading cause of disability worldwide and improving its treatment is a core research priority for future programmes. A change in the view of psychological and biological processes, from seeing them as separate to complementing one another, has introduced new perspectives on pathological mechanisms of depression and treatment mode of action. This review presents a theoretical model that incorporated this novel approach, the cognitive neuropsychological hypothesis of antidepressant action. This model proposes that antidepressant treatments decrease the negative bias in the processing of emotionally salient information early in the course of antidepressant treatment, which leads to the clinically significant mood improvement later in treatment. The paper discusses the role of negative affective biases in the development of depression and response to antidepressant treatments. It also discusses whether the model can be applied to other antidepressant interventions and its potential translational value, including treatment choice, prediction of response and drug development.
Collapse
Affiliation(s)
- Beata R Godlewska
- Department of Psychiatry, Psychopharmacology Research Unit, University Department of Psychiatry (PPRU), University of Oxford, Oxford, UK.
- Department of Psychiatry, Psychopharmacology and Emotion Research Laboratory (PERL), University of Oxford, Oxford, UK.
- Oxford Health Foundation Trust, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK.
| | - Catherine J Harmer
- Department of Psychiatry, Psychopharmacology and Emotion Research Laboratory (PERL), University of Oxford, Oxford, UK
- Oxford Health Foundation Trust, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
10
|
Neuroimaging as a Tool for Individualized Treatment Choice in Depression: the Past, the Present and the Future. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00198-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Purpose of Review
This paper aims to review the findings on neuroimaging as a tool for facilitating individualized treatment choice in depression.
Recent Findings
Neuroimaging has allowed the exploration of neural candidates for response biomarkers. In less than two decades, the field has expanded from small single drug studies to large multisite initiatives testing multiple interventions; from simple analytical methods to employing artificial intelligence, with an aim of establishing models based on a variety of data, such as neuroimaging, biological, psychological and clinical measures.
Summary
Neural biomarkers of response may play an important role in treatment response prediction. It seems likely that they will need to be considered together with other types of data in complex models in order to achieve the high accuracy and generalizability of results necessary for clinical use.
Collapse
|