1
|
Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, Bagó-Mas A, Verdú E, Salvadó V, Boadas-Vaello P. Discriminating fingerprints of chronic neuropathic pain following spinal cord injury using artificial neural networks and mass spectrometry analysis of female mice serum. Neurochem Int 2024; 181:105890. [PMID: 39455011 DOI: 10.1016/j.neuint.2024.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Spinal cord injury (SCI) often leads to central neuropathic pain, a condition associated with significant morbidity and is challenging in terms of the clinical management. Despite extensive efforts, identifying effective biomarkers for neuropathic pain remains elusive. Here we propose a novel approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with artificial neural networks (ANNs) to discriminate between mass spectral profiles associated with chronic neuropathic pain induced by SCI in female mice. Functional evaluations revealed persistent chronic neuropathic pain following mild SCI as well as minor locomotor disruptions, confirming the value of collecting serum samples. Mass spectra analysis revealed distinct profiles between chronic SCI and sham controls. On applying ANNs, 100% success was achieved in distinguishing between the two groups through the intensities of m/z peaks. Additionally, the ANNs also successfully discriminated between chronic and acute SCI phases. When reflexive pain response data was integrated with mass spectra, there was no improvement in the classification. These findings offer insights into neuropathic pain pathophysiology and underscore the potential of MALDI-TOF MS coupled with ANNs as a diagnostic tool for chronic neuropathic pain, potentially guiding attempts to discover biomarkers and develop treatments.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic; Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Eladia M Peña-Méndez
- Department of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de La Laguna, Tenerife, Spain
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukáš Pečinka
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain
| | - Victoria Salvadó
- Department of Chemistry, Faculty of Science, University of Girona, 17071, Girona, Catalonia, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
2
|
Lötsch J, Gasimli K, Malkusch S, Hahnefeld L, Angioni C, Schreiber Y, Trautmann S, Wedel S, Thomas D, Ferreiros Bouzas N, Brandts CH, Schnappauf B, Solbach C, Geisslinger G, Sisignano M. Machine learning and biological validation identify sphingolipids as potential mediators of paclitaxel-induced neuropathy in cancer patients. eLife 2024; 13:RP91941. [PMID: 39347767 PMCID: PMC11444680 DOI: 10.7554/elife.91941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) is a serious therapy-limiting side effect of commonly used anticancer drugs. Previous studies suggest that lipids may play a role in CIPN. Therefore, the present study aimed to identify the particular types of lipids that are regulated as a consequence of paclitaxel administration and may be associated with the occurrence of post-therapeutic neuropathy. Methods High-resolution mass spectrometry lipidomics was applied to quantify d=255 different lipid mediators in the blood of n=31 patients drawn before and after paclitaxel therapy for breast cancer treatment. A variety of supervised statistical and machine-learning methods was applied to identify lipids that were regulated during paclitaxel therapy or differed among patients with and without post-therapeutic neuropathy. Results Twenty-seven lipids were identified that carried relevant information to train machine learning algorithms to identify, in new cases, whether a blood sample was drawn before or after paclitaxel therapy with a median balanced accuracy of up to 90%. One of the top hits, sphinganine-1-phosphate (SA1P), was found to induce calcium transients in sensory neurons via the transient receptor potential vanilloid 1 (TRPV1) channel and sphingosine-1-phosphate receptors.SA1P also showed different blood concentrations between patients with and without neuropathy. Conclusions Present findings suggest a role for sphinganine-1-phosphate in paclitaxel-induced biological changes associated with neuropathic side effects. The identified SA1P, through its receptors, may provide a potential drug target for co-therapy with paclitaxel to reduce one of its major and therapy-limiting side effects. Funding This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG, Grants SFB1039 A09 and Z01) and by the Fraunhofer Foundation Project: Neuropathic Pain as well as the Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD). This work was also supported by the Leistungszentrum Innovative Therapeutics (TheraNova) funded by the Fraunhofer Society and the Hessian Ministry of Science and Arts. Jörn Lötsch was supported by the Deutsche Forschungsgemeinschaft (DFG LO 612/16-1).
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Khayal Gasimli
- Goethe University, Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Saskia Wedel
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Nerea Ferreiros Bouzas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Christian H Brandts
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University, University Cancer Center Frankfurt (UCT), Goethe University Hospital, Frankfurt, Germany
| | | | - Christine Solbach
- Goethe University, Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
3
|
Miclescu A, Rönngren C, Bengtsson M, Gordh T, Hedin A. Increased risk of persistent neuropathic pain after traumatic nerve injury and surgery for carriers of a human leukocyte antigen haplotype. Pain 2024; 165:1404-1412. [PMID: 38147413 PMCID: PMC11090029 DOI: 10.1097/j.pain.0000000000003143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 12/28/2023]
Abstract
ABSTRACT It is not known why some patients develop persistent pain after nerve trauma while others do not. Among multiple risk factors for the development of persistent posttrauma and postsurgical pain, a neuropathic mechanism due to iatrogenic nerve lesion has been proposed as the major cause of these conditions. Because there is some evidence that the human leukocyte antigen (HLA) system plays a role in persistent postsurgical pain, this study aimed to identify the genetic risk factors, specifically among HLA loci, associated with chronic neuropathic pain after traumatic nerve injuries and surgery in the upper extremities. Blood samples were taken to investigate the contribution of HLA alleles (ie, HLA-A, HLA-B, HLA-DRB1, HLA-DQB1, and HLA-DPB1) in a group of patients with persistent neuropathic pain (n = 70) and a group of patients with neuropathy without pain (n = 61). All subjects had intraoperatively verified nerve damage in the upper extremity. They underwent bedside clinical neurological examination to identify the neuropathic pain component according to the present grading system of neuropathic pain. Statistical analyses on the allele and haplotype were conducted using the BIGDAWG package. We found that the HLA haplotype A*02:01-B*15:01-C*03:04-DRB1*04:01-DQB1*03:02 was associated with an increased risk of developing persistent neuropathic pain in the upper extremity (OR = 9.31 [95% CI 1.28-406.45], P < 0.05). No significant associations were found on an allele level when correcting for multiple testing. Further studies are needed to investigate whether this association is on a haplotypic level or if certain alleles may be causing the association.
Collapse
Affiliation(s)
| | | | - Mats Bengtsson
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anders Hedin
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Zhang W, Jiao B, Yu S, Zhang C, Zhang K, Liu B, Zhang X. Histone deacetylase as emerging pharmacological therapeutic target for neuropathic pain: From epigenetic to selective drugs. CNS Neurosci Ther 2024; 30:e14745. [PMID: 38715326 PMCID: PMC11077000 DOI: 10.1111/cns.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Caixia Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Taha BA, Addie AJ, Kadhim AC, Azzahran AS, Haider AJ, Chaudhary V, Arsad N. Photonics-powered augmented reality skin electronics for proactive healthcare: multifaceted opportunities. Mikrochim Acta 2024; 191:250. [PMID: 38587660 DOI: 10.1007/s00604-024-06314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Photonics Technology Lab, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Malaysia.
| | - Ali J Addie
- Center of Advanced Materials/Directorate of Materials Research/Ministry of Science and Technology, Baghdad, Iraq
| | - Ahmed C Kadhim
- Communication Engineering Department, University of Technology, Baghdad, Iraq
| | - Ahmad S Azzahran
- Electrical Engineering Department, Northern Border University, Arar, Kingdom of Saudi Arabia.
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Baghdad, Iraq
| | - Vishal Chaudhary
- Research Cell &, Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, 110045, India
| | - Norhana Arsad
- Photonics Technology Lab, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Malaysia.
| |
Collapse
|
6
|
Tamvaki E, Giannakopoulou M, Bozas E, Zachpoulou D. Use of Biomarkers to Objectively Evaluate Pain in Critically Ill Children: A Scoping Review. Crit Care Nurse 2024; 44:55-66. [PMID: 38295869 DOI: 10.4037/ccn2024257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND Many studies have been conducted recently to identify biomarkers that could potentially be used to objectively evaluate pain. OBJECTIVE To synthesize and critically analyze primary studies of endogenous biomarkers and their associations with pain to identify suitable biomarkers for the objective evaluation of pain in critically ill children. METHODS PubMed, Scopus, and Ovid databases were searched; searches were restricted by publication date, language, species, and participant age. Critical appraisal tools and the Strengthening the Reporting of Observational Studies in Epidemiology checklist were used to evaluate quality of evidence. RESULTS All included articles were coded according to methods and findings. Saliva, blood, cerebrospinal fluid, and gingival crevicular fluid were used to detect biomarkers. Enzyme-linked immunosorbent assays were used in most studies (64%). Appropriate statistical analyses were performed at a significance level of P < .05 in included studies. Cytokines, peptides, and hormones were associated with pain, stress, and inflammatory response, suggesting that they can be used to screen for pain in children during painful conditions. Only 1 study in neonates did not show any correlation between saliva biomarkers and pain. CONCLUSION According to this literature review, various biomarkers that are easily obtained and measured in a clinical setting are associated with pain in children. Further investigation of these biomarkers through observational studies is suggested to evaluate their suitability for pain assessment in critically ill children.
Collapse
Affiliation(s)
- Eleni Tamvaki
- Eleni Tamvaki is a registered nurse in pediatric intensive care and a clinical researcher in inherited and rare diseases, Great Ormond Street Hospital for Children, London, England
| | - Margarita Giannakopoulou
- Margarita Giannakopoulou is a professor in the Department of Nursing and the Director of the Clinical Nursing Applications Laboratory, National and Kapodistrian University of Athens, Greece
| | - Evangelos Bozas
- Evangelos Bozas is a biologist in the Department of Nursing, National and Kapodistrian University of Athens
| | | |
Collapse
|
7
|
Witkam RL, Burmeister LS, Van Goethem JWM, van der Kolk AG, Vissers KCP, Henssen DJHA. Microstructural Changes in the Spinothalamic Tract of CPSS Patients: Preliminary Results from a Single-Center Diffusion-Weighted Magnetic Resonance Imaging Study. Brain Sci 2023; 13:1370. [PMID: 37891739 PMCID: PMC10605620 DOI: 10.3390/brainsci13101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Chronic pain after spinal surgery (CPSS), formerly known as failed back surgery syndrome, encompasses a variety of highly incapacitating chronic pain syndromes emerging after spinal surgery. The intractability of CPSS makes objective parameters that could aid classification and treatment essential. In this study, we investigated the use of cerebral diffusion-weighted magnetic resonance imaging. METHODS Cerebral 3T diffusion-weighted (DW-) MRI data from adult CPSS patients were assessed and compared with those of healthy controls matched by age and gender. Only imaging data without relevant artefacts or significant pathologies were included. Apparent diffusion coefficient (ADC) maps were calculated from the b0 and b1000 values using nonlinear regression. After skull stripping and affine registration of all imaging data, ADC values for fifteen anatomical regions were calculated and analyzed with independent samples T-tests. RESULTS A total of 32 subjects were included (sixteen CPSS patients and sixteen controls). The mean ADC value of the spinothalamic tract was found to be significantly higher in CPSS patients compared with in healthy controls (p = 0.013). The other anatomical regions did not show statistically different ADC values between the two groups. CONCLUSION Our results suggest that patients suffering from CPSS are subject to microstructural changes, predominantly within the cerebral spinothalamic tract. Additional research could possibly lead to imaging biomarkers derived from ADC values in CPSS patients.
Collapse
Affiliation(s)
- Richard L. Witkam
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Lara S. Burmeister
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | | | - Anja G. van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Kris C. P. Vissers
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Dylan J. H. A. Henssen
- Department of Medical Imaging, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| |
Collapse
|
8
|
Wedel S, Hahnefeld L, Schreiber Y, Namendorf C, Heymann T, Uhr M, Schmidt MV, de Bruin N, Hausch F, Thomas D, Geisslinger G, Sisignano M. SAFit2 ameliorates paclitaxel-induced neuropathic pain by reducing spinal gliosis and elevating pro-resolving lipid mediators. J Neuroinflammation 2023; 20:149. [PMID: 37355700 DOI: 10.1186/s12974-023-02835-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Chemotherapy-induced neuropathic pain (CIPN) describes a pathological pain state that occurs dose-dependently as a side effect and can limit or even impede an effective cancer therapy. Unfortunately, current treatment possibilities for CIPN are remarkably confined and mostly inadequate as CIPN therapeutics themselves consist of low effectiveness and may induce severe side effects, pointing out CIPN as pathological entity with an emerging need for novel treatment targets. Here, we investigated whether the novel and highly specific FKBP51 inhibitor SAFit2 reduces paclitaxel-induced neuropathic pain. METHODS In this study, we used a well-established multiple low-dose paclitaxel model to investigate analgesic and anti-inflammatory properties of SAFit2. For this purpose, the behavior of the mice was recorded over 14 days and the mouse tissue was then analyzed using biochemical methods. RESULTS Here, we show that SAFit2 is capable to reduce paclitaxel-induced mechanical hypersensitivity in mice. In addition, we detected that SAFit2 shifts lipid levels in nervous tissue toward an anti-inflammatory and pro-resolving lipid profile that counteracts peripheral sensitization after paclitaxel treatment. Furthermore, SAFit2 reduced the activation of astrocytes and microglia in the spinal cord as well as the levels of pain-mediating chemokines. Its treatment also increased anti-inflammatory cytokines levels in neuronal tissues, ultimately leading to a resolution of neuroinflammation. CONCLUSIONS In summary, SAFit2 shows antihyperalgesic properties as it ameliorates paclitaxel-induced neuropathic pain by reducing peripheral sensitization and resolving neuroinflammation. Therefore, we consider SAFit2 as a potential novel drug candidate for the treatment of paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Saskia Wedel
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Christian Namendorf
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Tim Heymann
- Department of Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Manfred Uhr
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mathias V Schmidt
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Felix Hausch
- Department of Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Yan Y, Zhu M, Cao X, Xu G, Shen W, Li F, Zhang J, Luo L, Zhang X, Zhang D, Liu T. Thalamocortical Circuit Controls Neuropathic Pain via Up-regulation of HCN2 in the Ventral Posterolateral Thalamus. Neurosci Bull 2023; 39:774-792. [PMID: 36538279 PMCID: PMC10169982 DOI: 10.1007/s12264-022-00989-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
The thalamocortical (TC) circuit is closely associated with pain processing. The hyperpolarization-activated cyclic nucleotide-gated (HCN) 2 channel is predominantly expressed in the ventral posterolateral thalamus (VPL) that has been shown to mediate neuropathic pain. However, the role of VPL HCN2 in modulating TC circuit activity is largely unknown. Here, by using optogenetics, neuronal tracing, electrophysiological recordings, and virus knockdown strategies, we showed that the activation of VPL TC neurons potentiates excitatory synaptic transmission to the hindlimb region of the primary somatosensory cortex (S1HL) as well as mechanical hypersensitivity following spared nerve injury (SNI)-induced neuropathic pain in mice. Either pharmacological blockade or virus knockdown of HCN2 (shRNA-Hcn2) in the VPL was sufficient to alleviate SNI-induced hyperalgesia. Moreover, shRNA-Hcn2 decreased the excitability of TC neurons and synaptic transmission of the VPL-S1HL circuit. Together, our studies provide a novel mechanism by which HCN2 enhances the excitability of the TC circuit to facilitate neuropathic pain.
Collapse
Affiliation(s)
- Yi Yan
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Mengye Zhu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Xuezhong Cao
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Gang Xu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Wei Shen
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Fan Li
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Jinjin Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Lingyun Luo
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Xuexue Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China.
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China.
| | - Daying Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China.
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China.
| | - Tao Liu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
10
|
Rich K, Rehman S, Jerman J, Wilkinson G. Investigating the potential of GalR2 as a drug target for neuropathic pain. Neuropeptides 2023; 98:102311. [PMID: 36580831 DOI: 10.1016/j.npep.2022.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Neuropathic pain is a chronic and debilitating condition characterised by episodes of hyperalgesia and allodynia. It occurs following nerve damage from disease, inflammation or injury and currently impacts up to 17% of the UK population. Existing therapies lack efficacy and have deleterious side effects that can be severely limiting. Galanin receptor 2 (GalR2) is a G-protein coupled receptor (GPCR) implicated in the control and processing of painful stimuli. Within the nervous system it is expressed in key tissues involved in these actions such as dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. Stimulation of GalR2 is widely reported to have a role in the attenuation of inflammatory and neuropathic pain. Several studies have indicated GalR2 as a possible drug target, highlighting the potential of specific GalR2 agonists to both provide efficacy and to address the side-effect profiles of current pain therapies in clinical use. A strong biological target for drug discovery will be well validated with regards to its role in the relevant disease pathology. Ideally there will be good translational models, sensitive probes, selective and appropriate molecular tools, translational biomarkers, a clearly defined patient population and strong opportunities for commercialisation. Before GalR2 can be considered as a drug target suitable for investment, key questions need to be asked regarding its expression profile, receptor signalling and ligand interactions. This article aims to critically review the available literature and determine the current strength of hypothesis of GalR2 as a target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Kirsty Rich
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK.
| | - Samrina Rehman
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK; Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Jeff Jerman
- LifeArc, Translational Science, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Graeme Wilkinson
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| |
Collapse
|
11
|
Flores EM, Gouveia FV, Matsumoto M, Bonacif THFS, Kuroki MA, Antunes GF, Campos ACP, Kimachi PP, Campos DO, Simões CM, Sampaio MMC, Andrade FEM, Valverde J, Barros ACSD, Pagano RL, Martinez RCR. One year follow-up on a randomized study investigating serratus anterior muscle and pectoral nerves type I block to reduced neuropathic pain descriptors after mastectomy. Sci Rep 2023; 13:4591. [PMID: 36944694 PMCID: PMC10030852 DOI: 10.1038/s41598-023-31589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Breast cancer is the second most common diagnosed type of cancer in women. Chronic neuropathic pain after mastectomy occurs frequently and is a serious health problem. In our previous single-center, prospective, randomized controlled clinical study, we demonstrated that the combination of serratus anterior plane block (SAM) and pectoral nerve block type I (PECS I) with general anesthesia reduced acute postoperative pain. The present report describes a prospective follow-up study of this published study to investigate the development of chronic neuropathic pain 12 months after mastectomy by comparing the use of general anesthesia alone and general anesthesia with SAM + PECS I. Additionally, the use of analgesic medication, quality of life, depressive symptoms, and possible correlations between plasma levels of interleukin (IL)-1 beta, IL-6, and IL-10 collected before and 24 h after surgery as predictors of pain and depression were evaluated. The results showed that the use of SAM + PECS I with general anesthesia reduced numbness, hypoesthesia to touch, the incidence of patients with chronic pain in other body regions and depressive symptoms, however, did not significantly reduce the incidence of chronic neuropathic pain after mastectomy. Additionally, there was no difference in the consumption of analgesic medication and quality of life. Furthermore, no correlation was observed between IL-1 beta, IL-6, and IL-10 levels and pain and depression. The combination of general anesthesia with SAM + PECS I reduced the occurrence of specific neuropathic pain descriptors and depressive symptoms. These results could promote the use of SAM + PECS I blocks for the prevention of specific neuropathic pain symptoms after mastectomy.Registration of clinical trial: The Research Ethics Board of the Hospital Sirio-Libanes/Brazil approved the study (CAAE 48721715.0.0000.5461). This study is registered at Registro Brasileiro de Ensaios Clinicos (ReBEC), and ClinicalTrials.gov, Identifier: NCT02647385.
Collapse
Affiliation(s)
- Eva M Flores
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | - Flavia V Gouveia
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marcio Matsumoto
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | - Mayra A Kuroki
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | | | - Pedro P Kimachi
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | - Diego O Campos
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil
| | - Claudia M Simões
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | | | - João Valverde
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | - Rosana L Pagano
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil
| | - Raquel C R Martinez
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil.
- LIM/23, Institute of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil.
- Instituto de Ensino e Pesquisa, Hospital Sirio-Libanes, Rua Professor Daher Cutait, 69, São Paulo, SP, 01308-060, Brazil.
| |
Collapse
|
12
|
Thakkar B, Acevedo EO. BDNF as a biomarker for neuropathic pain: Consideration of mechanisms of action and associated measurement challenges. Brain Behav 2023; 13:e2903. [PMID: 36722793 PMCID: PMC10013954 DOI: 10.1002/brb3.2903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The primary objective of this paper is to (1) provide a summary of human studies that have used brain derived neurotrophic factor (BDNF) as a biomarker, (2) review animal studies that help to elucidate the mechanistic involvement of BDNF in the development and maintenance of neuropathic pain (NP), and (3) provide a critique of the existing measurement techniques to highlight the limitations of the methods utilized to quantify BDNF in different biofluids in the blood (i.e., serum and plasma) with the intention of presenting a case for the most reliable and valid technique. Lastly, this review also explores potential moderators that can influence the measurement of BDNF and provides recommendations to standardize its quantification to reduce the inconsistencies across studies. METHODS In this manuscript we examined the literature on BDNF, focusing on its role as a biomarker, its mechanism of action in NP, and critically analyzed its measurement in serum and plasma to identify factors that contribute to the discrepancy in results between plasma and serum BDNF values. RESULTS A large heterogenous literature was reviewed that detailed BDNF's utility as a potential biomarker in healthy volunteers, patients with chronic pain, and patients with neuropsychiatric disorders but demonstrated inconsistent findings. The literature provides insight into the mechanism of action of BDNF at different levels of the central nervous system using animal studies. We identified multiple factors that influence the measurement of BDNF in serum and plasma and based on current evidence, we recommend assessing serum BDNF levels to quantify peripheral BDNF as they are more stable and sensitive to changes than plasma BDNF. CONCLUSION Although mechanistic studies clearly explain the role of BDNF, results from human studies are inconsistent. More studies are needed to evaluate the methodological challenges in using serum BDNF as a biomarker in NP.
Collapse
Affiliation(s)
- Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
13
|
Miclescu AA, Granlund P, Butler S, Gordh T. Association between systemic inflammation and experimental pain sensitivity in subjects with pain and painless neuropathy after traumatic nerve injuries. Scand J Pain 2023; 23:184-199. [PMID: 35531763 DOI: 10.1515/sjpain-2021-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Peripheral neuropathies that occur secondary to nerve injuries may be painful or painless, and including a low-grade inflammation and pro-inflammatory cytokines associated with both regeneration and damage of peripheral nerve cells and fibers. Currently, there are no validated methods that can distinguished between neuropathic pain and painless neuropathy. The aim of this study was to search for proinflammatory and anti-inflammatory proteins associated with pain and experimental pain sensitivity in subjects with surgeon-verified nerve injuries in the upper extremities. METHODS One hundred and thirty-one subjects [69 with neuropathic pain, NP; 62 with painless neuropathy, nP] underwent a conditioned pain modulation (CPM) test that included a cold pressor task (CPT) conducted with the non-injured hand submerged in cold water (4 °C) until pain was intolerable. CPM was assessed by pain ratings to pressure stimuli before and after applying the CPT. Efficient CPM effect was defined as the ability of the individual's CS to inhibit at least 29% of pain (eCPM). The subjects were assigned to one of two subgroups: pain sensitive (PS) and pain tolerant (PT) after the time they could tolerate their hand in cold water (PS<40 s and PT=60 s) . Plasma samples were analyzed for 92 proteins incorporated in the inflammation panel using multiplex Protein Extension Array Technology (PEA). Differentially expressed proteins were investigated using both univariate and multivariate analysis (principal component analysis-PCA and orthogonal partial least-squares discriminant analysis-OPLS-DA). RESULTS Significant differences in all protein levels were found between PS and PT subgroups (CV-ANOVA p<0.001), but not between NP and nP groups (p=0.09) or between inefficient CPM (iCPM) and eCPM (p=0.53) subgroups. Several top proteins associated with NP could be detected using multivariate regression analysis such as stromelysin 2 (MMPs), interleukin-2 receptor subunit beta (IL2RB), chemokine (C-X-C motif) ligand 3 (CXCL3), fibroblast growth factor 5 (FGF5), chemokine (C-C motif) ligand 28 (CCL28), CCL25, CCL11, hepatocyte growth factor (HGF), interleukin 4 (IL4), IL13. After adjusting for multiple testing, none of these proteins correlated significantly with pain. Higher levels of CCL20 (p=0.049) and CUB domain-containing protein (CDCP-1; p=0.047) were found to correlate significantly with cold pain sensitivity. CDCP-1 was highly associated with both PS and iCPM (p=0.042). CONCLUSIONS No significant alterations in systemic proteins were found comparing subjects with neuropathic pain and painless neuropathy. An expression of predominant proinflammatory proteins was associated with experimental cold pain sensitivity in both subjects with pain and painless neuropathy. One these proteins, CDC-1 acted as "molecular fingerprint" overlapping both CPM and CPT. This observation might have implications for the study of pain in general and should be addressed in more detail in future experiments.
Collapse
Affiliation(s)
| | - Pontus Granlund
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Stephen Butler
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Liao Y, Guo C, Wen A, Bai M, Ran Z, Hu J, Wang J, Yang J, Ding Y. Frankincense-Myrrh treatment alleviates neuropathic pain via the inhibition of neuroglia activation mediated by the TLR4/MyD88 pathway and TRPV1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154540. [PMID: 36379093 DOI: 10.1016/j.phymed.2022.154540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neuroglia are important modulators of neuronal functionality, and thus play an integral role in the pathogenesis and treatment of neuropathic pain (NP). According to traditional Chinese medicine, Frankincense-Myrrh is capable of "activating blood and dissipating blood stasis", and as such these two biological compounds are commonly used to treat NP, however, the mechanisms underlying the efficacy of such treatment are unclear. PURPOSE This study aimed to further elucidate the protective effects associated with the Frankincense-Myrrh treatment of NP. METHODS A chronic sciatic nerve compression injury (CCI) model of NP was established, after which animals were gavaged with Frankincense, Myrrh, Frankincense-Myrrh, or the positive control drug pregabalin for 14 days. Network pharmacology approaches were used to identify putative pathways and targets associated with the Frankincense-Myrrh-mediated treatment of NP, after which these targets were subjected to in-depth analyses. The impact of TLR4 blockade on NP pathogenesis was assessed by intrathecally administering a TLR4 antagonist (LRU) or the MyD88 homodimerization inhibitory peptide (MIP). RESULTS Significant alleviation of thermal and mechanical hypersensitivity in response to Frankincense and Myrrh treatment was observed in NP model mice, while network pharmacology analyses suggested that the pathogenesis of NP may be related to TLR4/MyD88-mediated neuroinflammation. Consistently, Frankincense-Myrrh treatment was found to reduce TLR4, MyD88, and p-p65 expression in spinal dorsal horn neuroglia from treated animals, in addition to inhibiting neuronal TRPV1 and inflammatory factor expression. Intrathecal LRU and MIP delivery were sufficient to alleviate thermal and mechanical hyperalgesia in these CCI model mice, with concomitant reductions in neuronal TRPV1 expression and neuroglial activation in the spinal dorsal horn. CONCLUSION These data suggest that Frankincense-Myrrh treatment was sufficient to alleviate NP in part via inhibiting TLR4/MyD88 pathway and TRPV1 signaling activity. Blocking TLR4 and MyD88 activation may thus hold value as a means of treating NP.
Collapse
Affiliation(s)
- Yucheng Liao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Bai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Ran
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Junping Hu
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jianhua Yang
- School of Pharmacy, Xinjiang Medical University, Urumqi, China; Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
Wedel S, Mathoor P, Rauh O, Heymann T, Ciotu CI, Fuhrmann DC, Fischer MJM, Weigert A, de Bruin N, Hausch F, Geisslinger G, Sisignano M. SAFit2 reduces neuroinflammation and ameliorates nerve injury-induced neuropathic pain. J Neuroinflammation 2022; 19:254. [PMID: 36217203 PMCID: PMC9552419 DOI: 10.1186/s12974-022-02615-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 01/17/2024] Open
Abstract
Background Neuropathic pain is experienced worldwide by patients suffering from nerve injuries, infectious or metabolic diseases or chemotherapy. However, the treatment options are still limited because of low efficacy and sometimes severe side effects. Recently, the deficiency of FKBP51 was shown to relieve chronic pain, revealing FKBP51 as a potential therapeutic target. However, a specific and potent FKBP51 inhibitor was not available until recently which hampered targeting of FKBP51. Methods In this study, we used the well-established and robust spared nerve injury model to analyze the effect of SAFit2 on nerve injury-induced neuropathic pain and to elucidate its pharmacodynamics profile. Therefore, the mice were treated with 10 mg/kg SAFit2 after surgery, the mice behavior was assessed over 21 days and biochemical analysis were performed after 14 and 21 days. Furthermore, the impact of SAFit2 on sensory neurons and macrophages was investigated in vitro. Results Here, we show that the FKBP51 inhibitor SAFit2 ameliorates nerve injury-induced neuropathic pain in vivo by reducing neuroinflammation. SAFit2 reduces the infiltration of immune cells into neuronal tissue and counteracts the increased NF-κB pathway activation which leads to reduced cytokine and chemokine levels in the DRGs and spinal cord. In addition, SAFit2 desensitizes the pain-relevant TRPV1 channel and subsequently reduces the release of pro-inflammatory neuropeptides from sensory neurons. Conclusions SAFit2 ameliorates neuroinflammation and counteracts enhanced neuronal activity after nerve injury leading to an amelioration of nerve injury-induced neuropathic pain. Based on these findings, SAFit2 constitutes as a novel and promising drug candidate for the treatment of nerve injury-induced neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02615-7.
Collapse
Affiliation(s)
- Saskia Wedel
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
| | - Praveen Mathoor
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Tim Heymann
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Felix Hausch
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Zhu X, Yuan M, Wang H, Zhangsun D, Yu G, Che J, Luo S. Novel αO-conotoxin GeXIVA[1,2] Nonaddictive Analgesic with Pharmacokinetic Modelling-Based Mechanistic Assessment. Pharmaceutics 2022; 14:pharmaceutics14091789. [PMID: 36145535 PMCID: PMC9505004 DOI: 10.3390/pharmaceutics14091789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
αO-conotoxin GeXIVA[1,2] was isolated in our laboratory from Conus generalis, a snail native to the South China Sea, and is a novel, nonaddictive, intramuscularly administered analgesic targeting the α9α10 nicotinic acetylcholine receptor (nAChR) with an IC50 of 4.61 nM. However, its pharmacokinetics and related mechanisms underlying the analgesic effect remain unknown. Herein, pharmacokinetics and multiscale pharmacokinetic modelling in animals were subjected systematically to mechanistic assessment for αO-conotoxin GeXIVA[1,2]. The intramuscular bioavailability in rats and dogs was 11.47% and 13.37%, respectively. The plasma exposure of GeXIVA[1,2] increased proportionally with the experimental dose. The plasma protein binding of GeXIVA[1,2] differed between the tested animal species. The one-compartment model with the first-order absorption population pharmacokinetics model predicted doses for humans with bodyweight as the covariant. The pharmacokinetics-pharmacodynamics relationships were characterized using an inhibitory loss indirect response model with an effect compartment. Model simulations have provided potential mechanistic insights into the analgesic effects of GeXIVA[1,2] by inhibiting certain endogenous substances, which may be a key biomarker. This report is the first concerning the pharmacokinetics of GeXIVA[1,2] and its potential analgesic mechanisms based on a top-down modelling approach.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mei Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Huanbai Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (G.Y.); (J.C.); (S.L.)
| | - Jinjing Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (G.Y.); (J.C.); (S.L.)
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China
- Medical School, Guangxi University, Nanning 530004, China
- Correspondence: (G.Y.); (J.C.); (S.L.)
| |
Collapse
|
17
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
18
|
Dourson AJ, Willits A, Raut NG, Kader L, Young E, Jankowski MP, Chidambaran V. Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Can J Pain 2022; 6:85-107. [PMID: 35572362 PMCID: PMC9103644 DOI: 10.1080/24740527.2021.2021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Background Chronic postsurgical pain (CPSP) in children remains an important problem with no effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining additional interindividual risk beyond psychological factors have been proposed. Aims We present a comprehensive review of current preclinical and clinical evidence for genetic and epigenetic mechanisms relevant to pediatric CPSP. Methods Narrative review. Results Animal models are relevant to translational research for unraveling genomic mechanisms. For example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, but pathways identified by adult gene association studies point to potential common mechanisms. Conclusions Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in large-scale biobanks may be potential solutions. Time of developmental vulnerability and longitudinal genomic changes after surgery warrant further investigation. Emergence of promising precision pain management strategies based on gene editing and epigenetic programing emphasize need for further research in pediatric CPSP-related genomics.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| |
Collapse
|
19
|
Emerging roles of lncRNAs in the pathogenesis, diagnosis, and treatment of trigeminal neuralgia. Biochem Soc Trans 2022; 50:1013-1023. [PMID: 35437600 DOI: 10.1042/bst20220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
Trigeminal neuralgia (TN) is one of the most common neuropathic pain disorders and is often combined with other comorbidities if managed inadequately. However, the present understanding of its pathogenesis at the molecular level remains lacking. Long noncoding RNAs (lncRNAs) play crucial roles in neuropathic pain, and many studies have reported that specific lncRNAs are related to TN. This review summarizes the current understanding of lncRNAs in the pathogenesis, diagnosis, and treatment of TN. Recent studies have shown that the lncRNAs uc.48+, Gm14461, MRAK009713 and NONRATT021972 are potential candidate loci for the diagnosis and treatment of TN. The current diagnostic system could be enhanced and improved by a workflow for selecting transcriptomic biomarkers and the development of lncRNA-based molecular diagnostic systems for TN. The discovery of lncRNAs potentially impacts drug selection for TN; however, the current supporting evidence is limited to preclinical studies. Additional studies are needed to further test the diagnostic and therapeutic value of lncRNAs in TN.
Collapse
|
20
|
Lötsch J, Mustonen L, Harno H, Kalso E. Machine-Learning Analysis of Serum Proteomics in Neuropathic Pain after Nerve Injury in Breast Cancer Surgery Points at Chemokine Signaling via SIRT2 Regulation. Int J Mol Sci 2022; 23:3488. [PMID: 35408848 PMCID: PMC8998280 DOI: 10.3390/ijms23073488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Persistent postsurgical neuropathic pain (PPSNP) can occur after intraoperative damage to somatosensory nerves, with a prevalence of 29-57% in breast cancer surgery. Proteomics is an active research field in neuropathic pain and the first results support its utility for establishing diagnoses or finding therapy strategies. METHODS 57 women (30 non-PPSNP/27 PPSNP) who had experienced a surgeon-verified intercostobrachial nerve injury during breast cancer surgery, were examined for patterns in 74 serum proteomic markers that allowed discrimination between subgroups with or without PPSNP. Serum samples were obtained both before and after surgery. RESULTS Unsupervised data analyses, including principal component analysis and self-organizing maps of artificial neurons, revealed patterns that supported a data structure consistent with pain-related subgroup (non-PPSPN vs. PPSNP) separation. Subsequent supervised machine learning-based analyses revealed 19 proteins (CD244, SIRT2, CCL28, CXCL9, CCL20, CCL3, IL.10RA, MCP.1, TRAIL, CCL25, IL10, uPA, CCL4, DNER, STAMPB, CCL23, CST5, CCL11, FGF.23) that were informative for subgroup separation. In cross-validated training and testing of six different machine-learned algorithms, subgroup assignment was significantly better than chance, whereas this was not possible when training the algorithms with randomly permuted data or with the protein markers not selected. In particular, sirtuin 2 emerged as a key protein, presenting both before and after breast cancer treatments in the PPSNP compared with the non-PPSNP subgroup. CONCLUSIONS The identified proteins play important roles in immune processes such as cell migration, chemotaxis, and cytokine-signaling. They also have considerable overlap with currently known targets of approved or investigational drugs. Taken together, several lines of unsupervised and supervised analyses pointed to structures in serum proteomics data, obtained before and after breast cancer surgery, that relate to neuroinflammatory processes associated with the development of neuropathic pain after an intraoperative nerve lesion.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Laura Mustonen
- Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland; (L.M.); (H.H.); (E.K.)
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Hanna Harno
- Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland; (L.M.); (H.H.); (E.K.)
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- SleepWell Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Kalso
- Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland; (L.M.); (H.H.); (E.K.)
- SleepWell Research Programme, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
21
|
Gada Y, Pandey A, Jadhav N, Ajgaonkar S, Mehta D, Nair S. New Vistas in microRNA Regulatory Interactome in Neuropathic Pain. Front Pharmacol 2022; 12:778014. [PMID: 35280258 PMCID: PMC8914318 DOI: 10.3389/fphar.2021.778014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy, cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other diseases affecting the nervous system. Only a small percentage of people with neuropathic pain benefit from current medications. The complexity of the disease, poor identification/lack of diagnostic and prognostic markers limit current strategies for the management of neuropathic pain. Multiple genes and pathways involved in human diseases can be regulated by microRNA (miRNA) which are small non-coding RNA. Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate expression of various genes associated with neuroinflammation and pain, thus, regulating neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With advancements in high-throughput technology and better computational power available for research in present-day pharmacology, biomarker discovery has entered a very exciting phase. We dissect the architecture of miRNA biological networks encompassing both human and rodent microRNAs involved in the development of neuropathic pain. We delineate various microRNAs, and their targets, that may likely serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFβ and TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/target biomarkers for more effective management of neuropathic pain.
Collapse
|
22
|
Zhou L, Li T, Wu X, Lu H, Lin L, Ye L, Yin J, Zhao J, Wang X, Bian J, Xu H. Assessment of Neuropathic Pain in Ankylosing Spondylitis: Prevalence and Characteristics. Pain Ther 2021; 10:1467-1479. [PMID: 34482533 PMCID: PMC8586434 DOI: 10.1007/s40122-021-00310-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Pain in ankylosing spondylitis is currently considered an inflammatory pain (IP). However, it was found that some patients still had the sensation of pain even without inflammation. Our study was to investigate the prevalence and characteristics of neuropathic pain (NeP) in Chinese Han ankylosing spondylitis (AS) patients. METHODS The study consisted of three parts. Firstly, we assessed the prevalence and clinical data of NeP in 182 AS patients. Secondly, we evaluated pain improvement after etanercept therapy in 63 patients. Finally, serum neurotransmitters were measured for 20 AS patients and ten healthy controls (HC). RESULTS Out of 182 AS patients, our study showed that 14 patients (7.70%) had likely NeP and 55 (30.21%) had uncertain NeP. There were significant differences among the three groups with respect to nocturnal pain (NP), peripheral pain (PP), total back pain (TBP), BASDAI, ASDAS-CRP, HAD-A, HAD-D, and BASDAI-fatigue except fort CRP concentrations. Principal component analysis (PCA) of AS pain revealed that the weight of NeP was greater than PP in the first principal component (0.703 vs. 0.639). Structural equation modeling (SEM) revealed that NeP altered disease activity (β = 0.62, P < 0.001), which influenced psychological status (β = 0.42, P < 0.001). Of 63 patients who used etanercept for 3 months, significant improvement was found in NP, TBP, and PP (all P < 0.0001) but not in PDQ (10.60 ± 6.85 vs. 9.98 ± 6.40, P = 0.0671). Serum norepinephrine concentrations in patients with PDQ > 19 were higher than those in patients with PDQ ≤ 19 and HC. CONCLUSIONS We conclude that NeP contributes to pain in AS patients.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Hongjuan Lu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Lingying Ye
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jian Yin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Juan Zhao
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xiuwen Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jianye Bian
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
A comprehensive review on biomarkers associated with painful temporomandibular disorders. Int J Oral Sci 2021; 13:23. [PMID: 34326304 PMCID: PMC8322104 DOI: 10.1038/s41368-021-00129-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Pain of the orofacial region is the primary complaint for which patients seek treatment. Of all the orofacial pain conditions, one condition that possess a significant global health problem is temporomandibular disorder (TMD). Patients with TMD typically frequently complaints of pain as a symptom. TMD can occur due to complex interplay between peripheral and central sensitization, endogenous modulatory pathways, and cortical processing. For diagnosis of TMD pain a descriptive history, clinical assessment, and imaging is needed. However, due to the complex nature of pain an additional step is needed to render a definitive TMD diagnosis. In this review we explicate the role of different biomarkers involved in painful TMD. In painful TMD conditions, the role of biomarkers is still elusive. We believe that the identification of biomarkers associated with painful TMD may stimulate researchers and clinician to understand the mechanism underlying the pathogenesis of TMD and help them in developing newer methods for the diagnosis and management of TMD. Therefore, to understand the potential relationship of biomarkers, and painful TMD we categorize the biomarkers as molecular biomarkers, neuroimaging biomarkers and sensory biomarkers. In addition, we will briefly discuss pain genetics and the role of potential microRNA (miRNA) involved in TMD pain.
Collapse
|
24
|
Deulofeu M, García-Cuesta E, Peña-Méndez EM, Conde JE, Jiménez-Romero O, Verdú E, Serrando MT, Salvadó V, Boadas-Vaello P. Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence. Front Med (Lausanne) 2021; 8:661358. [PMID: 33869258 PMCID: PMC8047105 DOI: 10.3389/fmed.2021.661358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
The high infectivity of SARS-CoV-2 makes it essential to develop a rapid and accurate diagnostic test so that carriers can be isolated at an early stage. Viral RNA in nasopharyngeal samples by RT-PCR is currently considered the reference method although it is not recognized as a strong gold standard due to certain drawbacks. Here we develop a methodology combining the analysis of from human nasopharyngeal (NP) samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the use of machine learning (ML). A total of 236 NP samples collected in two different viral transport media were analyzed with minimal sample preparation and the subsequent mass spectra data was used to build different ML models with two different techniques. The best model showed high performance in terms of accuracy, sensitivity and specificity, in all cases reaching values higher than 90%. Our results suggest that the analysis of NP samples by MALDI-TOF MS and ML is a simple, safe, fast and economic diagnostic test for COVID-19.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| | - Esteban García-Cuesta
- Science, Computation, and Technology Department, School of Architecture, Design, and Engineering, European University of Madrid, Madrid, Spain.,Instant Biosensing Technologies, Carson, NV, United States
| | - Eladia María Peña-Méndez
- Analytical Chemistry Division, Department of Chemistry, Faculty of Science, University of La Laguna, La Laguna, Spain
| | - José Elías Conde
- Analytical Chemistry Division, Department of Chemistry, Faculty of Science, University of La Laguna, La Laguna, Spain
| | - Orlando Jiménez-Romero
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - María Teresa Serrando
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| | - Victoria Salvadó
- Department of Chemistry, Faculty of Science, University of Girona, Girona, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| |
Collapse
|
25
|
Cortes-Altamirano JL, Morraz-Varela A, Reyes-Long S, Gutierrez M, Bandala C, Clavijo-Cornejo D, Alfaro-Rodriguez A. Chemical Mediators' Expression Associated with the Modulation of Pain in Rheumatoid Arthritis. Curr Med Chem 2021; 27:6208-6218. [PMID: 31419924 DOI: 10.2174/0929867326666190816225348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The management of pain in patients with rheumatoid arthritis (RA) is a complex subject due to the autoimmune nature of the pathology. Studies have shown that chemical mediators play a fundamental role in the determination, susceptibility and modulation of pain at different levels of the central and peripheral nervous system, resulting in interesting novel molecular targets to mitigate pain in patients with RA. However, due to the complexity of pain physiology in RA cand the many chemical mediators, the results of several studies are controversial. OBJECTIVE The aim of this study was to identify the chemical mediators that are able to modulate pain in RA. METHOD In this review, a search was conducted on PubMed, ProQuest, EBSCO, and the Science Citation index for studies that evaluated the expression of chemical mediators on the modulation of pain in RA. RESULTS Few studies have highlighted the importance of the expression of some chemical mediators that modulate pain in patients with rheumatoid arthritis. The expression of TRPV1, ASIC-3, and TDV8 encode ionic channels in RA and modulates pain, likewise, the transcription factors in RA, such as TNFα, TGF-β1, IL-6, IL-10, IFN-γ, IL-1b, mTOR, p21, caspase 3, EDNRB, CGRPCALCB, CGRP-CALCA, and TAC1 are also directly involved in pain perception. CONCLUSION The expression of all chemical mediators is directly related to RA and the modulation of pain by a complex intra and extracellular signaling pathway, however, transcription factors are involved in modulating acute pain, while the ionic channels are involved in chronic pain in RA.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Department of Chiropractic, State University of the Valley of Ecatepec (UNEVE), Ecatepec de Morelos, Estado de México, México
| | - Abril Morraz-Varela
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México
| | - Samuel Reyes-Long
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Marwin Gutierrez
- División de Enfermedades Musculoesqueléticas y Reumáticas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra” (INR) Secretaría de Salud (SSA), Ciudad de México, México
| | - Cindy Bandala
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Denise Clavijo-Cornejo
- División de Enfermedades Musculoesqueléticas y Reumáticas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra” (INR) Secretaría de Salud (SSA), Ciudad de México, México
| | - Alfonso Alfaro-Rodriguez
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México
| |
Collapse
|
26
|
An Investigation into Proteomic Constituents of Cerebrospinal Fluid in Patients with Chronic Peripheral Neuropathic Pain Medicated with Opioids- a Pilot Study. J Neuroimmune Pharmacol 2020; 16:634-650. [PMID: 33219474 DOI: 10.1007/s11481-020-09970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
The pharmacodynamics of opioids for chronic peripheral neuropathic pain are complex and likely extend beyond classical opioid receptor theory. Preclinical evidence of opioid modulation of central immune signalling has not been identified in vivo in humans. Examining the cerebrospinal fluid (CSF) of patients medicated with opioids is required to identify potential pharmacodynamic mechanisms. We compared CSF samples of chronic peripheral neuropathic pain patients receiving opioids (n = 7) versus chronic peripheral neuropathic pain patients not taking opioids (control group, n = 13). Baseline pain scores with demographics were recorded. Proteome analysis was performed using mass spectrometry and secreted neuropeptides were measured by enzyme-linked immunosorbent assay. Based on Gene Ontology analysis, proteins involved in the positive regulation of nervous system development and myeloid leukocyte activation were increased in patients taking opioids versus the control group. The largest decrease in protein expression in patients taking opioids were related to neutrophil mediated immunity. In addition, notably higher expression levels of neural proteins (85%) and receptors (80%) were detected in the opioid group compared to the control group. This study suggests modulation of CNS homeostasis, possibly attributable to opioids, thus highlighting potential mechanisms for the pharmacodynamics of opioids. We also provide new insights into the immunomodulatory functions of opioids in vivo.
Collapse
|
27
|
Arman A, Deng F, Goldys EM, Liu G, Hutchinson MR. In vivo intrathecal IL-1β quantification in rats: Monitoring the molecular signals of neuropathic pain. Brain Behav Immun 2020; 88:442-450. [PMID: 32272226 DOI: 10.1016/j.bbi.2020.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Neuropathic pain, or pain after nerve injury, is a disorder with a significant reliance on the signalling of cytokines such as IL-1β. However, quantifying the cytokine release repeatedly over time in vivo is technically challenging. AIM To evaluate if changes in IL-1β are correlated with the presentation of mechanical allodynia over time, by repeatedly quantifying intrathecal IL-1β concentrations following chronic constriction injury of the sciatic nerve in rats. Also, to establish any possible correlation between biochemical spinal marker expression and the in vivo quantification of IL-1β. Finally, to assess the expression of the mature IL-1β in lumbar spinal cord samples. METHOD The Chronic Constriction Injury model (CCI) was used to initiate nerve injury in male Sprague Dawley rats and the generation of behavioural mechanical allodynia was quantified. Using an indwelling intrathecal catheter, a stainless steel (SS) wire biosensing device was repeatedly introduced to quantify intrathecal IL-1β concentrations at three timepoints of 0, 7, and 14 days post CCI. Fixed spinal cord samples (L4-L5), collected on day 14, were imaged for the expression of glial fibrillary acidic protein (GFAP, astrocytes) and ionized calcium binding adaptor molecule 1 (IBA1, microglia). Snap frozen spinal cord tissues (L4-L5) were also processed for western blot analysis. RESULTS Using the novel SS based biosensing device we established that CCI caused a significant increase in intrathecal IL-1β concentrations from day 0 to day 7 (p = 0.001) and to day 14 (p < 0.0001), while the sham group did not show any significant increase. We also further showed that the degree of mechanical allodynia correlated positively with the increase in the intrathecal concentration of IL-1β in the active CCI animals (p = 0.0007). While there was a significant increase in the ipsilateral GFAP expression in injured animals compared to sham animals (p = 0.03), we did not find any significant correlation between in vivo IL-1β concentration on days 7 and 14 and the area of dorsal horn GFAP or IBA1 positive structures on day 14. The result of western blot analysis of whole lumbar spinal cord revealed that there was no significant change (p = 0.7579) in IL-1β expression on day 14 in the CCI group compared to the sham group. CONCLUSION For the first time we have established that the SS based immunosensing platform technology can repeatedly sample the intrathecal space for bioactive peptides, such as IL-1β. Using this novel approach, we have been able to establish the correlation of the intrathecal concentration of IL-1β with the extent of mechanical allodynia, providing a molecular biomarker of the degree of the exaggerated pain state.
Collapse
Affiliation(s)
- Azim Arman
- ARC Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, SA 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS) and Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Fei Deng
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, SA 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS) and Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
28
|
da Costa R, Passos GF, Quintão NL, Fernandes ES, Maia JRL, Campos MM, Calixto JB. Taxane-induced neurotoxicity: Pathophysiology and therapeutic perspectives. Br J Pharmacol 2020; 177:3127-3146. [PMID: 32352155 PMCID: PMC7312267 DOI: 10.1111/bph.15086] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
Taxane-derived drugs are antineoplastic agents used for the treatment of highly common malignancies. Paclitaxel and docetaxel are the most commonly used taxanes; however, other drugs and formulations have been used, such as cabazitaxel and nab-paclitaxel. Taxane treatment is associated with neurotoxicity, a well-known and relevant side effect, very prevalent amongst patients undergoing chemotherapy. Painful peripheral neuropathy is the most dose-limiting side effect of taxanes, affecting up to 97% of paclitaxel-treated patients. Central neurotoxicity is an emerging side effect of taxanes and it is characterized by cognitive impairment and encephalopathy. Besides impairing compliance to chemotherapy treatment, taxane-induced neurotoxicity (TIN) can adversely affect the patient's life quality on a long-term basis. Despite the clinical relevance, not many reviews have comprehensively addressed taxane-induced neurotoxicity when they are used therapeutically. This article provides an up-to-date review on the pathophysiology of TIN and the novel potential therapies to prevent or treat this side effect.
Collapse
Affiliation(s)
- Robson da Costa
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Giselle F. Passos
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Nara L.M. Quintão
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade do Vale do ItajaíItajaíSCBrazil
| | - Elizabeth S. Fernandes
- Instituto Pelé Pequeno PríncipeCuritibaPRBrazil
- Programa de Pós‐graduação em Biotecnologia Aplicada à Saúde da Criança e do AdolescenteFaculdades Pequeno PríncipeCuritibaPRBrazil
| | | | - Maria Martha Campos
- Escola de Ciências da Saúde e da VidaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreRSBrazil
| | - João B. Calixto
- Centro de Inovação e Ensaios Pré‐clínicos ‐ CIEnPFlorianópolisSCBrazil
| |
Collapse
|
29
|
Woolf CJ. Capturing Novel Non-opioid Pain Targets. Biol Psychiatry 2020; 87:74-81. [PMID: 31399256 PMCID: PMC6898770 DOI: 10.1016/j.biopsych.2019.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
Abstract
The relatively high efficacy of opioids, which have associated risks of addiction, tolerance, and dependence, for the management of acute and terminal pain has been a major driver of the opioid crisis, together with the availability, overprescription, and diversion of these drugs. Eliminating opioids without an effective replacement is, however, no solution, as it substitutes one major problem with another. To deal successfully with the opioid crisis, we need to discover novel analgesics whose mechanisms do not involve the mu opioid receptor but that have high analgesic potency and low risk of adverse effects, particularly no abuse liability. The question is how to achieve this. There are several necessary elements; first, we need to understand the nature of pain and the mechanisms responsible for it, and second, we need to adopt novel and unbiased approaches to the identification and validation of pain targets.
Collapse
Affiliation(s)
- Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|