1
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
2
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
3
|
Park M, Mun SY, Zhuang W, Jeong J, Kim HR, Park H, Han ET, Han JH, Chun W, Li H, Park WS. The antidiabetic drug ipragliflozin induces vasorelaxation of rabbit femoral artery by activating a Kv channel, the SERCA pump, and the PKA signaling pathway. Eur J Pharmacol 2024; 972:176589. [PMID: 38631503 DOI: 10.1016/j.ejphar.2024.176589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 μM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 μM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 μM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 μM) and XE991 (10 μM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 μM) and cyclopiazonic acid (10 μM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 μM) and KT5720 (1 μM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.
Collapse
Affiliation(s)
- Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hye Ryung Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
4
|
Tipcome K, Watanapa WB, Ruamyod K. Hesperetin Relaxes Depolarizing Contraction in Human Umbilical Vein by Inhibiting L-Type Ca 2+ Channel. Chin J Integr Med 2024:10.1007/s11655-024-3713-1. [PMID: 38236522 DOI: 10.1007/s11655-024-3713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE To study hesperetin-induced vasorelaxation after depolarizing contraction in human umbilical veins (HUVs) to elucidate the role of L-type Ca2+ channel (LTCC) and related signaling pathway. METHODS Isometric tension recording was performed in HUV rings pre-contracted with K+. Hesperetin relaxing mechanism was investigated using a LTCC opener (BayK8644) and blockers of cyclic nucleotides and phosphodiesterases (PDEs). Whole-cell patch-clamping in A7r5 cells, a rat vascular smooth muscle cell line, was performed to study the effect of hesperetin on LTCC current. RESULTS After depolarizing precontraction, hesperetin induced HUV relaxation concentration-dependently and endothelium-independently; 1 mmol/L hesperetin reduced denuded HUV ring tension by 68.7% ± 4.3% compared to matching vehicle, osmolality, and time controls (P<0.0001). Importantly, hesperetin competitively inhibited BayK8644-induced contraction, shifting the half maximal effective concentration of BayK8644 response from 1.08 nmol/L [95% confidence interval (CI) 0.49-2.40] in vehicle control to 11.30 nmol/L (95% CI 5.45-23.41) in hesperetin (P=0.0001). Moreover, hesperetin elicited further vasorelaxation in denuded HUV rings pretreated with inhibitors of soluble guanylyl cyclase, adenylyl cyclase, PDE3, PDE4, and PDE5 (P<0.01), while rings pretreated with PDE1 inhibitors could not be relaxed by hesperetin (P>0.05). However, simultaneously applying inhibitors of soluble guanylyl cyclase and adenylyl cyclase could not inhibit hesperetin's effect (P>0.05). In whole-cell patch-clamping, hesperetin rapidly decreased LTCC current in A7r5 cells to 66.7% ± 5.8% (P=0.0104). CONCLUSIONS Hesperetin diminishes depolarizing contraction of human vascular smooth muscle through inhibition of LTCC, and not cyclic nucleotides nor PDEs. Our evidence supports direct LTCC interaction and provides additional basis for the use of hesperetin and its precursor hesperidin as vasodilators and may lead to future vasodilator drug development as a treatment alternative for cardiovascular diseases.
Collapse
Affiliation(s)
- Kritsana Tipcome
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wattana B Watanapa
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Katesirin Ruamyod
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
D'Addario CA, Matsumura S, Kitagawa A, Lainer GM, Zhang F, D'silva M, Khan MY, Froogh G, Gruzdev A, Zeldin DC, Schwartzman ML, Gupte SA. Global and endothelial G-protein coupled receptor 75 (GPR75) knockout relaxes pulmonary artery and mitigates hypoxia-induced pulmonary hypertension. Vascul Pharmacol 2023; 153:107235. [PMID: 37742819 PMCID: PMC10841449 DOI: 10.1016/j.vph.2023.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
RATIONALE Pulmonary hypertension (PH) is a multifactorial disease with a poor prognosis and inadequate treatment options. We found two-fold higher expression of the orphan G-Protein Coupled Receptor 75 (GPR75) in leukocytes and pulmonary arterial smooth muscle cells from idiopathic PH patients and from lungs of C57BL/6 mice exposed to hypoxia. We therefore postulated that GPR75 signaling is critical to the pathogenesis of PH. METHODS To test this hypothesis, we exposed global (Gpr75-/-) and endothelial cell (EC) GPR75 knockout (EC-Gpr75-/-) mice and wild-type (control) mice to hypoxia (10% oxygen) or normal atmospheric oxygen for 5 weeks. We then recorded echocardiograms and performed right heart catheterizations. RESULTS Chronic hypoxia increased right ventricular systolic and diastolic pressures in wild-type mice but not Gpr75-/- or EC-Gpr75-/- mice. In situ hybridization and qPCR results revealed that Gpr75 expression was increased in the alveoli, airways and pulmonary arteries of mice exposed to hypoxia. In addition, levels of chemokine (CC motif) ligand 5 (CCL5), a low affinity ligand of GPR75, were increased in the lungs of wild-type, but not Gpr75-/-, mice exposed to hypoxia, and CCL5 enhanced hypoxia-induced contraction of intra-lobar pulmonary arteries in a GPR75-dependent manner. Gpr75 knockout also increased pulmonary cAMP levels and decreased contraction of intra-lobar pulmonary arteries evoked by endothelin-1 or U46619 in cAMP-protein kinase A-dependent manner. CONCLUSION These results suggest GPR75 has a significant role in the development of hypoxia-induced PH.
Collapse
Affiliation(s)
| | - Shun Matsumura
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Gregg M Lainer
- Department of Cardiology, and Heart and Vascular Institute, Westchester Medical Center and New York Medical College, Valhalla, NY 10595, USA
| | - Frank Zhang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Mohammad Y Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ghezal Froogh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Artiom Gruzdev
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Darryl C Zeldin
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
6
|
Wei J, Zhang L, Wu K, Yu J, Gao F, Cheng J, Zhang T, Zhou X, Zong Y, Huang X, Jiang C. R-(+)-WIN55212-2 protects pericytes from ischemic damage and restores retinal microcirculatory patency after ischemia/reperfusion injury. Biomed Pharmacother 2023; 166:115197. [PMID: 37572634 DOI: 10.1016/j.biopha.2023.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoids are vasoactive substances that act as key regulators of arterial tone in the blood vessels supplying peripheral tissues and the central nervous system. This study aimed to investigate the potential of R-(+)-WIN55212-2 (WIN), a cannabinoid receptor 1 agonist (CB1), as a treatment for retinal ischemia/reperfusion (I/R) injury. EXPERIMENTAL APPROACH Male Wistar rats were subjected to retinal I/R injury by increasing intraocular pressure in the anterior chamber. The rats were randomly divided into four groups: normal control, I/R, vehicle (pre-treated with dimethyl sulfoxide [DMSO] via intraperitoneal injection), and experimental (pre-treated with WIN at a dose of 1 ml/kg via intraperitoneal injection). The rats were sacrificed at different time points of reperfusion (1 hour, 3 hours, 6 hours, and 1 day) after inducing retinal I/R injury, and their retinas were collected for analysis. Oxygen-glucose deprived/reperfusion (OGD/R) was performed by initially perfusing the retinas with oxygenated artificial cerebrospinal fluid (ACSF), then switching to an OGD solution to simulate ischemia, followed by another perfusion with ACSF. Pericyte contraction and the "no-reflow" phenomenon were observed using infrared differential interference contrast (IR-DIC) microscopy and immunohistochemistry. Western blot, enzyme-linked immunosorbent assay (ELISA), and nitric oxide (NO) detection were used to explore the potential mechanism. KEY RESULTS In both the OGD/R and I/R models, retinal pericytes exhibited persistent contraction even after reperfusion. The ability of WIN to regulate the tone of retinal pericytes and capillaries was specifically blocked by the BKCa inhibitor iberiotoxin (100 nM). WIN demonstrated a protective effect against retinal I/R injury by preserving blood flow in vessels containing pericytes. Pretreatment with WIN alleviated the persistent contraction and apoptosis of retinal pericytes in I/R-induced rats, accompanied by a reduction in intracellular calcium ion (Ca2+) concentration. The expression of CB1 decreased in a time-dependent manner in the I/R group. After I/R injury, endothelium-derived nitric oxide (eNOS) levels were reduced at all time points, which was successfully reversed by WIN therapy except for the 1 day group. Additionally, the downregulation of cyclic guanosine monophosphate (cGMP) and BKCa expression at 3 hours, 6 hours, and 1 day after I/R injury was restored by pretreatment of WIN. CONCLUSIONS & IMPLICATIONS WIN exerted its protective effects on retinal I/R injury by inhibiting the contraction and apoptosis of pericytes through the CB1-eNOS-cGMP-BKCa signaling pathway, thus ameliorated the occlusion of retinal capillaries.
Collapse
Affiliation(s)
- Jiaojiao Wei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Lili Zhang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Kaicheng Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Fengjuan Gao
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Jingyi Cheng
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Ting Zhang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Xujiao Zhou
- Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China.
| | - Yuan Zong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China.
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, People's Republic of China.
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| |
Collapse
|
7
|
Han Y, Li B, Li Y, Niu D. The Inhibitory Effects of RNA-Interference-Mediated Guanylate Cyclase Knockdown on Larval Metamorphosis and Early Progeny Growth of Razor Clam. Genes (Basel) 2023; 14:459. [PMID: 36833386 PMCID: PMC9956218 DOI: 10.3390/genes14020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Guanylate cyclase (GC, cGMPase) is a key enzyme in organisms, catalyzing the synthesis of cGMP from GTP, thus making cGMP work. cGMP plays a vital role in the regulation of cell and biological growth as a second messenger in signaling pathways. In this study, we screened and identified cGMPase from the razor clam Sinonovacula constricta, which encoded 1257 amino acids and was widely expressed in different tissues, especially the gill and liver. We also screened one double-stranded RNA (dsRNA), cGMPase, which was used to knockdown cGMPase at three larval metamorphosis development stages: trochophores-veliger larve, veliger larve-umbo larve, and umbo larve-creeping larvae. We showed that interference at these stages significantly inhibited larval metamorphosis and survival rates. cGMPase knockdown resulted in an average metamorphosis rate of 60% and an average mortality rate of 50% when compared with control clams. After 50 days, shell length and body weight were inhibited to 53% and 66%, respectively. Thus, cGMPase appeared to regulate metamorphosis development and growth in S. constricta. By examining the role of the key gene in the metamorphosis development of S. constricta larvae and the growth and development period, we can provide some data reference for studying the growth and development mechanism of shellfish, and the results provided basic information for the breeding of S. constricta.
Collapse
Affiliation(s)
- Yuting Han
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Beibei Li
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yifeng Li
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
8
|
Gui X, Chu X, Du Y, Wang Y, Zhang S, Ding Y, Tong H, Xu M, Li Y, Ju W, Sun Z, Li Z, Zeng L, Xu K, Qiao J. Impaired Platelet Function and Thrombus Formation in PDE5A-Deficient Mice. Thromb Haemost 2023; 123:207-218. [PMID: 36252813 DOI: 10.1055/a-1962-1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intracellular cyclic GMP (cGMP) inhibits platelet function. Platelet cGMP levels are controlled by phosphodiesterase 5A (PDE5A)-mediated degradation. However, the exact role of PDE5A in platelet function and thrombus formation remains poorly understood. In this study, we characterized the role of PDE5A in platelet activation and function. Platelets were isolated from wild type or PDE5A-/- mice to measure platelet aggregation, activation, phosphatidylserine exposure (annexin-V binding), reactive oxygen species (ROS) generation, platelet spreading as well as clot retraction. Cytosolic calcium mobilization was measured using Fluo-4 AM by a microplate reader. Western blot was used to measure the phosphorylation of VASP, ERK1/2, p38, JNK, and AKT. FeCl3-induced arterial thrombosis and venous thrombosis were assessed to evaluate the in vivo hemostatic function and thrombus formation. Additionally, in vitro thrombus formation was assessed in a microfluidic whole-blood perfusion assay. PDE5A-deficient mice presented significantly prolonged tail bleeding time and delayed arterial and venous thrombus formation. PDE5A deficiency significantly inhibited platelet aggregation, ATP release, P-selectin expression, and integrin aIIbb3 activation. In addition, an impaired spreading on collagen or fibrinogen and clot retraction was observed in PDE5A-deficient platelets. Moreover, PDE5A deficiency reduced phosphatidylserine exposure, calcium mobilization, ROS production, and increased intracellular cGMP level along with elevated VASP phosphorylation and reduced phosphorylation of ERK1/2, p38, JNK, and AKT. In conclusion, PDE5A modulates platelet activation and function and thrombus formation, indicating that therapeutically targeting it might be beneficial for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yuwei Du
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yuhan Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Zengtian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| |
Collapse
|
9
|
Li N, Shi R, Ye Y, Zhang Y, Zhang Y, Wang Z, Gu Y, Yin Y, Chen D, Tang J. Aging-induced down-regulation of Pka/Bkca pathway in rat cerebral arteries. Physiol Res 2022. [DOI: 10.33549/physiolres.934944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of cerebrovascular diseases increases significantly with aging. This study aimed to test the hypothesis that aging may influence the protein kinase A (PKA)-dependent vasodilation via RyR/BKCa pathway in the middle cerebral arteries (MCA). Male Sprague-Dawley rats were randomly divided into control (4-6 month-old) and aged (24-month-old) groups. The functions of MCA and ion channel activities in smooth muscle cells were examined using myograph system and patch-clamp. Aging decreased the isoproterenol/forskolin-induced relaxation in the MCA. Large-conductance Ca2+-activated-K+ (BKCa) channel inhibitor, iberiotoxin, significantly attenuated the forskolin-induced vasodilatation and hyperpolarization in the young group, but not in the aged group. The amplitude and frequency of spontaneous transient outward currents (STOCs) were significantly decreased in the aged group. Single channel recording revealed that the mean open time of BKCa channels were decreased, while an increased mean closed time of BKCa channels were found in the aged group. The Ca2+/voltage sensitivity of the channels was decreased accompanied by reduced BKCa α and β1-subunit, the expression of RyR2, PKA-Cα and PKA-Cβ subunits were also declined in the aged group. Aging induced down-regulation of PKA/BKCa pathway in cerebral artery in rats. The results provides new information on further understanding in cerebrovascular diseases resulted from age-related cerebral vascular dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - J Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. E-mail:
| |
Collapse
|
10
|
Chrispell JD, Xiong Y, Weiss ER. Grk7 but not Grk1 undergoes cAMP-dependent phosphorylation in zebrafish cone photoreceptors and mediates cone photoresponse recovery to elevated cAMP. J Biol Chem 2022; 298:102636. [PMID: 36273582 PMCID: PMC9692042 DOI: 10.1016/j.jbc.2022.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
In the vertebrate retina, phosphorylation of photoactivated visual pigments in rods and cones by G protein-coupled receptor kinases (GRKs) is essential for sustained visual function. Previous in vitro analysis demonstrated that GRK1 and GRK7 are phosphorylated by PKA, resulting in a reduced capacity to phosphorylate rhodopsin. In vivo observations revealed that GRK phosphorylation occurs in the dark and is cAMP dependent. In many vertebrates, including humans and zebrafish, GRK1 is expressed in both rods and cones while GRK7 is expressed only in cones. However, mice express only GRK1 in both rods and cones and lack GRK7. We recently generated a mutation in Grk1 that deletes the phosphorylation site, Ser21. This mutant demonstrated delayed dark adaptation in mouse rods but not in cones in vivo, suggesting GRK1 may serve a different role depending upon the photoreceptor cell type in which it is expressed. Here, zebrafish were selected to evaluate the role of cAMP-dependent GRK phosphorylation in cone photoreceptor recovery. Electroretinogram analyses of larvae treated with forskolin show that elevated intracellular cAMP significantly decreases recovery of the cone photoresponse, which is mediated by Grk7a rather than Grk1b. Using a cone-specific dominant negative PKA transgene, we show for the first time that PKA is required for Grk7a phosphorylation in vivo. Lastly, immunoblot analyses of rod grk1a-/- and cone grk1b-/- zebrafish and Nrl-/- mouse show that cone-expressed Grk1 does not undergo cAMP-dependent phosphorylation in vivo. These results provide a better understanding of the function of Grk phosphorylation relative to cone adaptation and recovery.
Collapse
|
11
|
The antidiabetic drug teneligliptin induces vasodilation via activation of PKG, Kv channels, and SERCA pumps in aortic smooth muscle. Eur J Pharmacol 2022; 935:175305. [DOI: 10.1016/j.ejphar.2022.175305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
|
12
|
Zigmantaitė V, Jonušaitė E, Grigalevičiūtė R, Kučinskas A, Treinys R, Navalinskas A, Žvikas V, Jakštas V, Pudžiuvelytė L, Bernatonienė J, Mačianskienė R, Jurevičius J. Evaluation of the Cardiac Electrophysiological and Haemodynamic Effects of Elsholtzia ciliata Essential Oil on Swine. Pharmaceuticals (Basel) 2022; 15:ph15080982. [PMID: 36015131 PMCID: PMC9414655 DOI: 10.3390/ph15080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
The demand for the development of novel medicines with few side effects and no proarrhythmic properties is increasing. Extensive research on herbal extracts has been conducted with the expectation that the compounds will exert precise effects without harmful side effects. Elsholtzia ciliata (Thunb.) Hyl. essential oil (EO) possesses antiarrhythmic properties similar to those of class 1B antiarrhythmics, such as prolonging myocardial activation of the QRS complex and shortening the QT interval. In this study, we determined the kinetic profile of EO phytocompounds and the effects of EO on heart electrical activity and arterial blood pressure. For this study, we chose to use local breed pigs that were anaesthetized. The effects of an intravenous bolus of EO on ECG parameters, arterial blood pressure, heart rate variability, and blood levels of haematological and biochemical parameters were registered and evaluated. Following an intravenous injection of a bolus, EO exerted a vasodilatory effect, resulting in significant reductions in arterial blood pressure. EO also increased the heart rate and altered ECG parameters. The bolus of EO prolonged the QRS complex, shortened the QT interval, and nonmonotonically altered the PQ interval. After the administration of a bolus of EO, the activity of the autonomic nervous system was altered. This study confirms that EO possesses similar properties to class 1B antiarrhythmics and exerts a hypotensive effect; it reduces arterial blood pressure possibly by modulating peripheral vascular resistance.
Collapse
Affiliation(s)
- Vilma Zigmantaitė
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18/7, LT47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-675-36043
| | - Eglė Jonušaitė
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18/7, LT47181 Kaunas, Lithuania
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18/7, LT47181 Kaunas, Lithuania
| | - Audrius Kučinskas
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18/7, LT47181 Kaunas, Lithuania
| | - Rimantas Treinys
- Laboratory of Membrane Biophysics, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Ave. 15, LT50162 Kaunas, Lithuania
| | - Antanas Navalinskas
- Laboratory of Membrane Biophysics, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Ave. 15, LT50162 Kaunas, Lithuania
| | - Vaidotas Žvikas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT50162 Kaunas, Lithuania
| | - Valdas Jakštas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT50162 Kaunas, Lithuania
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT50162 Kaunas, Lithuania
| | - Lauryna Pudžiuvelytė
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT50162 Kaunas, Lithuania
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT50162 Kaunas, Lithuania
| | - Jurga Bernatonienė
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT50162 Kaunas, Lithuania
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT50162 Kaunas, Lithuania
| | - Regina Mačianskienė
- Laboratory of Membrane Biophysics, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Ave. 15, LT50162 Kaunas, Lithuania
| | - Jonas Jurevičius
- Laboratory of Membrane Biophysics, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Ave. 15, LT50162 Kaunas, Lithuania
| |
Collapse
|
13
|
Guo RB, Dong YF, Yin Z, Cai ZY, Yang J, Ji J, Sun YQ, Huang XX, Xue TF, Cheng H, Zhou XQ, Sun XL. Iptakalim improves cerebral microcirculation in mice after ischemic stroke by inhibiting pericyte contraction. Acta Pharmacol Sin 2022; 43:1349-1359. [PMID: 34697419 PMCID: PMC9160281 DOI: 10.1038/s41401-021-00784-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
Pericytes are present tight around the intervals of capillaries, play an essential role in stabilizing the blood-brain barrier, regulating blood flow and immunomodulation, and persistent contraction of pericytes eventually leads to impaired blood flow and poor clinical outcomes in ischemic stroke. We previously show that iptakalim, an ATP-sensitive potassium (K-ATP) channel opener, exerts protective effects in neurons, and glia against ischemia-induced injury. In this study we investigated the impacts of iptakalim on pericytes contraction in stroke. Mice were subjected to cerebral artery occlusion (MCAO), then administered iptakalim (10 mg/kg, ip). We showed that iptakalim administration significantly promoted recovery of cerebral blood flow after cerebral ischemia and reperfusion. Furthermore, we found that iptakalim significantly inhibited pericytes contraction, decreased the number of obstructed capillaries, and improved cerebral microcirculation. Using a collagen gel contraction assay, we demonstrated that cultured pericytes subjected to oxygen-glucose deprivation (OGD) consistently contracted from 3 h till 24 h during reoxygenation, whereas iptakalim treatment (10 μM) notably restrained pericyte contraction from 6 h during reoxygenation. We further showed that iptakalim treatment promoted K-ATP channel opening via suppressing SUR2/EPAC1 complex formation. Consequently, it reduced calcium influx and ET-1 release. Taken together, our results demonstrate that iptakalim, targeted K-ATP channels, can improve microvascular disturbance by inhibiting pericyte contraction after ischemic stroke. Our work reveals that iptakalim might be developed as a promising pericyte regulator for treatment of stroke.
Collapse
Affiliation(s)
- Ruo-bing Guo
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Yin-feng Dong
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Zhi Yin
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhen-yu Cai
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Jin Yang
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Juan Ji
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Yu-qin Sun
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Xin-xin Huang
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Teng-fei Xue
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Hong Cheng
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xi-qiao Zhou
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Xiu-lan Sun
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China ,grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| |
Collapse
|
14
|
Xiao Z, Wei H, Xu Y, Haider A, Wei J, Yuan S, Rong J, Zhao C, Li G, Zhang W, Chen H, Li Y, Zhang L, Sun J, Zhang S, Luo HB, Yan S, Cai Q, Hou L, Che C, Liang SH, Wang L. Discovery of a highly specific 18F-labeled PET ligand for phosphodiesterase 10A enabled by novel spirocyclic iodonium ylide radiofluorination. Acta Pharm Sin B 2022; 12:1963-1975. [PMID: 35847497 PMCID: PMC9279629 DOI: 10.1016/j.apsb.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
As a member of cyclic nucleotide phosphodiesterase (PDE) enzyme family, PDE10A is in charge of the degradation of cyclic adenosine (cAMP) and guanosine monophosphates (cGMP). While PDE10A is primarily expressed in the medium spiny neurons of the striatum, it has been implicated in a variety of neurological disorders. Indeed, inhibition of PDE10A has proven to be of potential use for the treatment of central nervous system (CNS) pathologies caused by dysfunction of the basal ganglia–of which the striatum constitutes the largest component. A PDE10A-targeted positron emission tomography (PET) radioligand would enable a better assessment of the pathophysiologic role of PDE10A, as well as confirm the relationship between target occupancy and administrated dose of a given drug candidate, thus accelerating the development of effective PDE10A inhibitors. In this study, we designed and synthesized a novel 18F-aryl PDE10A PET radioligand, codenamed [18F]P10A-1910 ([18F]9), in high radiochemical yield and molar activity via spirocyclic iodonium ylide-mediated radiofluorination. [18F]9 possessed good in vitro binding affinity (IC50 = 2.1 nmol/L) and selectivity towards PDE10A. Further, [18F]9 exhibited reasonable lipophilicity (logD = 3.50) and brain permeability (Papp > 10 × 10−6 cm/s in MDCK-MDR1 cells). PET imaging studies of [18F]9 revealed high striatal uptake and excellent in vivo specificity with reversible tracer kinetics. Preclinical studies in rodents revealed an improved plasma and brain stability of [18F]9 when compared to the current reference standard for PDE10A-targeted PET, [18F]MNI659. Further, dose–response experiments with a series of escalating doses of PDE10A inhibitor 1 in rhesus monkey brains confirmed the utility of [18F]9 for evaluating target occupancy in vivo in higher species. In conclusion, our results indicated that [18F]9 is a promising PDE10A PET radioligand for clinical translation.
Collapse
Affiliation(s)
- Zhiwei Xiao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yi Xu
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shiyu Yuan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Chunyu Zhao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weibin Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huangcan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou 510555, China
| | - Lingling Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiyun Sun
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Qijun Cai
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chao Che
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Corresponding authors. Tel./fax: +86 755 26032530 (Chao Che), +1 617 7266165 (Steven H. Liang), +86 20 38688692 (Lu Wang).
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Corresponding authors. Tel./fax: +86 755 26032530 (Chao Che), +1 617 7266165 (Steven H. Liang), +86 20 38688692 (Lu Wang).
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Corresponding authors. Tel./fax: +86 755 26032530 (Chao Che), +1 617 7266165 (Steven H. Liang), +86 20 38688692 (Lu Wang).
| |
Collapse
|
15
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
16
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
17
|
Ion channels as convergence points in the pathology of pulmonary arterial hypertension. Biochem Soc Trans 2021; 49:1855-1865. [PMID: 34346486 PMCID: PMC8421048 DOI: 10.1042/bst20210538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease of the cardiopulmonary system that lacks curative treatments. The main pathological event in PAH is elevated vascular resistance in the pulmonary circulation, caused by abnormal vasoconstriction and vascular remodelling. Ion channels are key determinants of vascular smooth muscle tone and homeostasis, and four PAH channelopathies (KCNK3, ABCC8, KCNA5, TRPC6) have been identified so far. However, the contribution of ion channels in other forms of PAH, which account for the majority of PAH patients, has been less well characterised. Here we reason that a variety of triggers of PAH (e.g. BMPR2 mutations, hypoxia, anorectic drugs) that impact channel function may contribute to the onset of the disease. We review the molecular mechanisms by which these ‘extrinsic’ factors converge on ion channels and provoke their dysregulation to promote the development of PAH. Ion channels of the pulmonary vasculature are therefore promising therapeutic targets because of the modulation they provide to both vasomotor tone and proliferation of arterial smooth muscle cells.
Collapse
|
18
|
Wang J, Feng J, Deng S, Bao B, Meng F, Dai H, Xu H, Wang S, Wang B, Li H. Network Pharmacology Analysis of the Effects of Achyranthis Bidentatae Radix Plus Semen Vaccariae on Migraine-Induced Erectile Dysfunction. Comb Chem High Throughput Screen 2021; 25:1474-1487. [PMID: 34182905 DOI: 10.2174/1386207324666210628105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Achyranthis Bidentatae Radix plus Semen Vaccariae are traditional Chinese medicines, which have been widely applied in the treatment of migraine and erectile dysfunction (ED) for many years. The aim of this study is to verify the effect of Achyranthis Bidentatae Radix plus Semen Vaccariae in improving migraine-induced ED and explore its potential mechanism. METHODS Key targets and signaling pathways of Achyranthis Bidentatae Radix plus Semen Vaccariae in migraine-induced erectile dysfunction treatment were predicted by network pharmacology. A rat model of migraine was established by nitroglycerin injection. Apomorphine was injected into rats to screen the migraine-induced erectile dysfunction model, Achyranthis Bidentatae Radix-Semen Vaccariae granule suspension administered, and erectile function evaluated. Hematoxylin and eosin staining was used to compare the histological structure of the penile tissue, while RT-qPCR and Western blotting were used to determine mRNA and protein levels, respectively. RESULTS Screening allowed us to identify common targets for migraine and ED; the signaling pathway exhibiting the greatest change the Myosin light chain kinase- Calcium (MLCK-CaM) signal pathway. From Western blotting and RT-qPCR, we found that the levels of MLCK mRNA and protein in rats from Group B rats were significantly higher (P<0.05) than those in Groups A and C. Furthermore, the mRNA and protein levels of CaM were significantly higher in Group B (P<0.05) than in Groups A and C. CONCLUSION Data indicate that the regulatory effects of Achyranthis Bidentatae Radix plus Semen Vaccariae on migraine-induced ED in a rat model are mediated by the MLCK-CaM signaling pathway.
Collapse
Affiliation(s)
- Jisheng Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Junlong Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Sheng Deng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Binghao Bao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Fanchao Meng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Hengheng Dai
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Hongsheng Xu
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Shizhen Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Bin Wang
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ,100700, China
| | - Haisong Li
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ,100700, China
| |
Collapse
|
19
|
Beavo JA, Golkowski M, Shimizu-Albergine M, Beltejar MC, Bornfeldt KE, Ong SE. Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions. Mol Pharmacol 2021; 99:342-357. [PMID: 33574048 PMCID: PMC8058506 DOI: 10.1124/molpharm.120.000197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, highly sensitive mass spectrometry-based phosphoproteomic analysis is beginning to be applied to identification of protein kinase substrates altered downstream of increased cAMP. Such studies identify a very large number of phosphorylation sites regulated in response to increased cAMP. Therefore, we now are tasked with the challenge of determining how many of these altered phosphorylation sites are relevant to regulation of function in the cell. This minireview describes the use of phosphoproteomic analysis to monitor the effects of cyclic nucleotide phosphodiesterase (PDE) inhibitors on cAMP-dependent phosphorylation events. More specifically, it describes two examples of this approach carried out in the authors' laboratories using the selective PDE inhibitor approach. After a short discussion of several likely conclusions suggested by these analyses of cAMP function in steroid hormone-producing cells and also in T-cells, it expands into a discussion about some newer and more speculative interpretations of the data. These include the idea that multiple phosphorylation sites and not a single rate-limiting step likely regulate these and, by analogy, many other cAMP-dependent pathways. In addition, the idea that meaningful regulation requires a high stoichiometry of phosphorylation to be important is discussed and suggested to be untrue in many instances. These new interpretations have important implications for drug design, especially for targeting pathway agonists. SIGNIFICANCE STATEMENT: Phosphoproteomic analyses identify thousands of altered phosphorylation sites upon drug treatment, providing many possible regulatory targets but also highlighting questions about which phosphosites are functionally important. These data imply that multistep processes are regulated by phosphorylation at not one but rather many sites. Most previous studies assumed a single step or very few rate-limiting steps were changed by phosphorylation. This concept should be changed. Previous interpretations also assumed substoichiometric phosphorylation was not of regulatory importance. This assumption also should be changed.
Collapse
Affiliation(s)
- Joseph A Beavo
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Martin Golkowski
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Masami Shimizu-Albergine
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Michael-Claude Beltejar
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Karin E Bornfeldt
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Shao-En Ong
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Fusi F, Mugnai P, Trezza A, Spiga O, Sgaragli G. Fine tuning by protein kinases of Ca V1.2 channel current in rat tail artery myocytes. Biochem Pharmacol 2020; 182:114263. [PMID: 33035505 DOI: 10.1016/j.bcp.2020.114263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022]
Abstract
Seventeen compounds, rather selective, direct or indirect inhibitors and activators of PKA, PKG, and PKC, were analysed for effects on vascular CaV1.2 channel current (ICa1.2) by using the patch-clamp technique in single rat tail artery myocytes. The aim was to investigate how PKs regulate ICa1.2 and disclose any unexpected modulation of CaV1.2 channel function by these agents. The cAMP analogues 8-Br-cAMP and 6-Bnz-cAMP partially reduced ICa1.2 in dialysed cells, while weakly increasing it under the perforated configuration. The β-adrenoceptor agonist isoproterenol and the adenylate cyclase activator forskolin concentration-dependently increased ICa1.2; this effect was reversed by PKA inhibitors H-89 and KT5720, but not by PKI 6-22. The cGMP analogue 8-Br-cGMP, similarly to the NO-donor SNP, moderately reduced ICa1.2, this effect being reversed to a slight stimulation under the perforated configuration. Among PKG inhibitors, Rp-8-Br-PET-cGMPS decreased current amplitude in a concentration-dependent manner while Rp-8-Br-cGMPS was ineffective. The non-specific phosphodiesterase inhibitor IBMX increased ICa1.2, while H-89, KT5720, and PKI 6-22 antagonized this effect. The PKC activator PMA, but not the diacylglycerol analogue OAG, stimulated ICa1.2 in a concentration-dependent manner; conversely, the PKCα inhibitor Gö6976 markedly reduced basal ICa1.2 and, similarly to the PKCδ (rottlerin) and PKCε translocation inhibitors antagonised PMA-induced current stimulation. The ensemble of findings indicates that the stimulation of cAMP/PKA, in spite of the paradoxical effect of both 8-Br-cAMP and 6-Bnz-cAMP, or PKC pathways enhanced, while that of cGMP/PKG weakly inhibited ICa1.2 in rat tail artery myocytes. Since Rp-8-Br-PET-cGMPS and Gö6976 appeared to block directly CaV1.2 channel, their docking to the channel protein was investigated. Both compounds appeared to bind the α1C subunit in a region involved in CaV1.2 channel inactivation, forming an interaction network comparable to that of CaV1.2 channel blockers. Therefore, caution should accompany the use of these agents as pharmacological tools to elucidate the mechanism of action of drugs on vascular preparations.
Collapse
Affiliation(s)
- F Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - P Mugnai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - A Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - O Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - G Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
21
|
Le Ribeuz H, Dumont F, Ruellou G, Lambert M, Balliau T, Quatredeniers M, Girerd B, Cohen-Kaminsky S, Mercier O, Yen-Nicolaÿ S, Humbert M, Montani D, Capuano V, Antigny F. Proteomic Analysis of KCNK3 Loss of Expression Identified Dysregulated Pathways in Pulmonary Vascular Cells. Int J Mol Sci 2020; 21:E7400. [PMID: 33036472 PMCID: PMC7582549 DOI: 10.3390/ijms21197400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The physiopathology of pulmonary arterial hypertension (PAH) is characterized by pulmonary artery smooth muscle cell (PASMC) and endothelial cell (PAEC) dysfunction, contributing to pulmonary arterial obstruction and PAH progression. KCNK3 loss of function mutations are responsible for the first channelopathy identified in PAH. Loss of KCNK3 function/expression is a hallmark of PAH. However, the molecular mechanisms involved in KCNK3 dysfunction are mostly unknown. To identify the pathological molecular mechanisms downstream of KCNK3 in human PASMCs (hPASMCs) and human PAECs (hPAECs), we used a Liquid Chromatography-Tandem Mass Spectrometry-based proteomic approach to identify the molecular pathways regulated by KCNK3. KCNK3 loss of expression was induced in control hPASMCs or hPAECs by specific siRNA targeting KCNK3. We found that the loss of KCNK3 expression in hPAECs and hPASMCs leads to 326 and 222 proteins differentially expressed, respectively. Among them, 53 proteins were common to hPAECs and hPASMCs. The specific proteome remodeling in hPAECs in absence of KCNK3 was mostly related to the activation of glycolysis, the superpathway of methionine degradation, and the mTOR signaling pathways, and to a reduction in EIF2 signaling pathways. In hPASMCs, we found an activation of the PI3K/AKT signaling pathways and a reduction in EIF2 signaling and the Purine Nucleotides De Novo Biosynthesis II and IL-8 signaling pathways. Common to hPAECs and hPASMCs, we found that the loss of KCNK3 expression leads to the activation of the NRF2-mediated oxidative stress response and a reduction in the interferon pathway. In the hPAECs and hPASMCs, we found an increased expression of HO-1 (heme oxygenase-1) and a decreased IFIT3 (interferon-induced proteins with tetratricopeptide repeats 3) (confirmed by Western blotting), allowing us to identify these axes to understand the consequences of KCNK3 dysfunction. Our experiments, based on the loss of KCNK3 expression by a specific siRNA strategy in control hPAECs and hPASMCs, allow us to identify differences in the activation of several signaling pathways, indicating the key role played by KCNK3 dysfunction in the development of PAH. Altogether, these results allow us to better understand the consequences of KCNK3 dysfunction and suggest that KCNK3 loss of expression acts in favor of the proliferation and migration of hPASMCs and promotes the metabolic shift and apoptosis resistance of hPAECs.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Florent Dumont
- UMS Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (F.D.); (G.R.); (S.Y.-N.)
| | - Guillaume Ruellou
- UMS Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (F.D.); (G.R.); (S.Y.-N.)
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Marceau Quatredeniers
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Stéphanie Yen-Nicolaÿ
- UMS Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (F.D.); (G.R.); (S.Y.-N.)
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
22
|
McDonough W, Rich J, Aragon IV, Abou Saleh L, Boyd A, Richter A, Koloteva A, Richter W. Inhibition of type 4 cAMP-phosphodiesterases (PDE4s) in mice induces hypothermia via effects on behavioral and central autonomous thermoregulation. Biochem Pharmacol 2020; 180:114158. [PMID: 32702371 PMCID: PMC7606724 DOI: 10.1016/j.bcp.2020.114158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
Inhibitors of Type 4 cAMP-phosphodiesterases (PDE4s) exert a number of promising therapeutic benefits, including potent anti-inflammatory, memory- and cognition-enhancing, metabolic, and antineoplastic effects. We report here that treatment with a number of distinct PDE4 inhibitors, including Rolipram, Piclamilast, Roflumilast and RS25344, but not treatment with the PDE3-selective inhibitor Cilostamide, induces a rapid (10-30 min), substantial (-5 °C) and long-lasting (up to 5 h) decrease in core body temperature of C57BL/6 mice; thus, identifying a critical role of PDE4 also in the regulation of body temperature. As little as 0.04 mg/kg of the archetypal PDE4 inhibitor Rolipram induces hypothermia. As similar or higher doses of Rolipram were used in a majority of published animal studies, most of the reported findings are likely paralleled by, or potentially impacted by hypothermia induced by these drugs. We further show that PDE4 inhibition affects central body temperature regulation and acts by lowering the cold-defense balance point of behavioral (including posture and locomotion) and autonomous (including cutaneous tail vasodilation) cold-defense mechanisms. In line with the idea of an effect on central body temperature regulation, hypothermia is induced by moderate doses of various brain-penetrant PDE4 inhibitors, but not by similar doses of YM976, a PDE4 inhibitor that does not efficiently cross the blood-brain barrier. Finally, to begin delineating the mechanism of drug-induced hypothermia, we show that blockade of D2/3-type dopaminergic, but not β-adrenergic, H1-histaminergic or opiate receptors, can alleviate PDE4 inhibitor-induced hypothermia. We thus propose that increased D2/3-type dopaminergic signaling, triggered by PDE4 inhibitor-induced and cAMP-mediated dopamine release in the thermoregulatory centers of the hypothalamus, is a significant contributor to PDE4 inhibitor-induced hypothermia.
Collapse
Affiliation(s)
- Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Justin Rich
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Ileana V Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Aris Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States.
| |
Collapse
|
23
|
Deng M, Su D, Xu S, Little PJ, Feng X, Tang L, Shen A. Metformin and Vascular Diseases: A Focused Review on Smooth Muscle Cell Function. Front Pharmacol 2020; 11:635. [PMID: 32457625 PMCID: PMC7227439 DOI: 10.3389/fphar.2020.00635] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Metformin has been used in diabetes for more than 60 years and has excellent safety in the therapy of human type 2 diabetes (T2D). There is growing evidence that the beneficial health effects of metformin are beyond its ability to improve glucose metabolism. Metformin not only reduces the incidence of cardiovascular diseases (CVD) in T2D patients, but also reduces the burden of atherosclerosis (AS) in pre-diabetes patients. Vascular smooth muscle cells (VSMCs) function is an important factor in determining the characteristics of the entire arterial vessel. Its excessive proliferation contributes to the etiology of several types of CVD, including AS, restenosis, and pulmonary hypertension. Current studies show that metformin has a beneficial effect on VSMCs function. Therefore, this review provides a timely overview of the role and molecular mechanisms by which metformin acts through VSMCs to protect CVD.
Collapse
Affiliation(s)
- Mingying Deng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Su
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liqin Tang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aizong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|