1
|
Luo L, Cheng Y, Wang H, Li L, Niu H, Yang Y, Zhou Q, He J, Xu J. Lidocaine-A Promising Candidate for the Treatment of Cancer-Induced Bone Pain: A Narrative Review. Adv Ther 2025:10.1007/s12325-025-03192-w. [PMID: 40232625 DOI: 10.1007/s12325-025-03192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
Pain is one of the most common symptoms in patients with cancer, with cancer-induced bone pain (CIBP) significantly affecting their quality of life. Opioids are commonly used as first-line treatments for cancer pain, but their use requires caution due to non-mechanistic analgesia and significant side effects. As a result, there is a need for new non-opioid drugs that target cancer pain through specific mechanisms. Recent studies on the anticancer effects of lidocaine have highlighted its potential benefits in both treating cancer and alleviating cancer-induced pain. This article discusses the mechanism of action and clinical applications of lidocaine in cancer pain management, and suggests new treatment approaches for patients with CIBP.
Collapse
Affiliation(s)
- Lihan Luo
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuqi Cheng
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hanxi Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hanyun Niu
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuzhu Yang
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qianqian Zhou
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiannan He
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Jianhong Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Liu H, Hamaia SW, Dobson L, Weng J, Hernández FL, Beaudoin CA, Salvage SC, Huang CLH, Machesky LM, Jackson AP. The voltage-gated sodium channel β3 subunit modulates C6 glioma cell motility independently of channel activity. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167844. [PMID: 40245999 DOI: 10.1016/j.bbadis.2025.167844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Voltage-gated sodium channels (VGSCs) initiate action potentials in nerve and muscle cells and are regulated by auxiliary β subunits. VGSC β subunits are also expressed in some cancer types, suggesting potential functions distinct from their role in electrophysiological excitability. This study investigated the occurrence and functional implications of the VGSC β3 subunit (the product of SCN3B gene) in glioma, focusing on the role of its extracellular immunoglobulin domain (β3 Ig). METHODS Data mining explored associations between β3 expression and glioma severity at patient, tissue, and single-cell levels. Using C6 glioma cells expressing β3 or β3 without its Ig domain, we examined the effects on cell viability, mobility, and actin-based cell protrusions. A single-chain variable fragment (scFv) antibody targeting the β3 Ig was selected by phage display to interfere with its functions. The interacting proteins with β3 Ig were identified by immunoprecipitation-mass spectrometry. RESULTS Data mining revealed negative correlations between β3 expression and glioma severity and aggressiveness. Expression of β3 in C6 cells reduced cell migration and invasion without affecting cell viability. Filopodia were significantly increased while lamellipodia/ruffles were decreased, producing striking cell morphological changes. These effects were abrogated by expression of the β3 subunit lacking the β3 Ig domain or exogenous application of an scFv targeting β3 Ig. Most of the plasma membrane-associated proteins immunoprecipitated with the β3 subunit are known regulators of actin polymerization. CONCLUSION Our data reveals a novel and unexpected role for the VGSC β3 subunit in orchestrating actin organization and negatively regulating cell migration in glioma cells which may potentially explain clinical correlations with glioma severity.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Samir W Hamaia
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Lisa Dobson
- Department of Biochemistry, Sanger Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Federico López Hernández
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Christopher A Beaudoin
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Samantha C Salvage
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3DY, UK
| | - Laura M Machesky
- Department of Biochemistry, Sanger Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
3
|
Wang S, Wang X, Xia J, Mu Q. Identification of M1 macrophage infiltration-related genes for immunotherapy in Her2-positive breast cancer based on bioinformatics analysis and machine learning. Sci Rep 2025; 15:12525. [PMID: 40216945 PMCID: PMC11992169 DOI: 10.1038/s41598-025-96917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Over the past several decades, there has been a significant increase in the number of breast cancer patients. Among the four subtypes of breast cancer, Her2-positive breast cancer is one of the most aggressive breast cancers. In this study, we screened the differentially expressed genes from The Cancer Genome Atlas-Breast cancer database and analyzed the relationship between immune cell infiltration and differentially expressed genes using weighted gene co-expression network analysis. By constructing a module-trait relationships heatmap, the red module, which had the highest correlation value with M1 macrophages, was selected. Twenty hub genes were selected based on a protein-protein interaction network. Then, four overlapping M1 macrophage infiltration-related genes (M1 MIRGs), namely CCDC69, PPP1R16B, IL21R, and FOXP3, were obtained using five machine-learning algorithms. Subsequently, nomogram models were constructed to predict the incidence of Her2-positive breast cancer patients. The outer datasets and receiver operating characteristic curve analysis were used to validate the accuracy of the four M1 MIRGs and nomogram models. The average value of the area under the curve for the nomogram models was higher than 0.75 in both the training and testing sets. After that, survival analysis showed that higher expression of CCDC69, PPP1R16B, and IL21R were associated with overall survival of Her2-positive breast cancer patients. The expression of CCDC69 and PPP1R16B could lead to more benefits than the expression of IL21R and FOXP3 for immunotherapy. Lastly, we conducted immunohistochemistry staining to validate the aforementioned results. In conclusion, we found four M1 MIRGs that may be helpful for the diagnosis, prognosis, and immunotherapy of Her2-positive breast cancer.
Collapse
Affiliation(s)
- Sizhang Wang
- Qingdao Medical College of Qingdao University, Qingdao, 266042, Shandong, China
- Department of Breast surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China
| | - Xiaoyan Wang
- General Practice Department, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China
| | - Jing Xia
- Department of Breast surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China
| | - Qiang Mu
- Department of Breast surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China.
| |
Collapse
|
4
|
Li Y, Shi J, Liu C, Ma D, Meng L, Zhang Z, Jia H. Ciprofol reduces postoperative glioma recurrence by promoting MAPK11-PML phosphorylation: insights from transcriptomic and proteomic analysis. J Neurooncol 2025; 172:361-376. [PMID: 40019711 DOI: 10.1007/s11060-024-04906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Glioma, the most common malignant tumor of the central nervous system, has a high postoperative recurrence rate. While Ciprofol is widely used as an anesthetic, its therapeutic potential in glioma treatment remains largely unexplored. METHODS Glioma T98G cells were treated with varying concentrations of Ciprofol to assess proliferation, invasion, migration, and apoptosis via CCK-8, Transwell, and flow cytometry assays. Proteomic, phosphoproteomic, and transcriptomic analyses were performed to identify molecular targets and pathways. Molecular docking evaluated the binding of Ciprofol to key kinases, and silencing experiments validated their roles. In vivo, glioma mouse models were used to assess postoperative recurrence via tumor size, fluorescence imaging, and histological analysis. RESULTS Ciprofol inhibited glioma cell proliferation, invasion, and migration while promoting apoptosis. Proteomic analyses identified MAPK11 and PML as key mediators of Ciprofol's effects. Silencing MAPK11 impaired these effects, while in vivo experiments showed reduced postoperative recurrence via MAPK11-PML phosphorylation. CONCLUSION Ciprofol reduces postoperative glioma recurrence by promoting MAPK11-PML phosphorylation, providing novel molecular targets for glioma treatment and suggesting its therapeutic potential beyond anesthesia.
Collapse
Affiliation(s)
- Yanli Li
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingpu Shi
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, 050011, Hebei, China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Dongyang Ma
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lijiang Meng
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhiqiang Zhang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Huiqun Jia
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
5
|
Pu X, Wu Y, Long W, Sun X, Yuan X, Wang D, Wang X, Xu M. The m6A reader IGF2BP2 promotes pancreatic cancer progression through the m6A-SLC1A5-mTORC1 axis. Cancer Cell Int 2025; 25:122. [PMID: 40158101 PMCID: PMC11954220 DOI: 10.1186/s12935-025-03736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Pancreatic cancer is a highly malignant digestive tumor. Glutamine metabolism is one of the important sources of tumors. N6-methyladenosine (m6A) modification plays a key role in regulating tumor metabolism and holds promise as a therapeutic target in various cancers, including pancreatic cancer. Disrupting m6A regulation of glutamine metabolism could impair tumor growth, offering potential new therapeutic strategies. However, the functional role of m6A modifications in pancreatic cancer, especially in glutamine metabolism, remains poorly understood. METHODS The Cancer Genome Atlas (TCGA) dataset and GEPIA bioinformatics tool were used to identify the relationship between m6A related proteins and the glutamine metabolism-associated genes, respectively. The biological effects of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) were investigated using in vitro and in vivo models. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), MeRIP-PCR and RNA immunoprecipitation (RIP) were used to identify solute carrier family 1 member 5 (SLC1A5) as a direct target of IGF2BP2. RESULTS We found that IGF2BP2 expression and SLC1A5 were significantly correlated and both highly expressed in pancreatic cancer could predict poor prognosis in patients with pancreatic cancer. Functionally, silencing IGF2BP2 suppressed tumor growth and also inhibited glutamine uptake by tumor cells. Mechanistically, IGF2BP2 induced the m6A-SLC1A5-mTORC1 axis, facilitating the uptake of glutamine by pancreatic cancer cells and accelerate the progress of pancreatic cancer. Furthermore, silencing IGF2BP2 can enhance the sensitivity of pancreatic cancer to radiotherapy and chemotherapy. CONCLUSION Our findings suggest that IGF2BP2 promotes pancreatic cancer by activating the m6A-SLC1A5 -mTORC1 axis. Targeting the m6A machinery, particularly IGF2BP2, offers a novel therapeutic avenue for pancreatic cancer treatment. By disrupting the regulation of glutamine metabolism, we provide new insights into how m6A-based therapies could enhance the efficacy of current treatments and offer hope for improving patient outcomes in this difficult-to-treat cancer.
Collapse
Affiliation(s)
- Xi Pu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Yuting Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Weiguo Long
- Pathology Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Xinyu Sun
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiao Yuan
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Deqiang Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- , No. 438 Jiefang Road, Jingkou District, Zhenjiang, Jiangsu Province, 212001, China.
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China.
- , No. 438 Jiefang Road, Jingkou District, Zhenjiang, Jiangsu Province, 212001, China.
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Excellent Medical School, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- , No. 438 Jiefang Road, Jingkou District, Zhenjiang, Jiangsu Province, 212001, China.
| |
Collapse
|
6
|
Yang B, Cao HX, He YW, Ouyang JJ, Lv M, Li YX, Lu YD. Increased keratin 80 expression predicts poor prognosis and promotes oxaliplatin resistance in gastric cancer. World J Gastroenterol 2025; 31:103991. [PMID: 40182597 PMCID: PMC11962845 DOI: 10.3748/wjg.v31.i12.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Keratin 80 (KRT80), a type I intermediate filament protein, is a member of the keratin family with specialized functions in epithelial tissues. While KRT80 has been implicated in both normal physiological processes and various diseases, its role in gastric cancer (GC), particularly its expression and prognostic significance, remains poorly understood. In this study, we investigated the role and underlying molecular mechanisms of KRT80 in oxaliplatin resistance in GC. Our analysis revealed that KRT80 is significantly upregulated in GC tissues and is associated with poor clinical prognosis. The role of KRT80 in GC cell proliferation was assessed through in vitro and in vivo assays. AIM To explore the expression of KRT80 in GC and its impact on the prognosis of patients. METHODS KRT80 expression in GC tissues was analyzed using Western blotting, quantitative reverse transcription PCR, multiple immunofluorescence staining, and immunohistochemistry. Survival analysis was conducted using the Kaplan-Meier method with the log-rank test. The role of KRT80 in GC cell proliferation was assessed through in vitro and in vivo assays. Immunoprecipitation and mass spectrometry analyses identified elongation factor 1-alpha 1 (EEF1A1) as a binding protein of KRT80. RESULTS Integrating our experimental findings with multiple published studies, we found that increased KRT80 expression is associated with poor prognosis in GC and promotes resistance to oxaliplatin. Moreover, we have preliminarily verified the interaction between KRT80 and EEF1A1. Therefore, this study provides a novel perspective on overcoming oxaliplatin resistance in GC. CONCLUSION Increased KRT80 expression predicts poor prognosis and promotes oxaliplatin resistance in GC, suggesting its potential as a novel prognostic biomarker.
Collapse
Affiliation(s)
- Bo Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Hong-Xia Cao
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Ya-Wei He
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Ji-Jie Ouyang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Meng Lv
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yi-Da Lu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
7
|
Zhao Y, Ye J, Liang Y, Chen J. SCN3B is an Anti-breast Cancer Molecule with Migration Inhibition Effect. Biochem Genet 2025:10.1007/s10528-025-11059-6. [PMID: 40072811 DOI: 10.1007/s10528-025-11059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025]
Abstract
Breast cancer is a prevalent and highly heterogeneous malignancy that continues to be a major global health concern. Voltage-gated sodium channels are primarily known for their role in neuronal excitability, but emerging evidence suggests their involvement in the pathogenesis of various cancers, including breast cancer. However, the effect of β-subunits on breast cancer cells is not yet studied. SCN3B, as a modulatory subunit, is of particular interest due to its less understood role in cancer biology. This research comprehensively investigates the clinical associations, diagnostic potential, and functional role of SCN3B in breast cancer, shedding light on its diverse implications from patient outcomes to molecular mechanisms. Our methods included clinical data analysis from The Cancer Genome Atlas (TCGA) breast cancer dataset, diagnostic analysis through ROC curves, differential gene expression analysis, SCN3B expression assessment in cell lines, overexpression experiments, and functional assays. Additionally, we constructed a protein-protein interaction network to explore potential mechanisms underlying SCN3B's impact. The study revealed significant clinical associations between SCN3B expression and various parameters such as tumor stage, race, age, histological type, molecular subtype, and hormone receptor status. SCN3B demonstrated strong diagnostic potential with an AUC of 0.95. It influenced the expression of over 800 genes, primarily associated with cell migration and extracellular matrix interactions. SCN3B exhibited distinct expression patterns between normal and breast cancer cell lines and successfully overexpressed in various breast cancer cell lines. This overexpression inhibited cell migration and invasion. Our research emphasizes SCN3B's clinical relevance, diagnostic potential, and influence on cell behavior in breast cancer, offering insights into its multifaceted role and therapeutic implications.
Collapse
Affiliation(s)
- Yinfeng Zhao
- Department of Thyroid and Breast Surgery, Suizhou Hospital, Hubei University Of Medicine, Suizhou City, Hubei Province, China
| | - Jianzhong Ye
- Department of Gynecology, Suizhou Hospital, Hubei University Of Medicine, Suizhou City, Hubei Province, China
| | - Yun Liang
- Department of Thyroid and Breast Surgery, Suizhou Hospital, Hubei University Of Medicine, Suizhou City, Hubei Province, China.
| | - Jia Chen
- Department of Gynecology, People's Hospital of Jianshi, Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China.
| |
Collapse
|
8
|
Xie W, Gao J, Liang Y, Huang C, Zhang B, Chen X, Yao X, Nan G, Wu H, Wang Y, Wu L, Wang T, Zhu Y. Identification of Lauric Acid as a Potent Sodium Channel Na V1.5 Blocker from Compound Chinese Medicine Wenxin Keli. Drug Des Devel Ther 2025; 19:141-157. [PMID: 39807341 PMCID: PMC11727701 DOI: 10.2147/dddt.s485723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Purpose The major cardiac voltage-gated sodium channel NaV1.5 (INa) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure. However, its active components have not been fully elucidated. This study focused on identifying the active inhibitor of INa in WXKL and exploring their mode of action in electrophysiological conduction. Methods A chemical fraction library was constructed from an aqueous extract of WXKL and screened using an automated patch-clamping system in cells stably expressing the NaV1.5 gene SCN5A. Candidate fractions with INa-inhibition activity were analyzed by HPLC-ESI-IT-TOF-MS and GC-MS to identify the ingredients. NaV1.5 blocker molecules identified by single-cell electrocardiogram were tested in hiPSC-derived cardiomyocytes. We evaluated the SCN5A inhibitory potential of Wenxin Keli effective monomer employing molecular docking and molecular dynamics simulation approaches. Results A primary screen of the WXKL chemical library identified five fractions that significantly inhibited the NaV1.5 channel, with one of them rich in poly-saturated fatty acids. Molecular structural characterization revealed the presence of lauric acid, myristic acid, palmitic acid, and stearic acid in the active subfraction. Electrophysiological characterization demonstrated lauric acid (LA) as the most effective monomer for INa-inhibition with an IC50 at 27.40 ± 12.78 μM. LA shifted the steady-state inactivation of INa to more negative potentials and decreased the amplitude of extracellular field potential in hiPSC-derived cardiomyocytes. We demonstrate for the first time that naturally poly-saturated fatty acid, lauric acid, as a potential novel INa blocker. Molecular docking and molecular dynamics simulation suggested that LA binds to the NaV1.5 protein, with a significant binding affinity forming interactions with functionally essential residues and blocks the inward flow of Na+. Mechanistically, lauric acid acts on the fast inactivation of NaV1.5 alter electrophysiology conduction of hiPSC-derived cardiomyocytes and contribute to the antiarrhythmic effect of WXKL. Conclusion Lauric acid is a potent blocker for sodium channel NaV1.5 and alleviates arrhythmia via inhibiting INa.
Collapse
Affiliation(s)
- Weiwei Xie
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Jiaming Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, People’s Republic of China
| | - Yingran Liang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Chenxing Huang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Boyong Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Xiaonan Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Xi Yao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Guo Nan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Honghua Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, 100034People’s Republic of China
| | - Taiyi Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| |
Collapse
|
9
|
Li H, Liang X, Ma J, Liu Q, Lin Y, Tang J, Ren Z, Liang Z. IL-8 Downregulation Mediates the Beneficial Effects of Infection-Induced Fever on Breast Cancer Prognosis. J Inflamm Res 2025; 18:405-419. [PMID: 39802515 PMCID: PMC11725275 DOI: 10.2147/jir.s496099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Previous studies have reported that infection-induced fever is associated with improved breast cancer prognosis, potentially through the modulation of cytokines. However, the key cytokines and the underlying mechanisms through which fever exerts its anti-tumor effects remain unclear. Patients and Methods A total of 794 breast cancer patients were recruited between 2008 and 2017, with follow-up extending until October 31st, 2023. Infection-induced fever was assessed using questionnaires, while a multiplex assay evaluated a panel of 27 cytokines. The mediation effects of various cytokines were analyzed through model-based causal mediation analysis. Additionally, we explored modifications to these mediation effect by examining interactions among the cytokines themselves as well as their interactions with infection-induced fever. Bioinformatic analyses were conducted to elucidate the biological pathways mediating infection-induced fever. Results The relationship between infection-induced fever and improved breast cancer prognosis was mediated by a decrease in interleukin-8 (IL-8) levels. Furthermore, our findings revealed that the downregulation of IL-8, which mediates the beneficial effects of fever, was antagonized by IL-2, IL12p70 and IL-7. By intersecting the biological pathways influenced by IL-8, alongside those affected by IL-2, IL12p70, or IL-7, we found that these latter cytokines antagonized the mediation effects of IL-8 via regulating critical pathways such as neutrophil degranulation, extracellular matrix organization and asparagine N-linked glycosylation. Conclusion Infection-induced fever may improve breast cancer prognosis through IL-8 downregulation and the mediation mechanisms may be involved in neutrophil degranulation, extracellular matrix organization and asparagine N-linked glycosylation. Such findings not only provide valuable insights into effectively managing febrile responses for breast cancer patients, but also underscore the therapeutic potential of cytokines in breast cancer patients.
Collapse
Affiliation(s)
- Heliang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinyan Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiafan Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Junpeng Tang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zefang Ren
- The School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhuozhi Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Zenith Institute of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
10
|
Seok Han B, Ko S, Seok Park M, Ji Lee Y, Eun Kim S, Lee P, Jin Cho Y, Gyeol Go H, Kwak S, Park E, Lim A, Lee S, Yoo S, Kim H, Hee Jung K, Hong SS. Lidocaine combined with general anesthetics impedes metastasis of breast cancer cells via inhibition of TGF-β/Smad-mediated EMT signaling by reprogramming tumor-associated macrophages. Int Immunopharmacol 2024; 142:113207. [PMID: 39312860 DOI: 10.1016/j.intimp.2024.113207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Surgical resection is the best-known approach for breast cancer treatment. However, post-operative metastases increase the rate of death. The potential effect of anesthetic drugs on long-term tumor growth, risk of metastasis, and recurrence after surgery has been investigated in cancer patients. However, the underlying mechanisms remain unclear. Therefore, we aimed to elucidate the anti-metastatic effect of lidocaine combined with common anesthetics and its mechanisms of action on lung metastasis in breast cancer models. The combination of lidocaine with propofol or sevoflurane inhibited the growth of TNBC cells compared to treatment alone. In addition, the combination effectively inhibited cancer cell migration and invasion. It suppressed tumor growth and increased the survival rate in breast 4 T1 orthotopic models. More importantly, it inhibited lung metastasis and recurrence compared with groups treated with a single anesthetic. In co-culture with TAMs and TNBC cells, lidocaine not only reduced M2-tumor-associated macrophages (TAM) that were increased by sevoflurane or propofol but also increased M1 macrophage polarization, impeding tumor growth in TNBC. Also, we found that the transforming growth factor-β (TGF-β) derived from TAMs increased EMT signaling in TNBC cells, and that lidocaine affected cancer cells as well as M2-TAMs, inducing M2 to M1 reprogramming and decreasing TGF-β/Smads-mediated EMT signaling in TNBC cells, leading to inhibition of cancer metastasis and recurrence. These findings suggest lidocaine combined with general anesthetics as a potential therapeutic approach for the inhibition of recurrence and metastasis of breast cancer patients undergoing curative resection.
Collapse
Affiliation(s)
- Beom Seok Han
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Soyeon Ko
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Min Seok Park
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Yun Ji Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Sang Eun Kim
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Pureunchowon Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Ye Jin Cho
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Han Gyeol Go
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Sehan Kwak
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Eunji Park
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Ayoung Lim
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Suji Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Seungjong Yoo
- Department of Anesthesiology and Pain Medicine, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Hyunzu Kim
- Department of Anesthesiology and Pain Medicine, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea.
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea.
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea.
| |
Collapse
|
11
|
Jiang T, Ma C, Wang Z, Miao Y. A review of local anesthetic-induced heart toxicity using human induced pluripotent stem cell-derived cardiomyocytes. Mol Cell Probes 2024; 76:101965. [PMID: 38823509 DOI: 10.1016/j.mcp.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Local anesthetic (LA) cardiotoxicity is one of the main health problems in anesthesiology and pain management. This study reviewed the reported LA-induced cardiac toxicity types, risk factors, management, and mechanisms, with attention to the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in heart toxicity research. Important scientific databases were searched to find relevant articles. We briefly assessed the reported cardiotoxic effects of different types of LA drugs, including ester- and amide-linked LA agents. Furthermore, cardiotoxic effects and clinical manifestations, strategies for preventing and managing LA-induced cardiotoxic effects, pharmacokinetics, pharmacodynamics, and sodium channel dynamics regarding individual variability and genetic influences were discussed in this review. The applications and importance of hiPSC-CMs cellular model for evaluating the cardiotoxic effects of LA drugs were discussed in detail. This review also explored hiPSC-CMs' potential in risk assessment, drug screening, and developing targeted therapies. The main mechanisms underlying LA-induced cardiotoxicity included perturbation in sodium channels, ROS production, and disorders in the immune system response due to the presence of LA drugs. Furthermore, drug-specific characteristics including pharmacokinetics and pharmacodynamics are important determinants after LA drug injection. In addition, individual patient factors such as age, comorbidities, and genetic variability emphasize the need for a personalized approach to mitigate risks and enhance patient safety. The strategies outlined for the prevention and management of LA cardiotoxicity underscore the importance of careful dosing, continuous monitoring, and the immediate availability of resuscitation equipment. This comprehensive review can be used to guide future investigations into better understanding LA cardiac toxicities and improving patient safety.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, 710002, China
| | - Chao Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, 710002, China
| | - Zitong Wang
- Health Science Center, Lanzhou University, Lanzhou, 730000, China
| | - Yi Miao
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, 710002, China.
| |
Collapse
|
12
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
13
|
Ding L, Jiang H, Li Q, Li Q, Zhang TT, Shang L, Xie B, Zhu Y, Ding K, Shi X, Zhu T, Zhu Y. Ropivacaine as a novel AKT1 specific inhibitor regulates the stemness of breast cancer. J Exp Clin Cancer Res 2024; 43:90. [PMID: 38523299 PMCID: PMC10962119 DOI: 10.1186/s13046-024-03016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Ropivacaine, a local anesthetic, exhibits anti-tumor effects in various cancer types. However, its specific functions and the molecular mechanisms involved in breast cancer cell stemness remain elusive. METHODS The effects of ropivacaine on breast cancer stemness were investigated by in vitro and in vivo assays (i.e., FACs, MTT assay, mammosphere formation assay, transwell assays, western blot, and xenograft model). RNA-seq, bioinformatics analysis, Western blot, Luciferase reporter assay, and CHIP assay were used to explore the mechanistic roles of ropivacaine subsequently. RESULTS Our study showed that ropivacaine remarkably suppressed stem cells-like properties of breast cancer cells both in vitro and in vivo. RNA-seq analysis identified GGT1 as the downstream target gene responding to ropivacaine. High GGT1 levels are positively associated with a poor prognosis in breast cancer. Ropivacaine inhibited GGT1 expression by interacting with the catalytic domain of AKT1 directly to impair its kinase activity with resultant inactivation of NF-κB. Interestingly, NF-κB can bind to the promoter region of GGT1. KEGG and GSEA analysis indicated silence of GGT1 inhibited activation of NF-κB signaling pathway. Depletion of GGT1 diminished stem phenotypes of breast cancer cells, indicating the formation of NF-κB /AKT1/GGT1/NF-κB positive feedback loop in the regulation of ropivacaine-repressed stemness in breast cancer cells. CONCLUSION Our finding revealed that local anesthetic ropivacaine attenuated breast cancer stemness through AKT1/GGT1/NF-κB signaling pathway, suggesting the potential clinical value of ropivacaine in breast cancer treatment.
Collapse
Affiliation(s)
- Lin Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hui Jiang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qiangwei Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tian-Tian Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Limeng Shang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Bin Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yaling Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xuanming Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Zhang Q, Hao S, Wei G, Liu X, Miao Y. The p53-mediated cell cycle regulation is a potential mechanism for emodin-suppressing osteosarcoma cells. Heliyon 2024; 10:e26850. [PMID: 38495151 PMCID: PMC10943350 DOI: 10.1016/j.heliyon.2024.e26850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/16/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Background As the most common primary bone cancer, the therapy of osteosarcoma requires further study. An anthraquinone derivative, emodin, has been found to have anticancer potential. We proposed that emodin suppresses osteosarcoma by cell cycle regulation mediated by p53. Methods This study determined the effect of emodin on viability and apoptosis of 6 osteosarcoma cell lines (p53 null cells MG63, G292, and A-673; p53 mutated cells HOS and SK-PN-DW; p53 expressing cells U2OS and 2 osteoblast cell lines), then knockdown p53 in U2OS, and observed the impacts of emodin on p53, p21, cyclin proteins, and cell cycle. Results High dose emodin (40-160 μM) induced cell death and apoptosis of all the cell lines; medium dose emodin (20 μM) preferentially inhibited osteosarcoma cells; low dose emodin (1-10 μM) preferentially inhibited p53 expressing osteosarcoma cells. Emodin dose-dependently inhibited p53 and p21 in U2OS. Emodin at 10 μM decreased the expression of Cdk2, E2F, and Cdk1; and increased RB but had no effects on cyclin E and cyclin B. The knockdown of p53 almost eliminated all the impacts of 10 μM emodin on cell cycle proteins. Conclusions Emodin suppresses U2OS by p53-mediated cell cycle regulation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, 236800, Anhui Province, China
| | - Shuli Hao
- Department of Stomatology, Bozhou People's Hospital, Bozhou, 236800, Anhui Province, China
| | - Guangyou Wei
- Department of Pediatrics, Bozhou City People's Hospital, Bozhou, 236800, Anhui Province, China
| | - Xiangyu Liu
- Department of Science and Education, Bozhou City People's Hospital, Bozhou, 236800, Anhui Province, China
| | - Yang Miao
- Department of Neurology, Bozhou People's Hospital, Bozhou, 236800, Anhui Province, China
| |
Collapse
|
15
|
Wang Y, Chen X, Yang Y. CircRNA-regulated glucose metabolism in ovarian cancer: an emerging landscape for therapeutic intervention. Clin Transl Oncol 2024; 26:584-596. [PMID: 37578652 DOI: 10.1007/s12094-023-03285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Ovarian cancer (OC) has the highest mortality rate among female reproductive system tumours, with limited efficacy of traditional treatments and 5-year survival rates that rarely exceed 40%. Circular RNA (circRNA) is a stable endogenous circular RNA that typically regulates protein expression by binding to downstream miRNA. It has been demonstrated that circRNAs play an important role in the proliferation, migration, and glucose metabolism (such as the Warburg effect) of OC and can regulate the expression of glucose metabolism-related proteins such as GLUT1 and HK2, promoting anaerobic glycolysis of cancer cells, increasing glucose uptake and ATP production, and affecting energy supply and biosynthetic substances to support tumour growth and invasion. This review summarises the formation and characteristics of circRNAs and focuses on their role in regulating glucose metabolism in OC cells and their potential therapeutic value, providing insights for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Yaolong Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, Gansu, China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
16
|
Matos AC, Lorigo J, Marques IA, Abrantes AM, Jóia-Gomes M, Sa-Couto P, Gonçalves AC, Valentim A, Tavares-Silva E, Figueiredo A, Pires AS, Botelho MF. Anti-Algics in the Therapeutic Response of Breast and Urological Cancers. Int J Mol Sci 2023; 25:468. [PMID: 38203640 PMCID: PMC10778606 DOI: 10.3390/ijms25010468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The effect of anti-algics on tumor progression and the overall survival of patients is controversial and remains unclear. Herein, we disclose the in vitro effects of the local anesthetics lidocaine, ropivacaine, and levobupivacaine on breast (MCF7), prostate (PC3, LNCaP), and bladder (TCCSUP, HT1376) cancer cell lines, both as monotherapy and in combination with standard-of-care therapeutics. Assays for cell proliferation, viability, death profile, and migration were performed. Additionally, we explored the clinical outcomes of opioid use through a cross-sectional study involving 200 metastatic prostate cancer patients. The main clinical data collected included the type of opioid therapy administered, dosage, treatment duration, disease progression, and overall survival. Results obtained demonstrate that treatment with local anesthetics has a promising selective anti-tumor effect on these types of cancer, with higher effects when associated with docetaxel. This points out the use of local anesthetics as an added value in the treatment of prostate carcinoma patients. Alternatively, chronic opioid use was correlated with reduced overall survival (p < 0.05) and progression-free survival (p < 0.05) at each treatment line in the observational study. While these results provide valuable insights, larger prospective studies are imperative to comprehensively evaluate the clinical impact of opioid analgesics in prostate cancer patients.
Collapse
Affiliation(s)
- Ana Catarina Matos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (I.A.M.); (A.M.A.); (E.T.-S.); (A.F.); (M.F.B.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - João Lorigo
- Department of Urology and Renal Transplantation, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal;
| | - Inês Alexandra Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (I.A.M.); (A.M.A.); (E.T.-S.); (A.F.); (M.F.B.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (I.A.M.); (A.M.A.); (E.T.-S.); (A.F.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal;
| | - Matilde Jóia-Gomes
- Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Pedro Sa-Couto
- Center for Research & Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana Cristina Gonçalves
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinics of Hematology and Oncology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Valentim
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal;
- Anaesthesiology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal
| | - Edgar Tavares-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (I.A.M.); (A.M.A.); (E.T.-S.); (A.F.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Department of Urology and Renal Transplantation, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal;
| | - Arnaldo Figueiredo
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (I.A.M.); (A.M.A.); (E.T.-S.); (A.F.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Department of Urology and Renal Transplantation, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal;
| | - Ana Salomé Pires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (I.A.M.); (A.M.A.); (E.T.-S.); (A.F.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal;
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal (I.A.M.); (A.M.A.); (E.T.-S.); (A.F.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal;
| |
Collapse
|
17
|
Keleş D, Sipahi M, İnanç-Sürer Ş, Djamgoz MB, Oktay G. Tetracaine downregulates matrix metalloproteinase activity and inhibits invasiveness of strongly metastatic MDA-MB-231 human breast cancer cells. Chem Biol Interact 2023; 385:110730. [PMID: 37806380 DOI: 10.1016/j.cbi.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Tetracaine, a long-acting amino ester-type local anesthetic, prevents the initiation and propagation of action potentials by reversibly blocking voltage-gated sodium channels (VGSCs). These channels, which are highly expressed in several carcinomas (e.g. breast, prostate, colon and lung cancers) have been implicated in promoting metastatic behaviours. Recent evidence suggests that local anesthetics can suppress cancer progression. In this paper, we aimed to explore whether tetracaine would reduce the invasive characteristics of breast cancer cells. In a comparative approach, we used two cell lines of contracting metastatic potential: MDA-MB-231 (strongly metastatic) and MCF-7 (weakly metastatic). Tetracaine (50 μM and 75 μM) did not affect the proliferation of both MDA-MB-231 and MCF-7 cells. Importantly, tetracaine suppressed the migratory, invasive, and adhesive capacities of MDA-MB-231 cells; there was no effect on the motility of MCF-7 cells. Tetracaine treatment also significantly decreased the expression and activity levels of MMP-2 and MMP-9, whilst increasing TIMP-2 expression in MDA-MB-231 cells. On the other hand, VGSC α/Nav1.5 and VGSC-β1 mRNA and protein expression levels were not affected. We conclude that tetracaine has anti-invasive effects on breast cancer cells and may be exploited clinically, for example, in surgery and/or in combination therapies.
Collapse
Affiliation(s)
- Didem Keleş
- Izmir University of Economics, Vocational School of Health Services, Medical Laboratory Techniques, 35330, Balcova, Izmir, Turkey; Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Murat Sipahi
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Şeniz İnanç-Sürer
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Mustafa Ba Djamgoz
- Imperial College London, Department of Life Sciences, South Kensington Campus, SW7 2AZ, London, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Gülgün Oktay
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey.
| |
Collapse
|
18
|
Peng F, Liu J, Chen J, Wu W, Zhang Y, Zhao G, Kang Y, Gong D, He L, Wang J, Zhang W, Qiu F. Nanocrystals Slow-Releasing Ropivacaine and Doxorubicin to Synergistically Suppress Tumor Recurrence and Relieve Postoperative Pain. ACS NANO 2023; 17:20135-20152. [PMID: 37805931 DOI: 10.1021/acsnano.3c05831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Although surgical resection provides a straightforward and effective treatment for most malignant solid tumors, tumor recurrence and acute postoperative pain continue to be two big problems associated with this treatment. To resolve these problems, a nanocrystal composite slow-releasing ropivacaine and doxorubicin was fabricated in this study. Briefly, a self-assembling peptide was used to form nanoparticle complexes with the two drugs, based on which homogeneous nanocrystals were obtained by adjusting the pH. In cultured human melanoma cells, the nanocrystals exhibited improved antitumor activity due to a synergistic effect and enhanced cellular uptake of the two drugs. On the other hand, the nanocrystals could slowly release ropivacaine in vitro and in vivo, generating long-acting analgesia on the rat sciatic nerve block model and incisional pain model. On a nude mouse tumor resection model, the nanocrystals simultaneously suppressed the recurrence of solid tumor and relieved postoperative pain, indicating a potential postoperative treatment for tumor resection patients. This nanocrystal system also suggested a promising and facile strategy for developing multifunctional formulations combining different drugs, which could achieve better therapeutic outcomes in a synergistic and sustained manner.
Collapse
Affiliation(s)
- Fei Peng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weiwei Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yujun Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guoyan Zhao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Deying Gong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liu He
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng Qiu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Wu Y, Chen Z, Yao C, Sun H, Li H, Du X, Cheng J, Wan X. Effect of systemic lidocaine on postoperative quality of recovery, the gastrointestinal function, inflammatory cytokines of lumbar spinal stenosis surgery: a randomized trial. Sci Rep 2023; 13:17661. [PMID: 37848527 PMCID: PMC10582089 DOI: 10.1038/s41598-023-45022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Surgery is one of the most frequent and effective intervention strategies for lumbar spinal stenosis, however, one-third of patients are not satisfied with postoperative outcomes. It is not clear whether perioperative systemic lidocaine could accelerate the early postoperative quality of recovery in patients undergoing lumbar spinal stenosis surgery. 66 patients were enrolled in this trial. Lidocaine or placebo was administered at a loading dose of 1.5 mg/kg for 10 min and then infused at 2.0 mg/kg/hour till the end of surgery. Continued infusion by postoperative patient-controlled intravenous analgesia with a dose of 40 mg/hour. The primary outcome was the quality of recovery. Secondary outcomes included the time of the patient's first flatus, catheter removal time, underground time from the end of the surgery, pain score, levels of inflammatory factors (IL-6, IL-10, TNF-α), postoperative nausea and vomiting (PONV), sufentanil rescues, patients' satisfaction scores, and complications of lidocaine. Eventually, 56 patients were in the final analysis with similar age, Body Mass Index (BMI), duration of surgery and anesthesia, and median QoR-15 score (a development and Psychometric Evaluation of a Postoperative Quality of Recovery Score). The difference in median QoR-15 score in placebo versus lidocaine patients was statistically significant (IQR, 106 (104-108) versus 114 (108.25-119.25), P < 0.001). The Numeric Rating Scale (NRS) score at the 12th hour, median sufentanil rescue consumption, IL-6, tumor necrosis factor-alpha (TNF-α) of patients treatment with lidocaine were lower. Nevertheless, patients given lidocaine had high satisfaction scores. Suggesting that lidocaine enhanced the postoperative quality of recovery, met early postoperative gastrointestinal function recovery, provided superior pain relief, lessened inflammatory cytokines, etc., indicating it may be a useful intervention to aid recovery following lumbar spinal stenosis surgery.
Collapse
Affiliation(s)
- Yu Wu
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Zhuoming Chen
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Caimiao Yao
- Department of Clinical Laboratory, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Houxin Sun
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Hongxia Li
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Xuyang Du
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Jianzheng Cheng
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China.
| | - Xiaojian Wan
- Department of Anesthesiology and Critical Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Li Y. Letter to the Editor: Response to: Comment on: Application of a new serratus anterior plane block in modified radical mastectomy under ultrasound guidance: A prospective, randomized controlled trial. J Clin Anesth 2023; 89:111179. [PMID: 37348283 DOI: 10.1016/j.jclinane.2023.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Yuanhai Li
- The First Affiliated Hospital of Anhui Medical University, China.
| |
Collapse
|
21
|
Liu J, Chen L, Zhang J, Luo X, Tan Y, Qian S. AS-IV enhances the antitumor effects of propofol in NSCLC cells by inhibiting autophagy. Open Med (Wars) 2023; 18:20230799. [PMID: 37771421 PMCID: PMC10523104 DOI: 10.1515/med-2023-0799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most lethal malignant tumors. It has been shown that the general anesthetic agents, propofol and astragaloside IV (AS-IV) both exert antitumor effects in NSCLC. However, the effects of the combination of propofol with AS-IV in NSCLC remain unclear. Cell counting kit-8, and EdU and Transwell assays were performed to evaluate NSCLC cell viability, proliferation, and migration. Cell apoptosis and autophagy were observed by flow cytometric analysis and TUNEL and LC3 staining, respectively. AS-IV notably enhanced the anti-proliferative, pro-apoptotic, and anti-migratory properties of propofol in NSCLC cells. Moreover, AS-IV remarkably facilitated the anti-autophagy effect of propofol in NSCLC cells by downregulating LC3, Beclin 1, and ATG5. Significantly, the pro-apoptotic ability of the AS-IV/propofol combination in NSCLC cells was further enhanced by the autophagy inhibitor 3-MA, suggesting that autophagy plays a tumor-promoting role in NSCLC cells. Collectively, AS-IV could facilitate the antitumor abilities of propofol in NSCLC cells by inhibiting autophagy. These findings may be beneficial for future studies on the use of AS-IV and propofol for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jintao Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Long Chen
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang, China
| | - Jialing Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaopan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yingyi Tan
- Rehabilitation Medicine Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Patwardhan MV, Mahendran R. The Bladder Tumor Microenvironment Components That Modulate the Tumor and Impact Therapy. Int J Mol Sci 2023; 24:12311. [PMID: 37569686 PMCID: PMC10419109 DOI: 10.3390/ijms241512311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The tumor microenvironment (TME) is complex and involves many different cell types that seemingly work together in helping cancer cells evade immune monitoring and survive therapy. The advent of single-cell sequencing has greatly increased our knowledge of the cell types present in the tumor microenvironment and their role in the developing cancer. This, coupled with clinical data showing that cancer development and the response to therapy may be influenced by drugs that indirectly influence the tumor environment, highlights the need to better understand how the cells present in the TME work together. This review looks at the different cell types (cancer cells, cancer stem cells, endothelial cells, pericytes, adipose cells, cancer-associated fibroblasts, and neuronal cells) in the bladder tumor microenvironment. Their impact on immune activation and on shaping the microenvironment are discussed as well as the effects of hypertensive drugs and anesthetics on bladder cancer.
Collapse
Affiliation(s)
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
23
|
Yao W, Hou J, Liu G, Wu F, Yan Q, Guo L, Wang C. LncRNA STK4 antisense RNA 1 (STK4-AS1) promoted osteosarcoma by inhibiting p53 expression. Cancer Biomark 2023; 36:1-16. [PMID: 35912730 DOI: 10.3233/cbm-210291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND LncRNA STK4 antisense RNA 1 (STK4-AS1) has been identified as a potential biomarker associated with multiple cancers. We proposed that STK4-AS1 plays a role in the proliferation of osteosarcoma by regulating the cell cycle. METHODS We compared the expression of STK4-AS1, p53, and p21 in osteosarcoma vs normal samples in clinical tissues and cell lines. We determined the effect of overexpression and knockdown of STK4-AS1 in p53 expressing osteosarcoma cells U2OS, p53 muted osteosarcoma cells MG63, and osteoblast cells hFOB on p53 and p21 expression and the cell viability. For U2OS and MG63, the cell cycle was analyzed and the expression of cyclin proteins was determined. We overexpressed p53 or p21 in STK4-AS1 overexpressed cells to explore the association of STK4-AS1 and p53 in U2OS. RESULTS The STK4-AS1 expression was higher and p53 and p21 expression were lower in osteosarcoma tissue and cells than in their non-cancer counterparts. The expression of STK4-AS1 was negatively correlated with the expression of p53 or p21. Knockdown of STK4-AS1 in U2OS decreased the cell viability, increased cells in the G0/G1 phase, decreased cells in the S and G2/M phase, decreased expression of cyclin A and B, increased p53 and p21, and had no effect on cyclin D and cyclin E, while overexpression of STK4-AS1 did the opposes. Overexpression of p53 or p21 recovered some changes caused by STK4-AS1 overexpression in U2OS. MG63 expressed no p53 and the expression of p21, cyclin A, and cyclin B, cell viability, and cell cycle were not affected by altered STK4-AS1 levels. In hFOB cells, the expression of p53 and p21 was decreased and the cell viability was increased when STK4-AS1 was overexpressed, but they were not affected when STK4-AS1 was knocked down. CONCLUSION LncRNA STK4-AS1 promoted the cell cycle of osteosarcoma cells by inhibiting p53 expression.
Collapse
Affiliation(s)
- Weitao Yao
- Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jingyu Hou
- Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Guoqing Liu
- Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Fangxing Wu
- Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Qiang Yan
- Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Liangyu Guo
- Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Chuchu Wang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Zhang Y, Zhou A, Nian J, Liu S, Wei X. FSCN1 has a potential indication for the prognosis and regulates the migration of HNSCC. Cancer Biomark 2023; 38:161-176. [PMID: 37522194 DOI: 10.3233/cbm-220409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND The study of molecular markers for diagnosis and prognosis is of great clinical significance for HNSCC patients. In this study, we proposed that FSCN1 has a potential indication for prognosis and is essential for the migration of HNSCC. METHODS We analyzed the expression and survival association of FSCN1 in HNSCC using TCGA data. We compared the expression of FSCN1 in tumors from primary and metastasis HNSCC patients using QPCR, western blotting, and immunochemistry staining. We determined the migration velocity of multiple HNSCC cell lines using a chemotaxis migration assay. We analyzed the correlation between FSCN1 expression and HNSCC cell migration. We also test the effect of FSCN1 knockdown and overexpression on HNSCC cell migration. RESULTS FSCN1 was overexpressed in HNSCC than pair normal tissues and metastasis HNSCC than primary HNSCC. FSCN1 expression was associated with significantly poorer overall survival of HNSCC patients. FSCN1 was potentially associated with immune cell infiltration and migration-associated genes. FSCN1 level was correlated with the migration in HNSCC cell lines. Knockdown of FSCN1 reduced the migration and the overexpression of FSCN1 promoted the migration of HNSCC cell lines. CONCLUSION FSCN1 is a potential prognostic marker and a critical biomolecule for the migration of HNSCC.
Collapse
Affiliation(s)
- Yuliang Zhang
- Department of Otolaryngology Head and Neck Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Department of Otolaryngology Head and Neck Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Anyan Zhou
- Department of Respiratory and Critical Medical, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Department of Otolaryngology Head and Neck Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiabin Nian
- Department of Otolaryngology Head and Neck Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shuzhou Liu
- Department of Otolaryngology Head and Neck Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xin Wei
- Department of Otolaryngology Head and Neck Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
25
|
Lawler SE. Digging deeper for new targets in bevacizumab resistance. Neuro Oncol 2022; 25:261-262. [PMID: 36516222 PMCID: PMC9925704 DOI: 10.1093/neuonc/noac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sean E Lawler
- Corresponding Author: Sean E. Lawler, PhD, Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence RI 02903, USA ()
| |
Collapse
|
26
|
Apoptosis, Proliferation, and Autophagy Are Involved in Local Anesthetic-Induced Cytotoxicity of Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232415455. [PMID: 36555096 PMCID: PMC9779437 DOI: 10.3390/ijms232415455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer accounts for almost one quarter of all female cancers worldwide, and more than 90% of those who are diagnosed with breast cancer undergo mastectomy or breast conservation surgery. Local anesthetics effectively inhibit the invasion of cancer cells at concentrations that are used in surgical procedures. The limited treatment options for triple-negative breast cancer (TNBC) demonstrate unmet clinical needs. In this study, four local anesthetics, lidocaine, levobupivacaine, bupivacaine, and ropivacaine, were applied to two breast tumor cell types, TNBC MDA-MB-231 cells and triple-positive breast cancer BT-474 cells. In addition to the induction of apoptosis and the suppression of the cellular proliferation rate, the four local anesthetics decreased the levels of reactive oxygen species and increased the autophagy elongation indicator in both cell types. Our combination index analysis with doxorubicin showed that ropivacaine had a synergistic effect on the two cell types, and lidocaine had a synergistic effect only in MDA-MB-231 cells; the others had no synergistic effects on doxorubicin. Lidocaine contributed significantly to the formation of autophagolysosomes in a dose-dependent manner in MDA-MB-231 cells but not in BT-474 cells. Our study demonstrated that the four local anesthetics can reduce tumor growth and proliferation and promote apoptosis and autophagy.
Collapse
|
27
|
Liu H, Dilger JP, Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol Ther 2022; 240:108302. [PMID: 36332746 DOI: 10.1016/j.pharmthera.2022.108302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
TRPM7, a divalent cation-selective channel with kinase domains, has been widely reported to potentially affect cancers. In this study, we conducted multiple bioinformatic analyses based on open databases and reviewed articles that provided evidence for the effects of TRPM7 on cancers. The purposes of this paper are 1) to provide a pan-cancer overview of TRPM7 in cancers; 2) to summarize evidence of TRPM7 effects on cancers; 3) to identify potential future studies of TRPM7 in cancer. Bioinformatics analysis revealed that no cancer-related TRPM7 mutation was found. TRPM7 is aberrantly expressed in most cancer types but the cancer-noncancer expression pattern varies across cancer types. TRPM7 was not associated with survival, TMB, or cancer stemness in most cancer types. TRPM7 affected drug sensitivity and tumor immunity in some cancer types. The in vitro evidence, preclinical in vivo evidence, and clinical evidence for TRPM7 effects on cancers as well as TRPM7 kinase substrate and TRPM7-targeting drugs associated with cancers were summarized to facilitate comparison. We matched the bioinformatics evidence to literature evidence, thereby unveiling potential avenues for future investigation of TRPM7 in cancers. We believe that this paper will help orient research toward important and relevant aspects of the role of TRPM7 in cancers.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - James P Dilger
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
28
|
Sevoflurane activates the IL-6/HO-1 pathway to promote macrophage M2 polarization and prostate cancer lung metastasis. Int Immunopharmacol 2022; 113:109380. [DOI: 10.1016/j.intimp.2022.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
29
|
Advances in the Application of Nanomaterials to the Treatment of Melanoma. Pharmaceutics 2022; 14:pharmaceutics14102090. [PMID: 36297527 PMCID: PMC9610396 DOI: 10.3390/pharmaceutics14102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma can be divided into cutaneous melanoma, uveal melanoma, mucosal melanoma, etc. It is a very aggressive tumor that is prone to metastasis. Patients with metastatic melanoma have a poor prognosis and shorter survival. Although current melanoma treatments have been dramatically improved, there are still many problems such as systemic toxicity and the off-target effects of drugs. The use of nanoparticles may overcome some inadequacies of current melanoma treatments. In this review, we summarize the limitations of current therapies for cutaneous melanoma, uveal melanoma, and mucosal melanoma, as well as the adjunct role of nanoparticles in different treatment modalities. We suggest that nanomaterials may have an effective intervention in melanoma treatment in the future.
Collapse
|
30
|
Luan T, Li Y, Sun L, Xu S, Wang H, Wang J, Li C. Systemic immune effects of anesthetics and their intracellular targets in tumors. Front Med (Lausanne) 2022; 9:810189. [PMID: 35966857 PMCID: PMC9365985 DOI: 10.3389/fmed.2022.810189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
According to the result released by the World Health Organization (WHO), non-communicable diseases have occupied four of the top 10 current causes for death in the world. Cancer is one of the significant factors that trigger complications and deaths; more than 80% cancer patients require surgical or palliative treatment. In this case, anesthetic treatment is indispensable. Since cancer is a heterogeneous disease, various types of interventions can activate oncogenes or mutate tumor suppressor genes. More and more researchers believe that anesthetics have a certain effect on the long-term recurrence and metastasis of tumors, but it is still controversial whether they promote or inhibit the progression of cancer. On this basis, a series of retrospective or prospective randomized clinical trials have been conducted, but it seems to be difficult to reach a conclusion within 5 years or longer. This article focuses on the effects of anesthetic drugs on immune function and cancer and reviews their latest targets on the tumor cells, in order to provide a theoretical basis for optimizing the selection of anesthetic drugs, exploring therapeutic targets, and improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Lihui Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
| | - Siqi Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
- *Correspondence: Haifeng Wang,
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
- Jiansong Wang,
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
- Chong Li,
| |
Collapse
|
31
|
Qu D, Zou X, Liu Z. Propofol modulates glycolysis reprogramming of ovarian tumor via restraining circular RNA-zinc finger RNA-binding protein/microRNA-212-5p/superoxide dismutase 2 axis. Bioengineered 2022; 13:11881-11892. [PMID: 35543376 PMCID: PMC9275929 DOI: 10.1080/21655979.2022.2063649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Metabolic reprogramming refers to the transformation of the whole metabolic network covering glycolysis and mitochondrial metabolism, which is primarily manifested as the Warburg effect and mitochondrial metabolic reprogramming. Propofol (Pro) has been testified to suppress the malignancy of diversified human cancers. Nevertheless, its role in glycolysis is still uncertain. The purpose of this study was to determine whether Pro modulated glycolysis in ovarian cancer (OC) cells. Cell proliferation, apoptosis, migration, and invasion were tested via CCK-8, flow cytometry, and Transwell assays, respectively, and glucose intake, lactic acid, and ATP production were also determined. Pro restrained glycolysis via mediating the circular RNA-zinc finger RNA-binding protein (ZFR)/microRNA (miR)-212-5p/superoxide dismutase 2 (SOD2) axis. Additionally, Pro restrained cancer cell advancement via modulating circ-ZFR/miR-212-5p/SOD2 axis. In short, Pro restrained glycolysis via mediating the circ-ZFR/miR-212-5p/SOD2 axis. These results offered a better theoretical foundation for comprehending the molecular pathology of OC and provided a novel target for OC diagnosis and treatment.
Collapse
Affiliation(s)
- DongDong Qu
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan City, Shandong Province, China
| | - Xin Zou
- Department of Anesthesiology, Qingdao Women's and Children's Hospital, Qingdao City, Shandong Province, China
| | - ZhiLin Liu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao City, Shandong Province, China
| |
Collapse
|
32
|
Zi H, Chen L, Ruan Q. Lidocaine represses the malignant behavior of lung carcinoma cells via the circ_PDZD8/miR-516b-5p/GOLT1A axis. Histol Histopathol 2022; 37:461-474. [PMID: 35060113 DOI: 10.14670/hh-18-423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung carcinoma is the most prevalent malignancy in adults. Lidocaine (Lido) has been confirmed to exert an anti-tumor role in many human cancers. However, the role and underlying mechanism of Lido in lung carcinoma remain poorly understood. Cell proliferation ability, migration, invasion, and apoptosis were measured by Colony formation, 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), transwell, and flow cytometry assays. Circ_PDZD8, microRNA-516b-5p (miR-516b-5p), and Golgi transport 1A (GOLT1A) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Protein levels of proliferating cell nuclear antigen (PCNA) and GOLT1A were examined by western blot assay. The binding relationship between miR-516b-5p and circ_PDZD8 or GOLT1A was predicted by circular RNA Interactome or Starbase 3.0 and then verified by a dual-luciferase reporter assay. The biological roles of circ_PDZD8 and Lido on lung carcinoma cell growth were examined by the xenograft tumor model in vivo. Lido suppressed proliferation, migration, invasion, and induced apoptosis in lung carcinoma cells. Circ_PDZD8 and GOLT1A were increased, miR-516b-5p was decreased in lung carcinoma tissues and cell lines. Their expression presented the opposite trend in Lido-triggered lung carcinoma cells. Circ_PDZD8 might overturn the repression of Lido on cell growth ability and metastasis in this tumor. Mechanically, circ_PDZD8 might regulate GOLT1A expression by sponging miR-516b-5p. Circ_PDZD8 weakened the anti-lung carcinoma effect of Lido in vivo. Circ_PDZD8 might mitigate the inhibitory effect of Lido on tumor cell malignancy by modulating the miR-516b-5p/GOLT1A axis, providing a novel insight for lung carcinoma treatment.
Collapse
Affiliation(s)
- Huafen Zi
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China
| | - Li Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China
| | - Qian Ruan
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China.
| |
Collapse
|
33
|
Yang Y, Sun J, Peng F, Liu H, Zhao G, Chen J, Zhang W, Qiu F. Enhanced Antitumor Activity of Lidocaine Nanoparticles Encapsulated by a Self-Assembling Peptide. Front Pharmacol 2022; 13:770892. [PMID: 35529446 PMCID: PMC9068872 DOI: 10.3389/fphar.2022.770892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Although local anesthetics (LAs) such as lidocaine have been traditionally used for pain relief, their antitumor activity has attracted more and more attentions in recent years. However, since nearly all LAs used in clinic are in their hydrochloride forms with small molecular weight and high water-solubility, their fast absorption and clearance greatly limit their antitumor activity in vivo. To better exploit the antitumor activity of LAs, lidocaine nanoparticles (LNPs) are prepared by using a self-assembling peptide to encapsulate the hydrophobic base form of lidocaine. In cultured A375 human melanoma cells, the LNPs show much higher cellular uptake level than the clinic formulation of lidocaine hydrochloride, which leads to enhanced efficacy in inhibiting the proliferation, migration and invasion of the cells, as well as in inducing cell apoptosis. Compared with lidocaine hydrochloride, LNPs can also significantly slow down the release rate of lidocaine. In nude mice, LNPs can effectively inhibit the development of solid tumors from seeded A375 cells and prevent the recurrence of tumors after surgical excision. These results indicate that by using self-assembling peptide to fabricate nanoparticle formulations of local anesthetics, their antitumor activity can be significantly enhanced, suggesting a potential postoperative treatment to prevent tumor recurrence after surgical excision.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaxiao Sun
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Peng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Haibei Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyan Zhao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wensheng Zhang, ; Feng Qiu,
| | - Feng Qiu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wensheng Zhang, ; Feng Qiu,
| |
Collapse
|
34
|
Yin X, Chen H, Chen S, Zhang S. Screening and Validation of a Carvacrol-Targeting Viability-Regulating Protein, SLC6A3, in Liver Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:3736104. [PMID: 35401884 PMCID: PMC8986433 DOI: 10.1155/2022/3736104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Background Liver hepatocellular carcinoma (LIHC) is the second leading cause of tumor-related death in the world. Carvacrol was also found to inhibit multiple cancer types. Here, we proposed that Carvacrol inhibited LIHC. Methods We used MTT assay to determine the inhibition of Carvacrol on LIHC cells. BATMAN-TCM was used to predict targets of Carvacrol. These targets were further screened by their survival association and expression in cancer using TCGA data. The bioinformatic screened candidates were further validated in in vitro experiments and clinical samples. Finally, docking models of the interaction of Carvacrol and target protein were conducted. Results Carvacrol inhibited the viability of LIHC cell lines. 40 target genes of Carvacrol were predicted, 8 of them associated with survival. 4 genes were found differentially expressed in LIHC vs. normal liver. Among these genes, the expression of SLC6A3 and SCN4A was found affected by Carvacrol in LIHC cells, but only SLC6A3 correlated with the viability inhibition of Carvacrol on LIHC cell lines. A docking model of the interaction of Carvacrol and SLC6A3 was established with a good binding affinity. SLC6A3 knockdown and expression revealed that SLC6A3 promoted the viability of LIHC cells. Conclusion Carvacrol inhibited the viability of LIHC cells by downregulating SLC6A3.
Collapse
Affiliation(s)
- Xieling Yin
- Department of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated To Nantong University, China
| | - Hongjian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated To Nantong University, China
| | - Shi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated To Nantong University, China
| | - Suqing Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated To Nantong University, China
| |
Collapse
|
35
|
Li T, Zhang H, Wang Z, Gao S, Zhang X, Zhu H, Wang N, Li H. The regulation of autophagy by the miR-199a-5p/p62 axis was a potential mechanism of small cell lung cancer cisplatin resistance. Cancer Cell Int 2022; 22:120. [PMID: 35292022 PMCID: PMC8922820 DOI: 10.1186/s12935-022-02505-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autophagy has been found to be involved in the multidrug resistance (MDR) of cancers, but whether it is associated with resistance of small cell lung cancer (SCLC) has not been studied. Here, we hypothesized that a potential autophagy-regulating miRNA, miR-199a-5p, regulated cisplatin-resistant SCLC. METHODS We validated the MDR of H446/EP using CCK-8 and LDH. We tested the binding of miR-199a-5p to p62 using the Dual-Luciferase assay and validated the association of miR-199a-5p and p62 in SCLC samples. We overexpressed (OE) and knocked down (KD) miR-199a-5p in H446 and H446/EP and determined the expression of miR-199a-5p, autophagy-related proteins, and the formation of autophagolysosomes using QPCR, western blotting, and MDC staining respectively. These results were validated in an orthotopic H446 mouse model of SCLC. RESULTS H446/EP was resistant to cisplatin, etoposide, paclitexal, epirubicin, irinotecan, and vinorelbine. Exposure of cisplatin at 5 μg/ml for 24 h increased LC3II/LC3I, ATG5, p62, and the formation of autophagolysosomes in H446 cells, but not in H446/EP cells. The expression of miR-199a-5p was up-regulated in H446/EP compared to H446. MiR-199a-5p directly targeted the p62 gene. The expression of miR-199a-5p and p62 were correlated in SCLC samples. In H446 and H69PR, the OE of miR-199a-5p increased LC3II/LC3I, p62, and the formation of autophagolysosomes, but not ATG5, while the KD of miR-199a-5p decreased p62, but did not affect LC3II/LC3I, ATG5, and the formation of autophagolysosomes. In H446/EP, the OE of miR-199a-5p decreased p62 only. These results were generally consistent to results in the animal tumor samples. CONCLUSIONS The regulation of autophagy by the miR-199a-5p/p62 axis was a potential mechanism of small cell lung cancer cisplatin resistance.
Collapse
Affiliation(s)
- Tiezhi Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Helin Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhichao Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shaolin Gao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiyong Zhu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Wang
- Department of Pediatrics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Honglin Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
36
|
Wei Q, Xia M, Zhang Q, Wang Z. Effect of intravenous lidocaine infusion on perioperative cellular immunity and the quality of postoperative recovery in breast cancer patients: a randomized controlled trial. Gland Surg 2022; 11:599-610. [PMID: 35402204 PMCID: PMC8984984 DOI: 10.21037/gs-22-134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2023]
Abstract
BACKGROUND Breast cancer has become the most common malignancy worldwide. Experimental and, retrospective, clinical data indicate that anaesthetic technique might influence the risk of metastasis after cancer surgery by modulating the immune system. The purpose of this study is to investigate the effect of perioperative lidocaine injection on immune cells such as T lymphocytes and natural killer cells (NK cells) and the quality of postoperative recovery in breast cancer patients and to propose new ideas and relevant theoretical evidence for the selection of anesthetic protocols for perioperative tumor patients. METHODS Women (n=68) undergoing primary breast tumour resection were randomly assigned to received 2% lidocaine (n=34; group L) or placebo (normal saline; n=34; group S). Venous blood was collected thirty minutes before surgery (T0), after tumor removal (T1), immediately after surgery (T2), 24 h after surgery (T3), and 48 h after surgery (T4). The percentages of NK cells and T lymphocyte subsets (CD3+, CD4+, CD8+, CD4+/CD8+) in peripheral blood were detected by flow cytometry. Patients' quality of recovery-15 (QoR-15) scores were recorded by questionnaire before and 24 h after the operation, as well as intraoperative propofol and remifentanil dosages, the frequency of 24 h postoperative remedial analgesia, and the incidence of nausea and vomiting, dizziness, and chest tightness. RESULTS There were 62 patients included in the study, and 60 patients were finally analyzed. The difference in the changing trend of NK cell levels in the 2 groups over time was statistically significant (F=7.675, P=0.008). The intraoperative changing trends of CD3+ T cells, CD4+ T cells, and the CD4+/CD8+ ratio over time differed significantly between the 2 groups of patients (P<0.05), whereas the trends of CD8+ T cells did not differ significantly (P>0.05). The QoR-15 score at 24 h after surgery was higher in Group L (128.50±20.25) than in Group S (117.50±19.50), and the difference was statistically significant (P=0.005). No adverse events such as cardiac arrhythmia and lidocaine toxicity occurred in both groups during the perioperative period. CONCLUSIONS Continuous intravenous pumping of lidocaine during the perioperative period has little effect on immune function in breast cancer patients and promotes postoperative recovery. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100050445.
Collapse
Affiliation(s)
- Qingfeng Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ming Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Qin Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhiping Wang
- Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
37
|
Guo Q, Liao TH, Ye WJ, Liao WK, Zhou ZX, Ji C. SYNTHESIS, CRYSTAL STRUCTURE, AND DFT STUDY OF N-(2-FLUORO-4-(4,4,5,5- TETRAMETHYL-1,3,2-DIOXIN-2-YL)PHENYL)- 3-METHYL-BUTANAMIDE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Deng Z, Jian Y, Cai H. Ropivacaine represses the proliferation, invasion, and migration of glioblastoma via modulating the microRNA-21-5p/KAT8 regulatory NSL complex subunit 2 axis. Bioengineered 2022; 13:5975-5986. [PMID: 35191804 PMCID: PMC8973733 DOI: 10.1080/21655979.2022.2037955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Ropivacaine (Rop) is available to suppress the growth of glioblastoma (GBM), while its mechanism has not been completely elaborated. In this study, we explore the latent mechanism of Rop repressing GBM's growth via mediating the microRNA (miR)-21-5p/KAT8 regulatory NSL complex subunit 2 (KANSL2) axis. MiR-21-5p was declined in GBM, while KANSL2 was elevated. Clinical association studies manifested miR-21-5p was distinctly linked to the tumor size and grade of GBM. Rop constrained GBM cell proliferation, invasion, and migration but boosted apoptosis. Elevated miR-21-5p strengthened Rop's action, while augmented KANSL2 weakened Rop's role. Furthermore, the impact of silencing miR-21-5p on GBM was turned around via declining KANSL2 in Rop-treated GBM cells. KANSL2 was the target gene of miR-21-5p. In short, Rop exerted an anti-tumor impact on GBM via mediating the miR-21-5p/KANSL2 axis, which offered novel viewpoints for the later adoption of Rop as GBM drugs.
Collapse
Affiliation(s)
- Zexiang Deng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yanping Jian
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Hongwei Cai
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
39
|
Xu P, Zhang S, Tan L, Wang L, Yang Z, Li J. Local Anesthetic Ropivacaine Exhibits Therapeutic Effects in Cancers. Front Oncol 2022; 12:836882. [PMID: 35186766 PMCID: PMC8851418 DOI: 10.3389/fonc.2022.836882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the significant progress in cancer treatment, new anticancer therapeutics drugs with new structures and/or mechanisms are still in urgent need to tackle many key challenges. Drug repurposing is a feasible strategy in discovering new drugs among the approved drugs by defining new indications. Recently, ropivacaine, a local anesthetic that has been applied in clinical practice for several decades, has been found to possess inhibitory activity and sensitizing effects when combined with conventional chemotherapeutics toward cancer cells. While its full applications and the exact targets remain to be revealed, it has been indicated that its anticancer potency was mediated by multiple mechanisms, such as modulating sodium channel, inducing mitochondria-associated apoptosis, cell cycle arrest, inhibiting autophagy, and/or regulating other key players in cancer cells, which can be termed as multi-targets/functions that require more in-depth studies. In this review, we attempted to summarize the research past decade of using ropivacaine in suppressing cancer growth and sensitizing anticancer drugs both in-vitro and in-vivo, and tried to interpret the underlying action modes. The information gained in these findings may inspire multidisciplinary efforts to develop/discover more novel anticancer agents via drug repurposing.
Collapse
Affiliation(s)
- Peng Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaobo Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Tan
- Department of Anesthesiology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Lei Wang
- Department of Anesthesiology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Zhongwei Yang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Wu Chuang A, Kepp O, Kroemer G, Bezu L. Direct Cytotoxic and Indirect, Immune-Mediated Effects of Local Anesthetics Against Cancer. Front Oncol 2022; 11:821785. [PMID: 35096626 PMCID: PMC8796204 DOI: 10.3389/fonc.2021.821785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Local anesthetics are frequently employed during surgery in order to control peri- and postoperative pain. Retrospective studies have revealed an unexpected correlation between increased long-term survival and the use of local anesthetics during oncological surgery. This effect of local anesthetics might rely on direct cytotoxic effects on malignant cells or on indirect, immune-mediated effects. It is tempting to speculate, yet needs to be formally proven, that the combination of local anesthetics with oncological surgery and conventional anticancer therapy would offer an opportunity to control residual cancer cells. This review summarizes findings from fundamental research together with clinical data on the use of local anesthetics as anticancer standalone drugs or their combination with conventional treatments. We suggest that a better comprehension of the anticancer effects of local anesthetics at the preclinical and clinical levels may broadly improve the surgical treatment of cancer.
Collapse
Affiliation(s)
- Alejandra Wu Chuang
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.,Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.,Service d'anesthésie, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
41
|
Lin CY, Tseng WT, Chang YY, Tsai MH, Chuang EY, Lu TP, Lai LC. Lidocaine and Bupivacaine Downregulate MYB and DANCR lncRNA by Upregulating miR-187-5p in MCF-7 Cells. Front Med (Lausanne) 2022; 8:732817. [PMID: 35096852 PMCID: PMC8792760 DOI: 10.3389/fmed.2021.732817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Breast cancer is the most common malignancy and a leading cause of death among women. The majority of patients require surgery, and retrospective studies have revealed an association between anaesthetic techniques during surgery and clinical outcomes. Local anaesthetics (LAs) influence carcinogenesis by interacting with non-coding RNAs (ncRNAs). However, the detailed mechanisms underlying the association between LAs and ncRNAs remain unclear. Methods: In this study, the effects of two commonly used LAs, lidocaine and bupivacaine, on the malignancy of MCF-7 breast cancer cells were investigated. The expression profiles of the microRNAs (miRNAs) that responded to treatment with LAs were determined through next-generation sequencing. Results: Data from the functional assay revealed that the LAs suppressed the proliferation of MCF-7 cells. The result of next-generation sequencing revealed that 131 miRNAs were upregulated, following treatment with the LAs. Validation using polymerase chain reaction (PCR) identified miR-187-5p as a potential biomarker, and it was selected for further analyses. Prediction with bioinformatics tools and luciferase reporter assays revealed that MYB is a direct target gene of miR-187-5p. Based on the hypothesis that lncRNAs acts as miRNA sponges, the target lncRNA, DANCR, of miR-187-5p was predicted using DIANA-LncBase v2 and validated using luciferase reporter assays. In addition, the reciprocal suppressive effect between DANCR and miR-187-5p was determined. Conclusions: This study suggests that one of the anti-tumour mechanisms of lidocaine and bupivacaine is mediated through the DANCR-miR-187-5p-MYB axis. This may provide a novel molecular mechanism of tumour suppression in breast cancer.
Collapse
Affiliation(s)
- Chiao-Yi Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Anesthesiology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Wen-Ting Tseng
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Yin Chang
- Department of Electrical Engineering, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Graduate Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan.,College of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Tzu-Pin Lu
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Zhang D, Jiang J, Liu J, Zhu T, Huang H, Zhou C. Effects of Perioperative Epidural Analgesia on Cancer Recurrence and Survival. Front Oncol 2022; 11:798435. [PMID: 35071003 PMCID: PMC8766638 DOI: 10.3389/fonc.2021.798435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Surgical resection is the main curative avenue for various cancers. Unfortunately, cancer recurrence following surgery is commonly seen, and typically results in refractory disease and death. Currently, there is no consensus whether perioperative epidural analgesia (EA), including intraoperative and postoperative epidural analgesia, is beneficial or harmful on cancer recurrence and survival. Although controversial, mounting evidence from both clinical and animal studies have reported perioperative EA can improve cancer recurrence and survival via many aspects, including modulating the immune/inflammation response and reducing the use of anesthetic agents like inhalation anesthetics and opioids, which are independent risk factors for cancer recurrence. However, these results depend on the cancer types, cancer staging, patients age, opioids use, and the duration of follow-up. This review will summarize the effects of perioperative EA on the oncological outcomes of patients after cancer surgery.
Collapse
Affiliation(s)
- Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jingyao Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Zhang Y, Jing Y, Pan R, Ding K, Chen R, Meng Q. Mechanisms of Cancer Inhibition by Local Anesthetics. Front Pharmacol 2021; 12:770694. [PMID: 34950031 PMCID: PMC8688799 DOI: 10.3389/fphar.2021.770694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/15/2021] [Indexed: 01/17/2023] Open
Abstract
The use of local anesthetics during surgical treatment of cancer patients is an important part of perioperative analgesia. In recent years, it has been showed that local anesthetics can directly or indirectly affect the progression of tumors. In vitro and in vivo studies have demonstrated that local anesthetics reduced cancer recurrence. The etiology of this effect is likely multifactorial. Numerous mechanisms were proposed based on the local anesthetic used and the type of cancer. Mechanisms center on NaV1.5 channels, Ras homolog gene family member A, cell cycle, endothelial growth factor receptor, calcium Influx, microRNA and mitochondrial, in combination with hyperthermia and transient receptor potential melastatin 7 channels. Local anesthetics significantly decrease the proliferation of cancers, including ovarian, breast, prostate, thyroid, colon, glioma, and histiocytic lymphoma cell cancers, by activating cell death signaling and decreasing survival pathways. We also summarized clinical evidence and randomized trial data to confirm that local anesthetics inhibited tumor progression.
Collapse
Affiliation(s)
- Yiguo Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yixin Jing
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Pan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
44
|
TRPM7 Ion Channel: Oncogenic Roles and Therapeutic Potential in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246322. [PMID: 34944940 PMCID: PMC8699295 DOI: 10.3390/cancers13246322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Breast cancer is the most frequently diagnosed malignant tumor and the second leading cause of cancer death in women worldwide. The risk of developing breast cancer is 12.8%, i.e., 1 in 8 people, and a woman’s risk of dying is approximately 1 in 39. Calcium signals play an important role in various cancers and transport calcium ions may have altered expression in breast cancer, such as the TRPM7 calcium permeant ion channel, where overexpression may be associated with a poor prognosis. This review focuses on the TRPM7 channel, and the oncogenic roles studied so far in breast cancer. The TRPM7 ion channel is suggested as a potential and prospective target in the diagnosis and treatment of breast cancer. Abstract The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer. Breast cancer is the second leading cause of cancer death in women with an incidence rate increase of around 0.5% per year since 2004. The overexpression of TRPM7 may be associated with a poor prognosis in breast cancer patients, so more efforts are needed to research a new therapeutic target. TRPM7 regulates the levels of Ca2+, which can alter the signaling pathways involved in survival, cell cycle progression, proliferation, growth, migration, invasion, epithelial-mesenchymal transition and thus determines cell behavior, promoting tumor development. This work provides a complete overview of the TRPM7 ion channel and its main involvements in breast cancer. Special consideration is given to the modulation of the channel as a potential target in breast cancer treatment by inhibition of proliferation, migration and invasion. Taken together, these data suggest the potential exploitation of TRPM7 channel-kinase as a therapeutic target and a diagnostic biomarker.
Collapse
|
45
|
Zhang R, Lian Y, Xie K, Cai Y, Pan Y, Zhu Y. Ropivacaine suppresses tumor biological characteristics of human hepatocellular carcinoma via inhibiting IGF-1R/PI3K/AKT/mTOR signaling axis. Bioengineered 2021; 12:9162-9173. [PMID: 34696683 PMCID: PMC8810031 DOI: 10.1080/21655979.2021.1995103] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Ropivacaine, a common local anesthetic in the clinic, has anti-proliferative and pro-apoptotic effects in numerous cancers, however, the underlying regulatory mechanism of ropivacaine in hepatocellular carcinoma remains unclear. In the current study, human HepG2 cells were stimulated with different ropivacaine concentrations. Cell Counting Kit-8 assay, cell colony formation, and cell cycle were used to monitor cell viability. Cell apoptosis, migration, and invasion were determined by flow cytometry and transwell assays. Tumor xenograft experiments were performed to prove the anti-cancer effect of ropivacaine in vivo. A high dose of ropivacaine inhibited proliferation and promoted apoptosis of HepG2 cells in a dose-dependent manner. Ropivacaine challenge also arrested cells in the G2 phase, followed by a decline in the protein expression of cyclin D1 and cyclin-dependent kinase 2, and an increase in p27 levels in HepG2 cells. Additionally, different ropivacaine doses suppressed cell migration and invasion by upregulating E-cadherin expression and downregulating N-cadherin expression. Mechanically, ropivacaine challenge gradually restrained insulin-like growth factor-1 receptor (IGF-1 R) expression and the activities of phosphorylated-PI3K, AKT, and mTOR in HepG2 cells with increased ropivacaine doses. In the tumor xenograft experiment, ropivacaine was confirmed to inhibit tumor growth, accompanied by inhibition of the IGF-1 R/PI3K/AKT/mTOR signaling axis. In conclusion, ropivacaine suppressed tumor biological characteristics and promoted apoptosis, resulting in the suppression of hepatocellular carcinoma progression by targeting the IGF-1 R/PI3K/AKT/mTOR signaling pathway. It is possible that ropivacaine-mediated local anesthesia may be developed as a novel surgical adjuvant drug for treating hepatocellular carcinoma.
Collapse
Affiliation(s)
- Runze Zhang
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanhong Lian
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Kangjie Xie
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yunfang Cai
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yafei Pan
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yuntian Zhu
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
46
|
Du XT, Wang XY, Zheng YH, Liu DP. Propofol suppresses the growth and invasion of cervical carcinoma cells by inhibiting MIR155HG. Aging (Albany NY) 2021; 13:24464-24475. [PMID: 34775376 PMCID: PMC8610141 DOI: 10.18632/aging.203697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
Background: Cervical cancer is the most prevalent malignancy worldwide and propofol reportedly has anti-cancer efficiencies. Herein, we tried to address the potential anti-cancer effects of propofol in cervical carcinoma. Materials and Methods: The suppression effects of propofol on the proliferation and invasion of cervical cancer cells were analyzed by Cell Counting Kit-8 (CCK-8), colony formation and Transwell invasion assay. The protein expressions of epithelial marker, E-cadherin and mesenchymal marker, N-cadherin were evaluated using western blot. The level of MIR155 host gene (MIR155HG) was determined by qRT-PCR assay. The anti-cancer impact of propofol on cervical cancer cells growth in vivo was determined by means of xenograft tumor model and lung metastasis model. Results: In vitro, propofol inhibited the growth and colony-formation of cervical carcinoma cells. Meanwhile, propofol treatment reduced the invasive trait of cervical carcinoma cells. In addition, MIR155HG was identified to be distinctly upregulated in cervical carcinoma when compared within normal. Propofol treatment decreased the expression of MIR155HG in cervical cancer cells. Consistently, the results from in vivo xenograft model indicated that propofol repressed cervical cancer cells growth and decreased the expression of MIR155HG in vivo. Furthermore, reintroduction of MIR155HG into cervical cancer cells counteracted the inhibitory potency of propofol on the growth and aggressive phenotypes in cervical carcinoma cells. Conclusions: Altogether, these results indicated that propofol restrained the growth and invasion of cervical cancer cells partly via regulating MIR155HG expression.
Collapse
Affiliation(s)
- Xin-Tan Du
- Department of Anesthesia and Perioperative Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, People's Republic of China
| | - Xiao-Yan Wang
- Department of Gynecology and Obstetrics, Zaozhuang Hospital, Zaozhuang Mining Group, Zaozhuang, Shandong, People's Republic of China
| | - Ying-He Zheng
- Department of Anesthesiology, Zaozhuang Hospital, Zaozhuang Mining Group, Zaozhuang, Shandong, People's Republic of China
| | - Da-Peng Liu
- Department of Anesthesia and Perioperative Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, People's Republic of China
| |
Collapse
|
47
|
Targeting miRNAs with anesthetics in cancer: Current understanding and future perspectives. Biomed Pharmacother 2021; 144:112309. [PMID: 34653761 DOI: 10.1016/j.biopha.2021.112309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Anesthetics are extensively used during cancer surgeries. The progression of cancer can be influenced by perioperative events such as exposure to general or local anesthesia. However, whether they inhibit cancer or act as a causative factor for metastasis and exert deleterious effects on cancer growth differs based on the type of cancer and the therapy administration. Recent experimental data suggested that many of the most commonly used anesthetics in surgical oncology, whether general or local agents, can alter gene expression and cause epigenetic changes via modulating miRNAs. miRNAs are single-stranded non-coding RNAs that regulate gene expression at various levels, and their dysregulation contributes to the pathogenesis of cancers. However, anesthetics via regulating miRNAs can concurrently target several effectors of cellular signaling pathways involved in cell differentiation, proliferation, and viability. This review summarized the current research about the effects of different anesthetics in regulating cancer, with a particular emphasis on the role of miRNAs. A significant number of studies conducted in this area of research illuminate the effects of anesthetics on the regulation of miRNA expression; therefore, we hope that a thorough understanding of the underlying mechanisms involved in the regulation of miRNA in the context of anesthesia-induced cancer regulation could help to define optimal anesthetic regimens and provide better perspectives for further studies.
Collapse
|
48
|
Ji W, Zhang X, Sun G, Wang X, Liu J, Bian J, Bo L. Effect of perioperative intravenous lidocaine on postoperative outcomes in patients undergoing resection of colorectal cancer: a protocol for systematic review and meta-analysis. BMJ Open 2021; 11:e048803. [PMID: 34426465 PMCID: PMC8383864 DOI: 10.1136/bmjopen-2021-048803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Techniques using local anaesthetics provide high-quality analgesia, while the anti-inflammatory properties of these drugs may represent an additional advantage. Perioperative intravenous lidocaine has shown positive effects not only on postoperative pain but also on bowel function and duration of hospital stay, due to its analgesic, anti-inflammatory and opioid-sparing effects. However, these potential benefits are not well established in patients undergoing resection with colorectal cancer. This research aims to determine the effect of perioperative intravenous lidocaine on postoperative outcomes in patients undergoing resection of colorectal cancer. METHODS AND ANALYSIS PubMed, Embase, Web of Science, CNKI, SinoMed and WanFang Data databases were electronically retrieved to include the randomised controlled trials comparing perioperative intravenous lidocaine with placebo infusion in patients undergoing resection of colorectal cancer before August 2021. Registers of clinical trials, potential grey literature and abstracts from conferences will also be searched. Two reviewers will screen literature, extract data and assess risk of bias of studies included independently. The primary outcome variable will be long-term survival outcome, tumour recurrence and metastasis rate, and restoration of intestinal function. The secondary outcome variables will consist of the severity of postoperative pain at 4, 12, 24 and 48 hours after surgery, the incidence of postoperative nausea and vomiting, and the length of hospital stay. A meta-analysis will be performed using RevMan V.5.4 software provided by the Cochrane Collaboration and Stata V.12.0. subgroup and sensitivity analyses will be conducted. ETHICS AND DISSEMINATION Because the data used for this systematic review will be exclusively extracted from published studies, ethical approval and informed consent of patients will not be required. The systematic review will be published in a peer-reviewed journal, presented at conferences and shared on social media platforms. PROSPERO REGISTRATION NUMBER CRD42020216232.
Collapse
Affiliation(s)
- Wentao Ji
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Xiaoting Zhang
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Guolin Sun
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Xiandong Wang
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Jia Liu
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, China
| |
Collapse
|
49
|
Li Y, Gu C, Liu G, Yu Y, Xu J. Polarization of rheumatoid macrophages is regulated by the CDKN2B-AS1/ MIR497/TXNIP axis. Immunol Lett 2021; 239:23-31. [PMID: 34418490 DOI: 10.1016/j.imlet.2021.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
The polarization of macrophages plays a critical role in the pathophysiology of rheumatoid arthritis. The macrophages can have pro-inflammatory M1 polarization and various types of alternative anti-inflammatory M2 polarization. Our preliminary results showed that the CDKN2B-AS1/MIR497/TXNIP axis might regulate macrophages of rheumatoid arthritis patients. Therefore, we hypothesized that this axis regulated the polarization of rheumatoid macrophages. Flow cytometry was used to determine the surface polarization markers in M1 or M2 macrophages from healthy donors and rheumatoid arthritis patients. The QPCR and Western Blotting were used to compare the expression of the CDKN2B-AS1/MIR497/TXNIP axis in these macrophages. We Knocked down and overexpressed the axis in the macrophage cell line MD to test its roles in macrophage polarization. Compared to cells from healthy donors, cells from rheumatoid arthritis patients expressed higher levels of CD40 and CD80 and lower levels of CD16, CD163, CD206, and CD200R after polarization, they also expressed higher CDKN2B-AS1, lower MIR497, and higher TXNIP. In macrophages from healthy donors, there was no correlation among CDKN2B-AS1, MIR497, and TXNIP. But in macrophages from patients, there were significant correlations. The CDKN2B-AS1 knockdown, MIR497 mimics suppressed the M1 polarization but promoted the M2 polarization in MD cells, while the MIR497 knockdown and the TXNIP overexpression did the opposite. This study demonstrated that elevated CDKN2B-AS1 in macrophages promotes the M1 polarization and inhibited the M2 polarization of macrophages by the CDKN2B-AS1/ MIR497/TXNIP axis.
Collapse
Affiliation(s)
- Yu Li
- Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenxi Gu
- Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanlei Liu
- Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yu
- Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhong Xu
- Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
50
|
Gradinaru D, Ungurianu A, Margina D, Moreno-Villanueva M, Bürkle A. Procaine-The Controversial Geroprotector Candidate: New Insights Regarding Its Molecular and Cellular Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617042. [PMID: 34373764 PMCID: PMC8349289 DOI: 10.1155/2021/3617042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Since its discovery in 1905 and its employment in everyday medical practice as a local anesthetic, to its highly controversial endorsement as an "anti-aging" molecule in the sixties and seventies, procaine is part of the history of medicine and gerontoprophylaxis. Procaine can be considered a "veteran" drug due to its long-time use in clinical practice, but is also a molecule which continues to incite interest, revealing new biological and pharmacological effects within novel experimental approaches. Therefore, this review is aimed at exploring and systematizing recent data on the biochemical, cellular, and molecular mechanisms involved in the antioxidant and potential geroprotective effects of procaine, focusing on the following aspects: (1) the research state-of-the-art, through an objective examination of scientific literature within the last 30 years, describing the positive, as well as the negative reports; (2) the experimental data supporting the beneficial effects of procaine in preventing or alleviating age-related pathology; and (3) the multifactorial pathways procaine impacts oxidative stress, inflammation, atherogenesis, cerebral age-related pathology, DNA damage, and methylation. According to reviewed data, procaine displayed antioxidant and cytoprotective actions in experimental models of myocardial ischemia/reperfusion injury, lipoprotein oxidation, endothelial-dependent vasorelaxation, inflammation, sepsis, intoxication, ionizing irradiation, cancer, and neurodegeneration. This analysis painted a complex pharmacological profile of procaine: a molecule that has not yet fully expressed its therapeutic potential in the treatment and prevention of aging-associated diseases. The numerous recent reports found demonstrate the rising interest in researching the multiple actions of procaine regulating key processes involved in cellular senescence. Its beneficial effects on cell/tissue functions and metabolism could designate procaine as a valuable candidate for the well-established Geroprotectors database.
Collapse
Affiliation(s)
- Daniela Gradinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, RO-020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, RO-020956 Bucharest, Romania
| | - Denisa Margina
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, RO-020956 Bucharest, Romania
| | - Maria Moreno-Villanueva
- Department of Sport Science, Human Performance Research Centre, University of Konstanz, D-78457 Konstanz, Germany
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|