1
|
Nemati M, Hsu CY, Nathiya D, Kumar MR, Oghenemaro EF, Kariem M, Kaur P, Bhanot D, Hjazi A, Azam Saedi T. Gemcitabine: immunomodulatory or immunosuppressive role in the tumor microenvironment. Front Immunol 2025; 16:1536428. [PMID: 40270972 PMCID: PMC12014622 DOI: 10.3389/fimmu.2025.1536428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Gemcitabine (GEM), a nucleoside analog chemotherapy agent, has been widely used in the treatment of various cancers. In recent years, there has been growing interest in understanding the immunomodulatory or immunosuppressive effects of GEM. The immunomodulatory roles of GEM could influence the anti-tumor immune responses via several mechanisms, such as modulation of antigen presentation, cytokine production, and immune cell population. Furthermore, there is evidence that GEM enhances the therapeutic efficacy of immunotherapies, including oncolytic viruses, immune checkpoint inhibitors, CAR T-cells, and therapeutic vaccines. On the other hand, accumulating evidence also proposed that GEM may act as an immunosuppressive agent within the tumor microenvironment, resulting in immune evasion of tumor cells and tumor growth. These paradoxical roles of GEM in modifying immune responses highlight the complexity of GEM interaction with immune cells and responses within the tumor microenvironment. This review aims to provide an overview of the immunomodulatory and immunosuppressive effects of GEM within the tumor microenvironment and how GEM affects the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Phoenix, AZ, United States
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M. Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Tayebeh Azam Saedi
- Department of Genetics, Faculty of Science, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
2
|
Zhu Y, Zhang X, Jin J, Wang X, Liu Y, Gao J, Hang D, Fang L, Zhang H, Liu H. Engineered oncolytic virus coated with anti-PD-1 and alendronate for ameliorating intratumoral T cell hypofunction. Exp Hematol Oncol 2025; 14:16. [PMID: 39955603 PMCID: PMC11829442 DOI: 10.1186/s40164-025-00611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Glioblastoma is a highly aggressive and devastating primary brain tumor that is resistant to conventional therapies. Oncolytic viruses represent a promising therapeutic approach for glioblastoma by selectively lysing tumor cells and eliciting an anti-tumor immune response. However, the clinical efficacy of oncolytic viruses is often hindered by challenges such as short persistence, host antiviral immune responses, and T cell dysfunction. METHODS We have developed a novel therapeutic strategy by "dressing" oncolytic viruses with anti-PD-1 antibodies and alendronate (PD-1/Al@OV) to prevent premature clearance of the oncolytic viruses and enhance T cell function, thereby improving immunotherapy outcomes against glioma. RESULTS We found that in the high reactive oxygen species environment of the tumor, PD-1/Al@OV disassembled to release oncolytic viruses, anti-PD-1, and alendronate. The released anti-PD-1 blocked the PD-1/PD-L1 pathway, activating T cells; the alendronate eliminated tumor-associated macrophages, increasing the concentration of oncolytic viruses; and the oncolytic viruses directly lysed cancer cells, enhancing intratumoral T cell infiltration. CONCLUSION This approach effectively improved the immunosuppressive microenvironment of glioblastoma and achieved a robust anti-tumor effect. Consequently, this study presents a novel strategy for immune combination therapy and the improvement of the glioblastoma immune microenvironment, thereby offering new prospects for the clinical application of oncolytic viruses.
Collapse
Affiliation(s)
- Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China.
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, 221002, China.
| | - Xuefeng Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Jiaqi Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, 221002, China
| | - Xiaoqian Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155, Nanjing Bei Street, Shenyang, 110001, China
| | - Jian Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Diancheng Hang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, China.
| | - Hengzhu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China.
- Department of Neurosurgery, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou University, No. 98, Nantong West Road, Yangzhou, 225009, China.
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China.
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Xiong D, Wang Q, Wang WM, Sun ZJ. Tuning cellular metabolism for cancer virotherapy. Cancer Lett 2024; 592:216924. [PMID: 38718886 DOI: 10.1016/j.canlet.2024.216924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Oncolytic viruses (OVs) represent an emerging immunotherapeutic strategy owing to their capacity for direct tumor lysis and induction of antitumor immunity. However, hurdles like transient persistence and moderate efficacy necessitate innovative approaches. Metabolic remodeling has recently gained prominence as a strategic intervention, wherein OVs or combination regimens could reprogram tumor and immune cell metabolism to enhance viral replication and oncolysis. In this review, we summarize recent advances in strategic reprogramming of tumor and immune cell metabolism to enhance OV-based immunotherapies. Specific tactics include engineering viruses to target glycolytic, glutaminolytic, and nucleotide synthesis pathways in cancer cells, boosting viral replication and tumor cell death. Additionally, rewiring T cell and NK cell metabolism of lipids, amino acids, and carbohydrates shows promise to enhance antitumor effects. Further insights are discussed to pave the way for the clinical implementation of metabolically enhanced oncolytic platforms, including balancing metabolic modulation to limit antiviral responses while promoting viral persistence and tumor clearance.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan, 430079, PR China
| | - Qing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan, 430079, PR China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Institute of Oral Precancerous Lesions, Xiangya Hospital, Research Center of Oral and Maxillofacial Tumor, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, 410008, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
4
|
Liu M, Zhang R, Huang H, Liu P, Zhao X, Wu H, He Y, Xu R, Qin X, Cheng Z, Liu H, Ergonul O, Can F, Ouyang D, Wang Z, Pang Z, Liu F. Erythrocyte-Leveraged Oncolytic Virotherapy (ELeOVt): Oncolytic Virus Assembly on Erythrocyte Surface to Combat Pulmonary Metastasis and Alleviate Side Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303907. [PMID: 37997186 PMCID: PMC10837356 DOI: 10.1002/advs.202303907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Despite being a new promising tool for cancer therapy, intravenous delivery of oncolytic viruses (OVs) is greatly limited by poor tumor targeting, rapid clearance in the blood, severe organ toxicity, and cytokine release syndrome. Herein, a simple and efficient strategy of erythrocyte-leveraged oncolytic virotherapy (ELeOVt) is reported, which for the first time assembled OVs on the surface of erythrocytes with up to near 100% efficiency and allowed targeted delivery of OVs to the lung after intravenous injection to achieve excellent treatment of pulmonary metastases while greatly improving the biocompatibility of OVs as a drug. Polyethyleneimine (PEI) as a bridge to assemble OVs on erythrocytes also played an important role in promoting the transfection of OVs. It is found that ELeOVt approach significantly prolonged the circulation time of OVs and increased the OVs distribution in the lung by more than tenfold, thereby significantly improving the treatment of lung metastases while reducing organ and systemic toxicity. Taken together, these findings suggest that the ELeOVt provides a biocompatible, efficient, and widely available approach to empower OVs to combat lung metastasis.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Ruizhe Zhang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Hanwei Huang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Pengfei Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xu Zhao
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Hu Wu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Ying He
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
| | - Ruizhe Xu
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
| | - Xifeng Qin
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
| | - Zhenguo Cheng
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapySchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Hongyu Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Onder Ergonul
- Koç University Iş Bank Center for Infectious Diseases (KUISCID)Koç University School of Medicine and American HospitalIstanbul34010Turkey
| | - Füsun Can
- Koç University Iş Bank Center for Infectious Diseases (KUISCID)Koç University School of Medicine and American HospitalIstanbul34010Turkey
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences (ICMS)University of MacauMacau999078China
| | - Zhenning Wang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Zhiqing Pang
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
| | - Funan Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
- Phase I Clinical Trials CenterThe First HospitalChina Medical University518 North Chuangxin Road, Baita Street, Hunnan DistrictShenyangLiaoning110102China
| |
Collapse
|
5
|
Karandikar PV, Suh L, Gerstl JVE, Blitz SE, Qu QR, Won SY, Gessler FA, Arnaout O, Smith TR, Peruzzi PP, Yang W, Friedman GK, Bernstock JD. Positioning SUMO as an immunological facilitator of oncolytic viruses for high-grade glioma. Front Cell Dev Biol 2023; 11:1271575. [PMID: 37860820 PMCID: PMC10582965 DOI: 10.3389/fcell.2023.1271575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Oncolytic viral (OV) therapies are promising novel treatment modalities for cancers refractory to conventional treatment, such as glioblastoma, within the central nervous system (CNS). Although OVs have received regulatory approval for use in the CNS, efficacy is hampered by obstacles related to delivery, under-/over-active immune responses, and the "immune-cold" nature of most CNS malignancies. SUMO, the Small Ubiquitin-like Modifier, is a family of proteins that serve as a high-level regulator of a large variety of key physiologic processes including the host immune response. The SUMO pathway has also been implicated in the pathogenesis of both wild-type viruses and CNS malignancies. As such, the intersection of OV biology with the SUMO pathway makes SUMOtherapeutics particularly interesting as adjuvant therapies for the enhancement of OV efficacy alone and in concert with other immunotherapeutic agents. Accordingly, the authors herein provide: 1) an overview of the SUMO pathway and its role in CNS malignancies; 2) describe the current state of CNS-targeted OVs; and 3) describe the interplay between the SUMO pathway and the viral lifecycle and host immune response.
Collapse
Affiliation(s)
- Paramesh V. Karandikar
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lyle Suh
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Qing Rui Qu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sae-Yeon Won
- Department of Neurosurgery, University of Rostock, Rostock, Germany
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Wei Yang
- Department of Anesthesiology, Multidisciplinary Brain Protection Program, Duke University Medical Center, Durham, NC, United States
| | - Gregory K. Friedman
- Department of Neuro-Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Shmendel EV, Puchkov PA, Maslov MA. Design of Folate-Containing Liposomal Nucleic Acid Delivery Systems for Antitumor Therapy. Pharmaceutics 2023; 15:pharmaceutics15051400. [PMID: 37242642 DOI: 10.3390/pharmaceutics15051400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The delivery of therapeutic nucleic acids is a prospective method for the treatment of both inherited and acquired diseases including cancer. To achieve maximal delivery efficiency and selectivity, nucleic acids should be targeted to the cells of interest. In the case of cancer, such targeting may be provided through folate receptors overexpressed in many tumor cells. For this purpose, folic acid and its lipoconjugates are used. Compared to other targeting ligands, folic acid provides low immunogenicity, rapid tumor penetration, high affinity to a wide range of tumors, chemical stability, and easy production. Different delivery systems can utilize targeting by folate ligand including liposomal forms of anticancer drugs, viruses, and lipid and polymer nanoparticles. This review focuses on the liposomal gene delivery systems that provide targeted nucleic acid transport into tumor cells due to folate lipoconjugates. Moreover, important development step, such as rational design of lipoconjugates, folic acid content, size, and ζ-potential of lipoplexes are discussed.
Collapse
Affiliation(s)
- Elena V Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia
| | - Pavel A Puchkov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia
| | - Michael A Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia
| |
Collapse
|
7
|
Fang L, Tian W, Zhang C, Wang X, Li W, Zhang Q, Zhang Y, Zheng J. Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma. Pharmacol Res 2023; 189:106701. [PMID: 36796464 DOI: 10.1016/j.phrs.2023.106701] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) is particularly prominent in hematological but not in solid tumors, mainly based on the complex tumor immune microenvironment. Oncolytic virus (OVs) is an emerging adjuvant therapy method. OVs may prime tumor lesions to induce anti-tumor immune response, thereby enhancing CAR-T cells functionality and possibly increasing response rates. Here, we combined CAR-T cells targeting carbonic anhydrase 9 (CA9) and an oncolytic adenovirus (OAV) carrying chemokine (C-C motif) ligand 5 (CCL5), cytokine interleukin-12 (IL12) to explore the anti-tumor effects of this combination strategy. The data showed that Ad5-ZD55-hCCL5-hIL12 could infect and replicate in renal cancer cell lines and induced a moderate inhibition of xenografted tumor in nude mice. IL12 mediated by Ad5-ZD55-hCCL5-hIL12 promoted the phosphorylation of Stat4 in CAR-T cells, induced CAR-T cells to secrete more IFN-γ. We also found that Ad5-ZD55-hCCL5-hIL-12 combined with CA9-CAR-T cells significantly increased the infiltration of CAR-T cells in tumor mass, prolonged the survival of the mice and restrained tumor growth in immunodeficient mice. Ad5-ZD55-mCCL5-mIL-12 could also increase CD45+CD3+T cell infiltration and prolong mice survival in immunocompetent mice. These results provided feasibility for the combination of oncolytic adenovirus and CAR-T cells, which demonstrated the sufficient potential and prospects of CAR-T for the treatment of solid tumors.
Collapse
Affiliation(s)
- Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Weiping Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Chen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Oncology, The First People's Hospital of Yancheng, Jiangsu, China
| | - Xueyan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Wanjing Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuxin Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
8
|
Nilson R, Krutzke L, Wienen F, Rojewski M, Zeplin PH, Funk W, Schrezenmeier H, Kochanek S, Kritzinger A. Evaluation of Human Mesenchymal Stromal Cells as Carriers for the Delivery of Oncolytic HAdV-5 to Head and Neck Squamous Cell Carcinomas. Viruses 2023; 15:218. [PMID: 36680258 PMCID: PMC9864513 DOI: 10.3390/v15010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Human multipotent mesenchymal stromal cells (hMSCs) are of significant therapeutic interest due to their ability to deliver oncolytic adenoviruses to tumors. This approach is also investigated for targeting head and neck squamous cell carcinomas (HNSCCs). HAdV-5-HexPos3, a recently reported capsid-modified vector based on human adenovirus type 5 (HAdV-5), showed strongly improved infection of both hMSCs and the HNSCC cell line UM-SCC-11B. Given that, we generated life cycle-unmodified and -modified replication-competent HAdV-5-HexPos3 vector variants and analyzed their replication within bone marrow- and adipose tissue-derived hMSCs. Efficient replication was detected for both life cycle-unmodified and -modified vectors. Moreover, we analyzed the migration of vector-carrying hMSCs toward different HNSCCs. Although migration of hMSCs to HNSCC cell lines was confirmed in vitro, no homing of hMSCs to HNSCC xenografts was observed in vivo in mice and in ovo in a chorioallantoic membrane model. Taken together, our data suggest that HAdV-5-HexPos3 is a potent candidate for hMSC-based oncolytic therapy of HNSCCs. However, it also emphasizes the importance of generating optimized in vivo models for the evaluation of hMSC as carrier cells.
Collapse
Affiliation(s)
- Robin Nilson
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany
| | - Lea Krutzke
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany
| | - Frederik Wienen
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany
| | - Markus Rojewski
- Institute for Transfusion Medicine, University Medical Center Ulm, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, 89081 Ulm, Germany
| | - Philip Helge Zeplin
- Schlosspark Klinik Ludwigsburg, Privatklinik für Plastische und Ästhetische Chirurgie, 71638 Ludwigsburg, Germany
| | | | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Medical Center Ulm, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, 89081 Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany
| | - Astrid Kritzinger
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany
| |
Collapse
|
9
|
Hu H, Xia Q, Hu J, Wang S. Oncolytic Viruses for the Treatment of Bladder Cancer: Advances, Challenges, and Prospects. J Clin Med 2022; 11:jcm11236997. [PMID: 36498574 PMCID: PMC9738443 DOI: 10.3390/jcm11236997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Bladder cancer is one of the most prevalent cancers. Despite recent advancements in bladder cancer therapy, new strategies are still required for improving patient outcomes, particularly for those who experienced Bacille Calmette-Guerin failure and those with locally advanced or metastatic bladder cancer. Oncolytic viruses are either naturally occurring or purposefully engineered viruses that have the ability to selectively infect and lyse tumor cells while avoiding harming healthy cells. In light of this, oncolytic viruses serve as a novel and promising immunotherapeutic strategy for bladder cancer. A wide diversity of viruses, including adenoviruses, herpes simplex virus, coxsackievirus, Newcastle disease virus, vesicular stomatitis virus, alphavirus, and vaccinia virus, have been studied in many preclinical and clinical studies for their potential as oncolytic agents for bladder cancer. This review aims to provide an overview of the advances in oncolytic viruses for the treatment of bladder cancer and highlights the challenges and research directions for the future.
Collapse
Affiliation(s)
| | | | - Jia Hu
- Correspondence: (J.H.); (S.W.)
| | | |
Collapse
|
10
|
Singleton DC, Mowday AM, Guise CP, Syddall SP, Bai SY, Li D, Ashoorzadeh A, Smaill JB, Wilson WR, Patterson AV. Bioreductive prodrug PR-104 improves the tumour distribution and titre of the nitroreductase-armed oncolytic adenovirus ONYX-411 NTR leading to therapeutic benefit. Cancer Gene Ther 2022; 29:1021-1032. [PMID: 34837065 DOI: 10.1038/s41417-021-00409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022]
Abstract
Advances in the field of cancer immunotherapy have stimulated renewed interest in adenoviruses as oncolytic agents. Clinical experience has shown that oncolytic adenoviruses are safe and well tolerated but possess modest single-agent activity. One approach to improve the potency of oncolytic viruses is to utilise their tumour selectivity to deliver genes encoding prodrug-activating enzymes. These enzymes can convert prodrugs into cytotoxic species within the tumour; however, these cytotoxins can interfere with viral replication and limit utility. In this work, we evaluated the activity of a nitroreductase (NTR)-armed oncolytic adenovirus ONYX-411NTR in combination with the clinically tested bioreductive prodrug PR-104. Both NTR-expressing cells in vitro and xenografts containing a minor population of NTR-expressing cells were highly sensitive to PR-104. Pharmacologically relevant prodrug exposures did not interfere with ONYX-411NTR replication in vitro. In vivo, prodrug administration increased virus titre and improved virus distribution within tumour xenografts. Colonisation of tumours with high ONYX-411NTR titre resulted in NTR expression and prodrug activation. The combination of ONYX-411NTR with PR-104 was efficacious against HCT116 xenografts, whilst neither prodrug nor virus were active as single agents. This work highlights the potential for future clinical development of NTR-armed oncolytic viruses in combination with bioreductive prodrugs.
Collapse
Affiliation(s)
- Dean C Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand. .,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
| | - Alexandra M Mowday
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Chris P Guise
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Sophie P Syddall
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Sally Y Bai
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Dan Li
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Jenner AL, Smalley M, Goldman D, Goins WF, Cobbs CS, Puchalski RB, Chiocca EA, Lawler S, Macklin P, Goldman A, Craig M. Agent-based computational modeling of glioblastoma predicts that stromal density is central to oncolytic virus efficacy. iScience 2022; 25:104395. [PMID: 35637733 PMCID: PMC9142563 DOI: 10.1016/j.isci.2022.104395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Oncolytic viruses (OVs) are emerging cancer immunotherapy. Despite notable successes in the treatment of some tumors, OV therapy for central nervous system cancers has failed to show efficacy. We used an ex vivo tumor model developed from human glioblastoma tissue to evaluate the infiltration of herpes simplex OV rQNestin (oHSV-1) into glioblastoma tumors. We next leveraged our data to develop a computational, model of glioblastoma dynamics that accounts for cellular interactions within the tumor. Using our computational model, we found that low stromal density was highly predictive of oHSV-1 therapeutic success, suggesting that the efficacy of oHSV-1 in glioblastoma may be determined by stromal-to-tumor cell regional density. We validated these findings in heterogenous patient samples from brain metastatic adenocarcinoma. Our integrated modeling strategy can be applied to suggest mechanisms of therapeutic responses for central nervous system cancers and to facilitate the successful translation of OVs into the clinic.
Collapse
Affiliation(s)
- Adrianne L. Jenner
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC, Canada
| | - Munisha Smalley
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles S. Cobbs
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Ralph B. Puchalski
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC, Canada
| |
Collapse
|
12
|
Goradel NH, Alizadeh A, Hosseinzadeh S, Taghipour M, Ghesmati Z, Arashkia A, Negahdari B. Oncolytic virotherapy as promising immunotherapy against cancer: mechanisms of resistance to oncolytic viruses. Future Oncol 2021; 18:245-259. [PMID: 34821517 DOI: 10.2217/fon-2021-0802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oncolytic virotherapy has currently emerged as a powerful therapeutic approach in cancer treatment. Although the history of using viruses goes back to the early 20th century, the approval of talimogene laherparepvec (T-VEC) in 2015 increased interest in oncolytic viruses (OVs). OVs are multifaceted biotherapeutic agents because they replicate in and kill tumor cells and augment immune responses by releasing immunostimulatory molecules from lysed cells. Despite promising results, some limitations hinder the efficacy of oncolytic virotherapy. The delivery challenges and the upregulation of checkpoints following oncolytic virotherapy also mediate resistance to OVs by diminishing immune responses. Furthermore, the localization of receptors of viruses in the tight junctions, interferon responses, and the aberrant expression of genes involved in the cell cycle of the virus, including their infection and replication, reduce the efficacy of OVs. In this review, we present different mechanisms of resistance to OVs and strategies to overcome them.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Alizadeh
- Department of Biochemistry & Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Iran
| | - Mitra Taghipour
- Department of Biotechnology, Faculty of Agriculture & Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
14
|
Cheng G, Dong H, Yang C, Liu Y, Wu Y, Zhu L, Tong X, Wang S. A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell Int 2021; 21:406. [PMID: 34332576 PMCID: PMC8325213 DOI: 10.1186/s12935-021-02024-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer (HNC), which includes lip and oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx malignancies, is one of the most common cancers worldwide. Due to the interaction of tumor cells with immune cells in the tumor microenvironment, immunotherapy of HNCs, along with traditional treatments such as chemotherapy, radiotherapy, and surgery, has attracted much attention. Four main immunotherapy strategies in HNCs have been developed, including oncolytic viruses, monoclonal antibodies, chimeric antigen receptor T cells (CAR-T cells), and therapeutic vaccines. Oncorine (H101), an approved oncolytic adenovirus in China, is the pioneer of immunotherapy for the treatment of HNCs. Pembrolizumab and nivolumab are mAbs against PD-L1 that have been approved for recurrent and metastatic HNC patients. To date, several clinical trials using immunotherapy agents and their combination are under investigation. In this review, we summarize current the interaction of tumor cells with immune cells in the tumor microenvironment of HNCs, the main strategies that have been applied for immunotherapy of HNCs, obstacles that hinder the success of immunotherapies in patients with HNCs, as well as solutions for overcoming the challenges to enhance the response of HNCs to immunotherapies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Dong
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Yang
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi Wu
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Lifen Zhu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China. .,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
15
|
Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-based Vehicle to Carry Recombinant Viruses. Stem Cell Rev Rep 2021; 18:523-543. [PMID: 34319509 DOI: 10.1007/s12015-021-10207-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Evasion of growth suppression is among the prominent hallmarks of cancer. Phosphatase and tensin homolog (PTEN) and p53 tumor-suppressive pathways are compromised in most human cancers, including glioblastoma (GB). Hence, these signaling pathways are an ideal point of focus for novel cancer therapeutics. Recombinant viruses can selectivity kill cancer cells and carry therapeutic genes to tumors. Specifically, oncolytic viruses (OV) have been successfully employed for gene delivery in GB animal models and showed potential to neutralize immunosuppression at the tumor site. However, the associated systemic immunogenicity, inefficient transduction of GB cells, and inadequate distribution to metastatic tumors have been the major bottlenecks in clinical studies. Mesenchymal stem cells (MSCs), with tumor-tropic properties and immune privilege, can improve OVs targeting. Remarkably, combining the two approaches can address their individual issues. Herein, we summarize findings to advocate the reactivation of tumor suppressors p53 and PTEN in GB treatment and use MSCs as a "Trojan horse" to carry oncolytic viral cargo to disseminated tumor beds. The integration of MSCs and OVs can emerge as the new paradigm in cancer treatment.
Collapse
|
16
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
17
|
Zhou YC, Zhang YN, Yang X, Wang SB, Hu PY. Delivery systems for enhancing oncolytic adenoviruses efficacy. Int J Pharm 2020; 591:119971. [PMID: 33059014 DOI: 10.1016/j.ijpharm.2020.119971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Oncolytic adenovirus (OAds) has long been considered a promising biotherapeutic agent against various types of cancer owing to selectively replicate in and lyse cancer cells, while remaining dormant in healthy cells. In the last years, multiple (pre)clinical studies using genetic engineering technologies enhanced OAds anti-tumor effects in a broad range of cancers. However, poor targeting delivery, tropism toward healthy tissues, low-level expression of Ad receptors on tumor cells, and pre-existing neutralizing antibodies are major hurdles for systemic administration of OAds. Different vehicles have been developed for addressing these obstacles, such as stem cells, nanoparticles (NPs) and shielding polymers, extracellular vesicles (EVs), hydrogels, and microparticles (MPs). These carriers can enhance the therapeutic efficacy of OVs through enhancing transfection, circulatory longevity, cellular interactions, specific targeting, and immune responses against cancer. In this paper, we reviewed adenovirus structure and biology, different types of OAds, and the efficacy of different carriers in systemic administration of OAds.
Collapse
Affiliation(s)
- Yu-Cheng Zhou
- Gastroenterological & Pancreatic Surgery Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - You-Ni Zhang
- Clinical Laboratory, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, Zhejiang Province, China
| | - Xue Yang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China.
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, Zhejiang Province, China.
| |
Collapse
|