1
|
Shi Z, Kuai M, Li B, Akowuah CF, Wang Z, Pan Y, Tang M, Yang X, Lü P. The role of VEGF in Cancer angiogenesis and tumorigenesis: Insights for anti-VEGF therapy. Cytokine 2025; 189:156908. [PMID: 40049050 DOI: 10.1016/j.cyto.2025.156908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis, playing a pivotal role in both physiological and pathological processes. It promotes the formation of new blood vessels and activates downstream signaling pathways that regulate endothelial cell function. This review highlights recent advancements in the understanding of VEGF's molecular structure and its isoforms, as well as their implications in disease progression. It also explores the mechanisms of VEGF inhibitors. While VEGF inhibitors show promise in the treatment of cancer and other diseases, their clinical use faces significant challenges, including drug resistance, side effects, and complex interactions with other signaling pathways. To address these challenges, future research should focus on: (i) enhancing the understanding of VEGF subtypes and their distinct roles in various diseases, supporting the development of personalized treatment strategies; (ii) developing combination therapies that integrate VEGF inhibitors with other targeted treatments to overcome resistance and improve efficacy; (iii) optimizing drug delivery systems to reduce off-target effects and enhance therapeutic outcomes. These approaches aim to improve the effectiveness and safety of VEGF-targeted therapies, offering new possibilities for the treatment of VEGF-related diseases.
Collapse
Affiliation(s)
- Zijun Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Mengmeng Kuai
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Baohua Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | | | - Zhenyu Wang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ye Pan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyue Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Yelkenci HE, Degirmenci Z, Koc HI, Bayirli S, Baltaci SB, Altunay S, Oztekin N, Kocak M, Kilic E, Beker MC. Vinpocetine Ameliorates Neuronal Injury After Cold-Induced Traumatic Brain Injury in Mice. Mol Neurobiol 2025; 62:3956-3972. [PMID: 39361199 DOI: 10.1007/s12035-024-04515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 09/15/2024] [Indexed: 02/04/2025]
Abstract
Traumatic brain injury (TBI), also known as intracranial injury, is a common condition with the highest incidence rate among neurodegenerative disorders and poses a significant public health burden. Various methods are used in the treatment of TBI, but the effects of cold-induced traumatic brain injury have not been thoroughly studied. In this context, vinpocetine (VPN), derived from Vinca minor, exhibits notable anti-inflammatory and antioxidant properties. VPN is known for its neuroprotective role and is generally utilized for treating various neurodegenerative disorders. However, the function of VPN after cold-induced TBI needs to be studied in more detail. This study aims to investigate the neuroprotective effects of VPN at varying doses (5 mg/kg or 10 mg/kg) after cold-induced TBI. C57BL/6 mice were sacrificed 2 or 28 days after cold-induced TBI. Results indicate that VPN administration significantly reduces brain infarct volume, brain swelling, blood-brain barrier disruption, and DNA fragmentation in a dose-dependent manner. Additionally, VPN enhances neuronal survival in the ipsilesional cortex. In the long term, VPN treatment (5 mg/kg/day or 10 mg/kg/day, initiated 48 h post-TBI) improved locomotor activity, cell proliferation, neurogenesis, and decreased whole brain atrophy, specifically motor cortex atrophy. We performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the underlying mechanisms to profile proteins and signaling pathways influenced by prolonged VPN treatment post-TBI. Notably, we found that 192 different proteins were significantly altered by VPN treatment, which is a matter of further investigation for the development of therapeutic targets. Our study has shown that VPN may have a neuroprotective role in cold-induced TBI.
Collapse
Affiliation(s)
- Hayriye E Yelkenci
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Zehra Degirmenci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Halil I Koc
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Sevban Bayirli
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Saltuk B Baltaci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Serdar Altunay
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Nevin Oztekin
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
| | - Mehmet Kocak
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Mustafa C Beker
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye.
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye.
| |
Collapse
|
3
|
Retunski M, Hussein OM. Paradoxical Post-Tadalafil Cerebral Vasoconstriction Causing Transient Ischemic Attack. Stroke 2025; 56:e102-e103. [PMID: 39851059 DOI: 10.1161/strokeaha.124.049338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Affiliation(s)
- Maria Retunski
- Department of Neurology, University of New Mexico, Albuquerque
| | - Omar M Hussein
- Department of Neurology, University of New Mexico, Albuquerque
| |
Collapse
|
4
|
Li H, Liu Y, Zhang H, Shi X, Luo Y, Fu G, Zhao C, Guo L, Li X, Shan L. Identification of potential diagnostic biomarkers and therapeutic targets in patients with hypoxia pulmonary hypertension. Int Immunopharmacol 2024; 142:113028. [PMID: 39226824 DOI: 10.1016/j.intimp.2024.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Pulmonary hypertension is a serious disease. Emerging studies have shown that M2 macrophages play an essential role in pulmonary hypertension; however, their mechanism of action is uncertain. METHODS Four GEO datasets were downloaded. The differentially expressed genes (DEGs) were obtained using the limma package. Simultaneously, the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm and weighted gene co-expression network analysis (WGCNA) were used to get the information about M2 macrophage-related modules. Potential key genes were obtained by intersecting DEGs with M2 macrophage-related module genes (M2MRGs), and finally the area under the curve (AUC) was calculated. Rats were exposed to hypoxia condition (10 % O2) for 4 weeks to induce PH. Subsequently, potential key genes with AUC>0.7 were analyzed by quantitative real-time polymerase chain reaction and Western blot using normoxia and hypoxia rat lungs. We knocked down EPHA3 in Raw264.7 cells and detected the protein expression of M2 macrophage markers including arginase 1 (ARG1) and interleukin 10 (IL-10), phospho-protein kinase B (P-Akt), and protein kinase B (Akt) to explore the downstream pathways of EPHA3. RESULTS Seven potential hub genes were detected by intersecting M2MRGs and DEGs. Six genes with AUC values above 0.7 were used for further exploration. The expression of EPHA3 mRNA and protein was significantly more upregulated in rats with hypoxia than in rats with normoxia. The expression levels of IL10, ARG1, and P-Akt/Akt decreased after knocking down EPHA3. CONCLUSIONS This study suggested that the activation of the P-Akt/Akt signaling pathway promoted by EPHA3 played an essential role in the progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Hongli Zhang
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xianbao Shi
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Luo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Churong Zhao
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lixuan Guo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
5
|
Jiang MY, Zhang C, Huang QH, Feng LL, Yang YY, Zhou Q, Luo HB, Wu Y. Discovery of Selective PDE1 Inhibitors with Anti-pulmonary Fibrosis Effects by Targeting the Metal Pocket. J Med Chem 2024; 67:20203-20213. [PMID: 39546471 DOI: 10.1021/acs.jmedchem.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with no ideal drugs. Our previous research demonstrated that phosphodiesterase 1 (PDE1) could be a promising target for the treatment of IPF. However, only a few selective PDE1 inhibitors are available, and the mechanism of recognition between inhibitors and the PDE1 protein is not fully understood. This study carried out a step-by-step optimization of a dihydropyrimidine hit Z94555858. By targeting the metal pocket of PDE1, a lead compound 3f was obtained, exhibiting an IC50 value of 11 nM against PDE1, moderate selectivity over other PDEs, and significant anti-fibrotic effects in bleomycin-induced pulmonary fibrosis rats. The structure-activity relationship study aided by molecular docking revealed that forming halogen bonds with water in the metal pocket greatly enhanced the PDE1 inhibition, providing a novel strategy for further rational design of PDE1 inhibitors.
Collapse
Affiliation(s)
- Mei-Yan Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qing-Hua Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ling-Ling Feng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi-Yi Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Chen D, Wang J, Cao J, Zhu G. cAMP-PKA signaling pathway and anxiety: Where do we go next? Cell Signal 2024; 122:111311. [PMID: 39059755 DOI: 10.1016/j.cellsig.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is derived from the conversion of adenosine triphosphate catalysed by adenylyl cyclase (AC). Protein kinase A (PKA), the main effector of cAMP, is a dimeric protein kinase consisting of two catalytic subunits and two regulatory subunits. When cAMP binds to the regulatory subunits of PKA, it leads to the dissociation and activation of PKA, which allows the catalytic subunit of PKA to phosphorylate target proteins, thereby regulating various physiological functions and metabolic processes in cellular function. Recent researches also implicate the involvement of cAMP-PKA signaling in the pathologenesis of anxiety disorder. However, there are still debates on the prevention and treatment of anxiety disorders from this signaling pathway. To review the function of cAMP-PKA signaling in anxiety disorder, we searched the publications with the keywords including "cAMP", "PKA" and "Anxiety" from Pubmed, Embase, Web of Science and CNKI databases. The results showed that the number of publications on cAMP-PKA pathway in anxiety disorder tended to increase. Bioinformatics results displayed a close association between the cAMP-PKA pathway and the occurrence of anxiety. Mechanistically, cAMP-PKA signaling could influence brain-derived neurotrophic factor and neuropeptide Y and participate in the regulation of anxiety. cAMP-PKA signaling could also oppose the dysfunctions of gamma-aminobutyric acid (GABA), intestinal flora, hypothalamic-pituitary-adrenal axis, neuroinflammation, and signaling proteins (MAPK and AMPK) in anxiety. In addition, chemical agents with the ability to activate cAMP-PKA signaling demonstrated therapy potential against anxiety disorders. This review emphasizes the central roles of cAMP-PKA signaling in anxiety and the targets of the cAMP-PKA pathway would be potential candidates for treatment of anxiety. Nevertheless, more laboratory investigations to improve the therapeutic effect and reduce the adverse effect, and continuous clinical research will warrant the drug development.
Collapse
Affiliation(s)
- Daokang Chen
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Jian Cao
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
7
|
Legchenko E, Chouvarine P, Qadri F, Specker E, Nazaré M, Wesolowski R, Matthes S, Bader M, Hansmann G. Novel Tryptophan Hydroxylase Inhibitor TPT-001 Reverses PAH, Vascular Remodeling, and Proliferative-Proinflammatory Gene Expression. JACC Basic Transl Sci 2024; 9:890-902. [PMID: 39170954 PMCID: PMC11334415 DOI: 10.1016/j.jacbts.2024.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 08/23/2024]
Abstract
The serotonin pathway has long been proposed as a promising target for pulmonary arterial hypertension (PAH)-a progressive and uncurable disease. We developed a highly specific inhibitor of the serotonin synthesizing enzyme tryptophan hydroxylase 1 (TPH1), TPT-001 (TPHi). In this study, the authors sought to treat severe PAH in the Sugen/hypoxia (SuHx) rat model with the oral TPHi TPT-001. Male Sprague Dawley rats were divided into 3 groups: 1) ConNx, control animals; 2) SuHx, injected subcutaneously with SU5416 and exposed to chronic hypoxia for 3 weeks, followed by 6 weeks in room air; and 3) SuHx+TPHi, SuHx animals treated orally with TPHi for 5 weeks. Closed-chest right- and left heart catheterization and echocardiography were performed. Lungs were subject to histologic and mRNA sequencing analyses. Compared with SuHx-exposed rats, which developed severe PAH and right ventricular (RV) dysfunction, TPHi-treated SuHx rats had greatly lowered RV systolic (mean ± SEM: 41 ± 2.3 mm Hg vs 86 ± 6.5 mm Hg; P < 0.001) and end-diastolic (mean ± SEM: 4 ± 0.7 mm Hg vs 14 ± 1.7 mm Hg; P < 0.001) pressures, decreased RV hypertrophy and dilation (all not significantly different from control rats), and reversed pulmonary vascular remodeling. We identified perivascular infiltration of CD3+ T cells and proinflammatory F4/80+ and CD68+ macrophages and proliferating cell nuclear antigen-positive alveolar epithelial cells all suppressed by TPHi treatment. Whole-lung mRNA sequencing in SuHx rats showed distinct gene expression patterns related to pulmonary arterial smooth muscle cell proliferation (Rpph1, Lgals3, Gata4), reactive oxygen species, inflammation (Tnfsrf17, iNOS), and vasodilation (Pde1b, Kng1), which reversed expression with TPHi treatment. Inhibition of TPH1 with a new class of drugs (here, TPT-001) has the potential to attenuate or even reverse severe PAH and associated RV dysfunction in vivo by blocking the serotonin pathway.
Collapse
Affiliation(s)
- Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | | | - Edgar Specker
- Chemical Biology Platform, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin-Buch, Germany
- Trypto Therapeutics GmbH, Berlin, Germany
| | - Marc Nazaré
- Chemical Biology Platform, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin-Buch, Germany
| | - Radoslaw Wesolowski
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Trypto Therapeutics GmbH, Berlin, Germany
| | - Susann Matthes
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Trypto Therapeutics GmbH, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- Department of Pediatric Cardiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Liao W, Wang P, He Y, Liu Z, Wang L. Investigation of the underlying mechanism of Buyang Huanwu decoction in ischemic stroke by integrating systems pharmacology-proteomics and in vivo experiments. Fitoterapia 2024; 175:105935. [PMID: 38580032 DOI: 10.1016/j.fitote.2024.105935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Buyang Huanwu Decoction (BHD) has been effective in treating ischemic stroke (IS). However, its mechanism of action remains unclear. The study intended to explore the potential mechanism of BHD against IS using systems pharmacology, proteomics, and animal experiments. The active components of BHD were identified from UPLC-Q-TOF-MS and literature mining. Systems pharmacology and proteomics were employed to investigate the underlying mechanism of BHD against IS. The AutoDock tool was used for molecular docking. A middle cerebral artery occlusion (MCAO) model rat was utilized to explore the therapeutic benefits of BHD. The rats were divided into sham, model, BHD (5, 10, 20 g/kg, ig) groups. The neurological scores, pathological section characteristics, brain infarct volumes, inflammatory cytokines, and signaling pathways were investigated in vivo experiments. The results of systems pharmacology showed that 13 active compounds and 112 common targets were screened in BHD. The docking results suggested that the active compounds in BHD had a high affinity for the key targets. In vivo experiments demonstrated that BHD exhibited neuroprotective benefits by lowering the neurological score, the volume of the cerebral infarct, the release of inflammatory cytokines, and reducing neuroinflammatory damage in MCAO rats. Furthermore, BHD decreased TNF-α and CD38 levels while increasing ATP2B2, PDE1A, CaMK4, p-PI3K, and p-AKT. Combined with systems pharmacology and proteomic studies, we confirmed that PI3K-Akt and calcium signaling pathways are the key mechanisms for BHD against IS. Furthermore, this study demonstrated the feasibility of combining proteomics with systems pharmacology to study the mechanism of herbal medicine.
Collapse
Affiliation(s)
- Weiguo Liao
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China
| | - Pengcheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 51006, People's Republic of China
| | - Yingying He
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipid, Guangzhou 510240, China
| | - Zai Liu
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong 523000, People's Republic of China.
| | - Lisheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China.
| |
Collapse
|
9
|
Ahmed NI, Khandelwal N, Anderson AG, Oh E, Vollmer RM, Kulkarni A, Gibson JR, Konopka G. Compensation between FOXP transcription factors maintains proper striatal function. Cell Rep 2024; 43:114257. [PMID: 38761373 PMCID: PMC11234887 DOI: 10.1016/j.celrep.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/05/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
Spiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs. Utilizing mice with a D1-SPN-specific loss of Foxp1, Foxp2, or both and a combination of behavior, electrophysiology, and cell-type-specific genomic analysis, loss of both genes results in impaired motor and social behavior as well as increased firing of the D1-SPNs. Differential gene expression analysis implicates genes involved in autism risk, electrophysiological properties, and neuronal development and function. Viral-mediated re-expression of Foxp1 into the double knockouts is sufficient to restore electrophysiological and behavioral deficits. These data indicate complementary roles between Foxp1 and Foxp2 in the D1-SPNs.
Collapse
Affiliation(s)
- Newaz I Ahmed
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nitin Khandelwal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashley G Anderson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Emily Oh
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Rachael M Vollmer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jay R Gibson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
10
|
Hussein ZA, Abu-Raghif AR, Tahseen NJ, Rashed KA, Shaker NS, Fawzi HA. Vinpocetine alleviated alveolar epithelial cells injury in experimental pulmonary fibrosis by targeting PPAR-γ/NLRP3/NF-κB and TGF-β1/Smad2/3 pathways. Sci Rep 2024; 14:11131. [PMID: 38750140 PMCID: PMC11096407 DOI: 10.1038/s41598-024-61269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
This study aimed to investigate the potential anti-fibrotic activity of vinpocetine in an experimental model of pulmonary fibrosis by bleomycin and in the MRC-5 cell line. Pulmonary fibrosis was induced in BALB/c mice by oropharyngeal aspiration of a single dose of bleomycin (5 mg/kg). The remaining induced animals received a daily dose of pirfenidone (as a standard anti-fibrotic drug) (300 mg/kg/PO) and vinpocetine (20 mg/kg/PO) on day 7 of the induction till the end of the experiment (day 21). The results of the experiment revealed that vinpocetine managed to alleviate the fibrotic endpoints by statistically improving (P ≤ 0.05) the weight index, histopathological score, reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. It also alleviated tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators significantly elevated in bleomycin-only induced animals (P ≤ 0.05). Vinpocetine managed to express a remarkable attenuating effect in pulmonary fibrosis both in vivo and in vitro either directly by interfering with the classical TGF-β1/Smad2/3 signaling pathway or indirectly by upregulating the expression of Nrf2 enhancing the antioxidant system, activating PPAR-γ and downregulating the NLRP3/NF-κB pathway making it a candidate for further clinical investigation in cases of pulmonary fibrosis.
Collapse
Affiliation(s)
- Zeena A Hussein
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | - Ahmed R Abu-Raghif
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Nibras J Tahseen
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Bayan University, Baghdad, Iraq
| | | | - Nada S Shaker
- Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | | |
Collapse
|
11
|
Han R, Gaurav A, Mai CW, Gautam V, Gabriel Akyirem A. Phosphodiesterase Inhibitors of Natural Origin. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155251390230927064442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 01/09/2025]
Abstract
Abstract:
Phosphodiesterases (PDEs) function to hydrolyze intracellular cyclic adenosine monophosphate
(cAMP) and cyclic guanosine monophosphate (cGMP), regulating a variety of intracellular
signal transduction and physiological activities. PDEs can be divided into 11 families
(PDE1~11) and the diversity and complex expression of PDE family genes suggest that different
subtypes may have different mechanisms. PDEs are involved in various disease pathologies such
as inflammation, asthma, depression, and erectile dysfunction and are thus targets of interest for
several drug discovery campaigns. Natural products have always been an important source of bioactive
compounds for drug discovery, over the years several natural compounds have shown potential
as inhibitors of PDEs. In this article, phosphodiesterase inhibitors of natural origin have been
reviewed with emphasis on their chemistry and biological activities.
Collapse
Affiliation(s)
- Rui Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Anand Gaurav
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
- Department of Pharmaceutical Sciences, School of Health Sciences and
Technology, UPES, Dehradun, 248007, Uttarakhand, India
- Faculty of Health Sciences, Villa College, QI Campus,
Rahdhebai Hingun, Male', 20373, Republic of Maldives
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Vertika Gautam
- Institute of Pharmaceutical Research, GLA University,
Mathura, 281406, Uttar Pradesh, India
| | - Akowuah Gabriel Akyirem
- School of Pharmacy, Monash University Malaysia Jalan Lagoon Selatan,
47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
12
|
Nongthombam PD, Haobam R. Targeting phosphodiesterase 4 as a potential therapy for Parkinson's disease: a review. Mol Biol Rep 2024; 51:510. [PMID: 38622307 DOI: 10.1007/s11033-024-09484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Phosphodiesterases (PDEs) have become a promising therapeutic target for various disorders. PDEs are a vast and diversified family of enzymes that degrade cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have several biochemical and physiological functions. Phosphodiesterase 4 (PDE4) is the most abundant PDE in the central nervous system (CNS) and is extensively expressed in the mammalian brain, where it catalyzes the hydrolysis of intracellular cAMP. An alteration in the balance of PDE4 and cAMP results in the dysregulation of different biological mechanisms involved in neurodegenerative diseases. By inhibiting PDE4 with drugs, the levels of cAMP inside the cells could be stabilized, which may improve the symptoms of mental and neurological disorders such as memory loss, depression, and Parkinson's disease (PD). Though numerous studies have shown that phosphodiesterase 4 inhibitors (PDE4Is) are beneficial in PD, there are presently no approved PDE4I drugs for PD. This review presents an overview of PDE4Is and their effects on PD, their possible underlying mechanism in the restoration/protection of dopaminergic cell death, which holds promise for developing PDE4Is as a treatment strategy for PD. Methods on how these drugs could be effectively delivered to develop as a promising treatment for PD have been suggested.
Collapse
Affiliation(s)
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, India.
| |
Collapse
|
13
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
14
|
Shu T, Zhou Y, Yan C. The perspective of cAMP/cGMP signaling and cyclic nucleotide phosphodiesterases in aortic aneurysm and dissection. Vascul Pharmacol 2024; 154:107278. [PMID: 38262506 PMCID: PMC10939884 DOI: 10.1016/j.vph.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Aortic aneurysm (AA) and dissection (AD) are aortic diseases caused primarily by medial layer degeneration and perivascular inflammation. They are lethal when the rupture happens. Vascular smooth muscle cells (SMCs) play critical roles in the pathogenesis of medial degeneration, characterized by SMC loss and elastin fiber degradation. Many molecular pathways, including cyclic nucleotide signaling, have been reported in regulating vascular SMC functions, matrix remodeling, and vascular structure integrity. Intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are second messengers that mediate intracellular signaling transduction through activating effectors, such as protein kinase A (PKA) and PKG, respectively. cAMP and cGMP are synthesized by adenylyl cyclase (AC) and guanylyl cyclase (GC), respectively, and degraded by cyclic nucleotide phosphodiesterases (PDEs). In this review, we will discuss the roles and mechanisms of cAMP/cGMP signaling and PDEs in AA/AD formation and progression and the potential of PDE inhibitors in AA/AD, whether they are beneficial or detrimental. We also performed database analysis and summarized the results showing PDEs with significant expression changes under AA/AD, which should provide rationales for future research on PDEs in AA/AD.
Collapse
Affiliation(s)
- Ting Shu
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States
| | - Yitian Zhou
- Peking Union Medical College, MD Program, Beijing, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States.
| |
Collapse
|
15
|
Kubohara Y, Fukunaga Y, Shigenaga A, Kikuchi H. Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake via Direct Inhibition of Mitochondrial Malate Dehydrogenase in Mouse 3T3-L1 Cells. Int J Mol Sci 2024; 25:1889. [PMID: 38339168 PMCID: PMC10855897 DOI: 10.3390/ijms25031889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 μM dose-dependently suppressed growth, whereas LW6 at 20 μM, but not at 2-10 μM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 μM significantly promoted glucose uptake, with the strongest effect at 20 μM DIF-1, whereas LW6 at 2-20 μM significantly promoted glucose uptake, with the strongest effect at 10 μM LW6. Western blot analyses showed that LW6 (10 μM) and DIF-1 (20 μM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi 288-0025, Japan;
| | - Ayako Shigenaga
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai 270-1695, Japan;
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| |
Collapse
|
16
|
Zhu Z, Tang W, Qiu X, Xin X, Zhang J. Advances in targeting Phosphodiesterase 1: From mechanisms to potential therapeutics. Eur J Med Chem 2024; 263:115967. [PMID: 38000211 DOI: 10.1016/j.ejmech.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Phosphodiesterase 1 (PDE1) is an enzyme entrusted with the hydrolysis of the second messengers cAMP and cGMP, thereby governing a plethora of metabolic processes, encompassing ion channel modulation and cellular apoptosis. Recent advancements in the realm of small molecule structural variations have greatly facilitated the exploration of innovative applications for PDE1. Remarkably, a recent series of PDE1 inhibitors (PDE1i) have been meticulously formulated and devised, showcasing enhanced selectivity and potency. Among them, ITI-214 has entered Phase II clinical trials, holding promise for the treatment of Parkinson's disease and heart failure. Nevertheless, the majority of current PDE1 inhibitors have encountered substantial side effects in clinical trials attributable to their limited selectivity, this predicament presents a formidable obstacle in the development of specific small molecule inhibitors targeting PDE1. This Perspective endeavors to illuminate the potential design approaches, structure-activity relationships, and biological activities of current PDE1i, aiming to offer support and insights for clinical practice and the development of novel PDE1i.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wentao Tang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Xin
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
17
|
Dong ZC, Shi Y, Zheng LL, Tian YP, Yang J, Wei Y, Zhou Y, Pan BW. Synthesis and Activity Evaluation of Vinpocetine-Derived Indole Alkaloids. Molecules 2023; 29:14. [PMID: 38202595 PMCID: PMC10779641 DOI: 10.3390/molecules29010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This study focuses on the synthesis of novel vinpocetine derivatives (2-25) and their biological evaluation. The chemical structures of the synthesized compounds were fully characterized using techniques such as 1H NMR, 13C NMR, and HRMS. The inhibitory activity of the synthesized compounds on PDE1A was evaluated, and the results revealed that compounds 3, 4, 5, 12, 14, 21, and 25 exhibited superior inhibitory activity compared to vinpocetine. Compound 4, with a para-methylphenyl substitution, showed a 5-fold improvement in inhibitory activity with an IC50 value of 3.53 ± 0.25 μM. Additionally, compound 25, with 3-chlorothiazole substitution, displayed an 8-fold increase in inhibitory activity compared to vinpocetine (IC50 = 2.08 ± 0.16 μM). Molecular docking studies were conducted to understand the binding models of compounds 4 and 25 within the active site of PDE1A. The molecular docking study revealed additional binding interactions, such as π-π stacking and hydrogen bonding, contributing to the enhanced inhibitory activity and stability of the ligand-protein complexes. Overall, the synthesized vinpocetine derivatives demonstrated promising inhibitory activity on PDE1A, and the molecular docking studies provided insights into their binding modes, supporting further development of these compounds as potential candidates for drug research and development.
Collapse
Affiliation(s)
- Zhang-Chao Dong
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Liang-Liang Zheng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - You-Ping Tian
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ying Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Bo-Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Zhang B, Yang YY, Zhao ZJ, Liu RD, Feng LL, Jiang MY, Yuan Y, Huang S, Li Z, Wang Q, Luo HB, Wu Y. Identification of Novel Quinolin-2(1 H)-ones as Phosphodiesterase 1 Inhibitors for the Treatment of Inflammatory Bowel Disease. J Med Chem 2023; 66:12468-12478. [PMID: 37584424 DOI: 10.1021/acs.jmedchem.3c01044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Phosphodiesterase 1 (PDE1) is a subfamily of PDE super enzyme families that can hydrolyze cyclic adenosine monophosphate and cyclic guanosine monophosphate simultaneously. Currently, the number of PDE1 inhibitors is relatively few, significantly limiting their application. Herein, a novel series of quinolin-2(1H)-ones were designed rationally, leading to compound 10c with an IC50 of 15 nM against PDE1C, high selectivity across other PDEs, and remarkable safety properties. Furthermore, we used the lead compound 10c as a chemical tool to explore whether PDE1 could work as a novel potential target for the treatment of inflammatory bowel disease (IBD), a disease which is a chronic, relapsing disorder of the gastrointestinal tract inflammation lacking effective treatment. Our results showed that administration of 10c exerted significant anti-IBD effects in the dextran sodium sulfate-induced mice model and alleviated the inflammatory response, indicating that PDE1 could work as a potent target for IBD.
Collapse
Affiliation(s)
- Bei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yi-Yi Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zheng-Jiong Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Run-Duo Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ling-Ling Feng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Mei-Yan Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yijun Yuan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Quan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
- School of Pharmaceutical Sciences, Song Li' Academician Workstation of Hainan University, Yazhou Bay, Sanya 572000, China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
19
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
20
|
Zhang X, Chao P, Zhang L, Xu L, Cui X, Wang S, Wusiman M, Jiang H, Lu C. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Front Immunol 2023; 14:1030198. [PMID: 37063851 PMCID: PMC10091903 DOI: 10.3389/fimmu.2023.1030198] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/16/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundThere is a growing public concern about diabetic kidney disease (DKD), which poses a severe threat to human health and life. It is important to discover noninvasive and sensitive immune-associated biomarkers that can be used to predict DKD development. ScRNA-seq and transcriptome sequencing were performed here to identify cell types and key genes associated with DKD.MethodsHere, this study conducted the analysis through five microarray datasets of DKD (GSE131882, GSE1009, GSE30528, GSE96804, and GSE104948) from gene expression omnibus (GEO). We performed single-cell RNA sequencing analysis (GSE131882) by using CellMarker and CellPhoneDB on public datasets to identify the specific cell types and cell-cell interaction networks related to DKD. DEGs were identified from four datasets (GSE1009, GSE30528, GSE96804, and GSE104948). The regulatory relationship between DKD-related characters and genes was evaluated by using WGCNA analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) datasets were applied to define the enrichment of each term. Subsequently, immune cell infiltration between DKD and the control group was identified by using the “pheatmap” package, and the connection Matrix between the core genes and immune cell or function was illuminated through the “corrplot” package. Furthermore, RcisTarget and GSEA were conducted on public datasets for the analysis of the regulation relationship of key genes and it revealed the correlation between 3 key genes and top the 20 genetic factors involved in DKD. Finally, the expression of key genes between patients with 35 DKD and 35 healthy controls were examined by ELISA, and the relationship between the development of DKD rate and hub gene plasma levels was assessed in a cohort of 35 DKD patients. In addition, we carried out immunohistochemistry and western blot to verify the expression of three key genes in the kidney tissue samples we obtained.ResultsThere were 8 cell types between DKD and the control group, and the number of connections between macrophages and other cells was higher than that of the other seven cell groups. We identified 356 different expression genes (DEGs) from the RNA-seq, which are enriched in urogenital system development, kidney development, platelet alpha granule, and glycosaminoglycan binding pathways. And WGCNA was conducted to construct 13 gene modules. The highest correlations module is related to the regulation of cell adhesion, positive regulation of locomotion, PI3K-Akt, gamma response, epithelial-mesenchymal transition, and E2F target signaling pathway. Then we overlapped the DEGs, WGCNA, and scRNA-seq, SLIT3, PDE1A and CFH were screened as the closely related genes to DKD. In addition, the findings of immunological infiltration revealed a remarkable positive link between T cells gamma delta, Macrophages M2, resting mast cells, and the three critical genes SLIT3, PDE1A, and CFH. Neutrophils were considerably negatively connected with the three key genes. Comparatively to healthy controls, DKD patients showed high levels of SLIT3, PDE1A, and CFH. Despite this, higher SLIT3, PDE1A, and CFH were associated with an end point rate based on a median follow-up of 2.6 years. And with the gradual deterioration of DKD, the expression of SLIT3, PDE1A, and CFH gradually increased.ConclusionsThe 3 immune-associated genes could be used as diagnostic markers and therapeutic targets of DKD. Additionally, we found new pathogenic mechanisms associated with immune cells in DKD, which might lead to therapeutic targets against these cells.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Peng Chao
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Lei Zhang
- Department of Endocrine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Lin Xu
- Department of Rheumatology Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Xinyue Cui
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Shanshan Wang
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Miiriban Wusiman
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Hong Jiang
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
- Nephrology Clinical Research Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
- *Correspondence: Chen Lu, ; Hong Jiang,
| | - Chen Lu
- Nephrology Clinical Research Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
- Department of Nephropathy, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, Xinjiang Uygur Autonomous Region, China
- *Correspondence: Chen Lu, ; Hong Jiang,
| |
Collapse
|
21
|
Wu JY, Shao Y, Huang CZ, Wang ZL, Zhang HQ, Fu Z. Genetic variants in the calcium signaling pathway participate in the pathogenesis of colorectal cancer through the tumor microenvironment. Front Oncol 2023; 13:992326. [PMID: 36824126 PMCID: PMC9941622 DOI: 10.3389/fonc.2023.992326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Background Cancer risk is influenced by calcium signaling in intracellular and intercellular signaling pathways. However, the relationship between the calcium signaling pathway and colorectal cancer risk remains unknown. We aim to evaluate the role of genetic variants in calcium signaling pathway genes in colorectal cancer risk through the tumor microenvironment. Methods An analysis of genetic variants in the calcium signaling pathway was conducted using a case-control study that included 1150 colorectal cancer patients and 1342 non-cancer patients. Using the regression model, we assessed whether single-nucleotide polymorphisms (SNPs) increase the risk of colorectal cancer. We also performed a dual luciferase reporter gene assay using HCT116 cell lines and DLD1 cell lines to demonstrate the regulatory relationship between SNP and candidate risk gene. We evaluated the expression of candidate risk gene in different populations. In addition, we also evaluated candidate risk gene and 22 immune cells correlation studies. Results There was a significant association between the PDE1C rs12538364 T allele and colorectal cancer risk [odds ratio (OR) = 1.57, 95% confidence interval (CI) = 1.30 - 1.90, P = 3.07 × 10-6, P FDR = 0.004]. Mutation of intron region rs1538364 C to T locus reduces promoter activity of PDE1C in DLD1 and HCT116 cell lines (P < 0.05). We identified that PDE1C is significantly down-regulated in colorectal cancer, closely associated with 22 immune cells. Finally, we found that PDE1C could be the biomarker for individual immunotherapy of colorectal cancer. Conclusion According to our findings, PDE1C may be a key factor contributing to colorectal cancer, thus improving individual immunotherapy for the disease. The potential mechanism by which polymorphisms in the calcium signaling pathway genes may participate in the pathogenesis of colorectal cancer through the tumor microenvironment.
Collapse
Affiliation(s)
- Jing-Yu Wu
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Shao
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang-Zhi Huang
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen-Ling Wang
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Qiang Zhang
- The General Surgery Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
22
|
Afshari H, Noori S, Shokri B, Zarghi A. Co-treatment of Naringenin and Ketoprofen-RGD Suppresses Cell Proliferation via Calmodulin/PDE/cAMP/PKA Axis Pathway in Leukemia and Ovarian Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e136131. [PMID: 38116560 PMCID: PMC10728835 DOI: 10.5812/ijpr-136131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 12/21/2023]
Abstract
Background Naringenin (Nar) has anti-inflammatory and anticarcinogenic properties. Arginine-glycine- aspartate (RGD) is a tripeptidic sequence used as an integrin ligand and targeting system for delivering chemotherapeutic agents to cancer cells. Objectives In this study, the inhibitory effects of Nar and ketoprofen-RGD on leukemia and ovarian cancer cells (K562 and SKOV3) were explored for the first time, focusing on their proliferation activity and their anti-inflammatory capacity. Methods Analyses were conducted on the calmodulin (CaM)-dependent phosphodiesterase 1 (PDE1) activation by ketoprofen-RGD, Nar, and their combination. These drugs' effects on protein kinase A (PKA) activation, intracellular cyclic adenosine monophosphate (cAMP) level, and PDE1 inhibition were identified. Later, it was also evaluated if ketoprofen-RGD alone or in combination with Nar had anti-inflammatory effects. Results Nar improved the antagonizing consequences of ketoprofen-RGD on the CaM protein, which hinders PDE1, improving PKA activity and cAMP levels. A mixture of ketoprofen-RGD and Nar and ketoprofen-RGD alone diminished K562 and SKOV3 cell viability through the cAMP/PKA pathway by inhibiting PDE1 and CaM. These two compounds showed anti-inflammatory effects on both cell lines. Conclusions This study indicated for the first time that combining ketoprofen-RGD and Nar can be a promising anti-inflammatory therapeutic regimen for treating leukemia and ovarian cancer.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Shokri
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Ahmad N, Lesa KN, Sudarmanto A, Fakhrudin N, Ikawati Z. The role of Phosphodiesterase-1 and its natural product inhibitors in Alzheimer's disease: A review. Front Pharmacol 2022; 13:1070677. [PMID: 36618909 PMCID: PMC9812569 DOI: 10.3389/fphar.2022.1070677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Phosphodiesterase-1 (PDE1) is a versatile enzyme that has surprisingly received considerable attention as a possible therapeutic target in Alzheimer's disease (AD) because it maintains the homeostasis of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in the brain. 3',5'-cyclic adenosine monophosphate and 3',5'-cyclic guanosine monophosphate are the two key second messengers that regulate a broad range of intracellular processes and neurocognitive functions, specifically memory and cognition, associated with Alzheimer's disease. However, the lack of available selective drugs on the market poses challenges to identifying the beneficial effects of natural products. The present review focuses on Phosphodiesterase-1 and its isoforms, splicing variants, location, distribution, and function; the role of Phosphodiesterase-1 inhibitors in Alzheimer's disease; and the use of vinpocetine and natural products as specific Phosphodiesterase-1 inhibitors. Moreover, it aims to provide ongoing updates, identify research gaps, and present future perspectives. This review indicates the potential role of Phosphodiesterase-1 inhibitors in the treatment of neurodegenerative disorders, such as Alzheimer's disease. Certain clinical trials on the alleviation of Alzheimer's disease in patients are still in progress. Among de novo outcomes, the employment of Phosphodiesterase-1 inhibitors to treat Alzheimer's disease is an important advancement given the absence of particular therapies in the pipeline for this highly prevalent disease. To sum up, Phosphodiesterase-1 inhibition has been specifically proposed as a critical therapeutic approach for Alzheimer's disease. This study provides a comprehensive review on the biological and pharmacological aspects of Phosphodiesterase-1, its role on the Alzheimer's diseases and its significance as Alzheimer's disease therapeutic target in drug discovery from natural products. This review will help clinical trials and scientific research exploring new entities for the treatment and prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Nazir Ahmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Kaisun Nesa Lesa
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ari Sudarmanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia,Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia,*Correspondence: Nanang Fakhrudin,
| | - Zullies Ikawati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
24
|
Duo M, Liu Z, Zhang Y, Li P, Weng S, Xu H, Wang Y, Jiang T, Wu R, Cheng Z. Construction of a diagnostic signature and immune landscape of pulmonary arterial hypertension. Front Cardiovasc Med 2022; 9:940894. [DOI: 10.3389/fcvm.2022.940894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
BackgroundMolecular biomarkers are widely used for disease diagnosis and exploration of pathogenesis. Pulmonary arterial hypertension (PAH) is a rapidly progressive cardiopulmonary disease with delayed diagnosis. Studies were limited regarding molecular biomarkers correlated with PAH from a broad perspective.MethodsTwo independent microarray cohorts comprising 73 PAH samples and 36 normal samples were enrolled in this study. The weighted gene co-expression network analysis (WGCNA) was performed to identify the key modules associated with PAH. The LASSO algorithm was employed to fit a diagnostic model. The latent biology mechanisms and immune landscape were further revealed via bioinformatics tools.ResultsThe WGCNA approach ultimately identified two key modules significantly associated with PAH. For genes within the two models, differential expression analysis between PAH and normal samples further determined nine key genes. With the expression profiles of these nine genes, we initially developed a PAH diagnostic signature (PDS) consisting of LRRN4, PI15, BICC1, PDE1A, TSHZ2, HMCN1, COL14A1, CCDC80, and ABCB1 in GSE117261 and then validated this signature in GSE113439. The ROC analysis demonstrated outstanding AUCs with 0.948 and 0.945 in two cohorts, respectively. Besides, patients with high PDS scores enriched plenty of Th17 cells and neutrophils, while patients with low PDS scores were dramatically related to mast cells and B cells.ConclusionOur study established a robust and promising signature PDS for diagnosing PAH, with key genes, novel pathways, and immune landscape offering new perspectives for exploring the molecular mechanisms and potential therapeutic targets of PAH.
Collapse
|
25
|
Huang MX, Tian YJ, Han C, Liu RD, Xie X, Yuan Y, Yang YY, Li Z, Chen J, Luo HB, Wu Y. Structural Modifications of Nimodipine Lead to Novel PDE1 Inhibitors with Anti-pulmonary Fibrosis Effects. J Med Chem 2022; 65:8444-8455. [PMID: 35666471 DOI: 10.1021/acs.jmedchem.2c00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Our previous research demonstrated that phosphodiesterase-1 (PDE1) could work as a potential target against idiopathic pulmonary fibrosis. Nimodipine, a calcium antagonist commonly used to improve hypertension, was reported to have inhibition against PDE1. Herein, a series of nimodipine analogues were discovered as novel selective and potent PDE1 inhibitors after structural modifications. Compound 2g exhibited excellent inhibitory activity against PDE1C (IC50 = 10 nM), high selectivity over other PDEs except for PDE4, and weak calcium channel antagonistic activity. Administration of compound 2g exhibited remarkable therapeutic effects in a rat model of pulmonary fibrosis induced by bleomycin and prevented myofibroblast differentiation induced by TGF-β1. The expressions of PDE1B and PDE1C were found to be increased and concentrated in the focus of fibrosis. Compound 2g increased the levels of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in the lungs of rats with pulmonary fibrosis, supporting the fact that the anti-fibrosis effects of 2g were through the regulation of cAMP and cGMP.
Collapse
Affiliation(s)
- Meng-Xing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi-Jing Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuan Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Run-Duo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yijun Yuan
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yi-Yi Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianwen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.,Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Le ML, Jiang MY, Han C, Yang YY, Wu Y. PDE1 inhibitors: a review of the recent patent literature (2008-present). Expert Opin Ther Pat 2022; 32:423-439. [PMID: 35016587 DOI: 10.1080/13543776.2022.2027910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION : PDE1 has been demonstrated to be a potential drug target for a variety of diseases, such as Alzheimer's disease and cardiovascular disease. In the past decades, numerous PDE1 inhibitors with structural diversities have been developed and patented by pharmaceutical companies, providing drug candidates for exploring novel disease indications of PDE1. AREA COVERED : This review aims to provide an overview of PDE1 inhibitors reported in patents from 2008 to present. EXPERT OPINION : Among current PDE1 inhibitors, only a few of them showed high selectivity over other PDEs, which might cause severe side effects in clinic. The development of highly selective PDE1 inhibitors is still the "top priority" in the following research. The selective recognition mechanism of PDE1 with inhibitors should be further elucidated by X-ray crystallography in order to provide evidences for the rational design of selective PDE1 inhibitors. In addition, PDE1 inhibitors should be applied in the different clinical indications beyond CNS diseases.
Collapse
Affiliation(s)
- Mei-Ling Le
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Mei-Yan Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chuan Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yi-Yi Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|