1
|
Zhang W, Xiao L, Li D, Hu Y, Yu W. New Strategies for Responding to SARS-CoV-2: The Present and Future of Dual-Target Drugs. J Med Chem 2024; 67:11522-11542. [PMID: 38967785 DOI: 10.1021/acs.jmedchem.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The 2019 coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths, posing a serious threat to public health and safety. Rapid mutations of SARS-CoV-2 and complex interactions among multiple targets during infection pose a risk of expiry for small molecule inhibitors. This suggests that the traditional concept of "one bug, one drug" could be ineffective in dealing with the coronavirus. The dual-target drug strategy is expected to be the key to ending coronavirus infections. However, the lack of design method and improper combination of dual-targets poses obstacle to the discovery of new dual-target drugs. In this Perspective, we summarized the profiles concerning drug design methods, structure-activity relationships, and pharmacological parameters of dual-target drugs for the treatment of COVID-19. Importantly, we underscored how target combination and rational drug design illuminate the development of dual-target drugs for SARS-CoV-2.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lecheng Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Thomas SN, Niemeyer BF, Jimenez-Valdes RJ, Kaiser AJ, Espinosa JM, Sullivan KD, Goodspeed A, Costello JC, Alder JK, Cañas-Arranz R, García-Sastre A, Benam KH. Down syndrome is associated with altered frequency and functioning of tracheal multiciliated cells, and response to influenza virus infection. iScience 2023; 26:107361. [PMID: 37554445 PMCID: PMC10405068 DOI: 10.1016/j.isci.2023.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Individuals with Down syndrome (DS) clinically manifest severe respiratory illnesses; however, there is a paucity of data on how DS influences homeostatic physiology of lung airway, and its reactive responses to pulmonary pathogens. We generated well-differentiated ciliated airway epithelia using tracheas from wild-type and Dp(16)1/Yey mice in vitro, and discovered that Dp(16)1/Yey epithelia have significantly lower abundance of ciliated cells, an altered ciliary beating profile, and reduced mucociliary transport. Interestingly, both sets of differentiated epithelia released similar quantities of viral particles after infection with influenza A virus (IAV). However, RNA-sequencing and proteomic analyses revealed an immune hyperreactive phenotype particularly for monocyte-recruiting chemokines in Dp(16)1/Yey epithelia. Importantly, when we challenged mice in vivo with IAV, we observed immune hyper-responsiveness in Dp(16)1/Yey mice, evidenced by higher quantities of lung airway infiltrated monocytes, and elevated levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid. Our findings illuminate mechanisms underlying DS-mediated pathophysiological changes in airway epithelium.
Collapse
Affiliation(s)
- Samantha N. Thomas
- Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045, USA
| | - Brian F. Niemeyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rocio J. Jimenez-Valdes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alexander J. Kaiser
- Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James C. Costello
- Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan K. Alder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rodrigo Cañas-Arranz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kambez H. Benam
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Benam KH, Burgess JK, Stewart AG. Editorial: Accelerated Translation Using Microphysiological Organoid and Microfluidic Chip Models. Front Pharmacol 2022; 12:827172. [PMID: 35046832 PMCID: PMC8762276 DOI: 10.3389/fphar.2021.827172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/16/2023] Open
Affiliation(s)
- Kambez H Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands.,University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
| | - Alastair G Stewart
- Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, VIC, Australia.,ARC Centre for Personalized Therapeutics Technologies, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|