1
|
Vásquez López D, Sánchez Mendoza HI, Pasaye Alcaraz EH, Santos-Cuevas CL, González-Ruíz A. An evaluation of the current status of quality assurance program in MRI: A multicenter study. Radiography (Lond) 2025; 31:102908. [PMID: 40090213 DOI: 10.1016/j.radi.2025.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/18/2025]
Abstract
INTRODUCTION Quality Assurance Programs (QAPs) in Magnetic Resonance Imaging (MRI) are essential for acquiring images that provide information for medical diagnosis and treatment. As part of a quality assurance program, quality control tests (QC) are conducted to ensure that high-quality images are acquired during the acquisition process. Implementing QAPs in MRI is crucial to ensuring diagnostic image acquisition and personnel safety. METHODS In this study, 21 indicators of compliance/non-compliance were used to evaluate the QAP in ten Mexican MRI facilities, through a documentary review. Also, nine QC tests were developed under ACR protocol in the MRIs scanners including 1.5 T and 3.0 T systems. The association of the QAP and QC tests results for MRI scanners was studied. RESULTS It was found that all facilities evaluated failed at least one of the QAP indicators. Only 20 % of the facilities achieved more than 90 % on all QAP indicators, while 30 % achieved 100 % acceptability in QC tests. The statistical analysis revealed a significant positive correlation between the QAP indicators and QC tests, particularly the room technical factors and MRI scanners. CONCLUSION The results indicate that each MRI facility needs to improve QAP implementation and surveillance to establish QC reference values to enhance operational conditions and ensure consistent image quality throughout the facilities. It is imperative that the Mexican government update the legal framework regarding MRI safety in accordance with international recommendations and guidelines in order to ensure the implementation of QAPs in MRI facilities. IMPLICATIONS FOR PRACTICE As a result of standardizing protocols and monitoring reference values for image quality, the implementation of QA and QC indicators in MRI facilities may improve clinical practice and patient safety.
Collapse
Affiliation(s)
- D Vásquez López
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50180, Mexico
| | - H I Sánchez Mendoza
- Facultad de Odontología, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50130, Mexico
| | - E H Pasaye Alcaraz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, 76203, Mexico
| | - C L Santos-Cuevas
- Instituto Nacional de Investigaciones Nucleares, Carretera la Marquesa S/N, Ocoyoacac, 52750, Estado de México, Mexico
| | - A González-Ruíz
- Instituto Nacional de Investigaciones Nucleares, Carretera la Marquesa S/N, Ocoyoacac, 52750, Estado de México, Mexico.
| |
Collapse
|
2
|
Karhula SS, Karppinen P, Hietala H, Nikkinen J. Evaluation and comparison of synthetic computed tomography algorithms with 3T MRI for prostate radiotherapy: AI-based versus bulk density method. J Appl Clin Med Phys 2025; 26:e14581. [PMID: 39611806 PMCID: PMC11905239 DOI: 10.1002/acm2.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Synthetic computed tomography (sCT)-algorithms, which generate computed tomography images from magnetic resonance imaging data, are becoming part of the clinical radiotherapy workflow. The aim of this retrospective study was to evaluate and compare commercial bulk-density-method (BM)-based and AI (artificial intelligence)-based-algorithms using 3T magnetic resonance imaging (MRI) with patient data as part of the local clinical commissioning process. METHODS 44 prostate radiotherapy patients were subjected to MRI and treatment planning CT (TPCT) scans. From the MRI images, sCT images with two different sCT algorithms were generated. The sCT images were evaluated by visual inspection of artifacts. Both sCT methods were compared to TPCT, with Dice similarity score(DSC) of bone and body contours, DVH parameters for CTV, bladder and rectum, and gamma-analysis. Accuracy for treatment alignment using sCT images was also tested. Various limits were used to define whether the differences between sCT methods to TPCT were clinically relevant (DVH parameters <2%, gamma-analysis passing rates 90%, 95%, and 98%, and the DSC 0.98 for body and 0.7 for bone). RESULTS Our results show that, differences in CTV-dose coverage values were <2% in most of the patients with both sCT algorithms when compared to reference dose coverage. While AI-sCT had mean dose coverage difference <0,5% and BM-sCT <1%. Gamma-analysis showed that the AI-sCT mean passing rates were 95.4%, 98.6%, and 99.4% with 1mm1%, 2mm2%, and 3mm3% criteria, respectively. Similarly for BM-sCT the mean passing rates were 93.4%, 98.2%, and 99.2%. For the treatment alignment accuracy, the mean difference in magnitude of the translational shifts was 1.43 mm for BM-sCT and 1.57 mm for AI-sCT. Even though AI-sCT showed statistically better correspondence to TPCT, the differences were not clinically relevant with any of the limits. Visual evaluation showed artifacts in the AI-sCT especially in the bowel area and fiducial markers were not generated with either of the sCT algorithms. CONCLUSIONS In conclusion, sCT-algorithms were clinically usable on prostate treatments using 3T MR-only workflow. While AI-sCT showed better correspondence to TPCT than BM-sCT, it generated characteristic artifacts. As sCT algorithms perform well, we still recommend testing the sCT-algorithms with retrospective analyses from patient data prior to implementing sCT into the routine workflow to better understand the specific limitations and capabilities of these algorithms.
Collapse
Affiliation(s)
- Sakari S. Karhula
- Department of Oncology and RadiotherapyOulu University HospitalOuluFinland
- Research unit of Health Sciences and TechnologyOulu UniversityOuluFinland
| | - Piia Karppinen
- Department of Oncology and RadiotherapyOulu University HospitalOuluFinland
| | - Henna Hietala
- Department of Oncology and RadiotherapyOulu University HospitalOuluFinland
| | - Juha Nikkinen
- Department of Oncology and RadiotherapyOulu University HospitalOuluFinland
- Research unit of Health Sciences and TechnologyOulu UniversityOuluFinland
| |
Collapse
|
3
|
Klaassen L, Haasjes C, Hol M, Cambraia Lopes P, Spruijt K, van de Steeg-Henzen C, Vu K, Bakker P, Rasch C, Verbist B, Beenakker JW. Geometrical accuracy of magnetic resonance imaging for ocular proton therapy planning. Phys Imaging Radiat Oncol 2024; 31:100598. [PMID: 38993288 PMCID: PMC11234150 DOI: 10.1016/j.phro.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Background & purpose Magnetic resonance imaging (MRI) is increasingly used in treatment preparation of ocular proton therapy, but its spatial accuracy might be limited by geometric distortions due to susceptibility artefacts. A correct geometry of the MR images is paramount since it defines where the dose will be delivered. In this study, we assessed the geometrical accuracy of ocular MRI. Materials & methods A dedicated ocular 3 T MRI protocol, with localized shimming and increased gradients, was compared to computed tomography (CT) and X-ray images in a phantom and in 15 uveal melanoma patients. The MRI protocol contained three-dimensional T2-weighted and T1-weighted sequences with an isotropic reconstruction resolution of 0.3-0.4 mm. Tantalum clips were identified by three observers and clip-clip distances were compared between T2-weighted and T1-weighted MRI, CT and X-ray images for the phantom and between MRI and X-ray images for the patients. Results Interobserver variability was below 0.35 mm for the phantom and 0.30(T1)/0.61(T2) mm in patients. Mean absolute differences between MRI and reference were below 0.27 ± 0.16 mm and 0.32 ± 0.23 mm for the phantom and in patients, respectively. In patients, clip-clip distances were slightly larger on MRI than on X-ray images (mean difference T1: 0.11 ± 0.38 mm, T2: 0.10 ± 0.44 mm). Differences did not increase at larger distances and did not correlate to interobserver variability. Conclusions A dedicated ocular MRI protocol can produce images of the eye with a geometrical accuracy below half the MRI acquisition voxel (<0.4 mm). Therefore, these images can be used for ocular proton therapy planning, both in the current model-based workflow and in proposed three-dimensional MR-based workflows.
Collapse
Affiliation(s)
- Lisa Klaassen
- Leiden University Medical Center, Department of Ophthalmology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
| | - Corné Haasjes
- Leiden University Medical Center, Department of Ophthalmology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
| | - Martijn Hol
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | | | | | - Christal van de Steeg-Henzen
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Khanh Vu
- Leiden University Medical Center, Department of Ophthalmology, Leiden, the Netherlands
| | - Pauline Bakker
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Coen Rasch
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Berit Verbist
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Jan-Willem Beenakker
- Leiden University Medical Center, Department of Ophthalmology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
| |
Collapse
|
4
|
McDaid L, Clough A, Benson RK, Nelder C, McMahon J, Jackson S, Aznar M, Choudhury AC, van Herk M, Eccles CL. Geometric distortion caused by metallic femoral head prosthesis in prostate cancer imaging on an MR Linac: in-vivo measurements of spatial deformation. Br J Radiol 2024; 97:757-762. [PMID: 38407369 PMCID: PMC11027238 DOI: 10.1093/bjr/tqae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
OBJECTIVES Metallic implants cause artefacts and distortion on MRI. To ensure accurate dose delivery and plan adaptation on an MR Linac, there is a need to evaluate distortion caused. METHODS Participants were imaged on an MR Linac (Elekta Unity, Elekta AB Stockholm). Three sequences were evaluated. Two vendor supplied (T2W TSE 3D), and one T2W TSE 3D optimized to reduce metal artefact distortions. Images were rigidly registered to CT images by a single observer, using bony anatomy. Three coronal and three axial images were selected, and six paired, adjacent, bony landmarks were identified on each slice. Images bisecting treatment isocentre were included. Difference between landmark coordinates was taken to be measure of distortion. RESULTS Five observers participated. Thirty six pairs of bony landmarks were identified. Median difference in position of landmarks was ≤3 mm (range 0.3-4.4 mm). One-way analysis of variance (ANOVA) between observer means showed no significant variation between sequences or patients (P = 1.26 in plane, P = 0.11 through plane). Interobserver intra class correlation (ICC) was 0.70 in-plane and 0.78 through-plane. Intra-observer ICC for three observers was 0.76, 0.81, 0.83, showing moderate to good reliability on this small cohort. CONCLUSIONS This in-vivo feasibility study suggests distortion due to metallic hip prosthesis is not an obstacle for pelvic radiotherapy on an MR Linac. Research on the impact on plan quality is warranted. ADVANCES IN KNOWLEDGE This work supports feasibility of treating patients with metallic hip prosthesis on an MR Linac.
Collapse
Affiliation(s)
- Lisa McDaid
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Abigael Clough
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Rebecca K Benson
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Claire Nelder
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - John McMahon
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Steven Jackson
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, M20 4BX, United Kingdom
| | - Marianne Aznar
- Manchester Academic Health Science Centre, Radiotherapy Related Research, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M20 4BX, United Kingdom
| | - Ananya C Choudhury
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
- Manchester Academic Health Science Centre, Radiotherapy Related Research, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M20 4BX, United Kingdom
| | - Marcel van Herk
- Manchester Academic Health Science Centre, Radiotherapy Related Research, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M20 4BX, United Kingdom
| | - Cynthia L Eccles
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
- Manchester Academic Health Science Centre, Radiotherapy Related Research, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M20 4BX, United Kingdom
| |
Collapse
|
5
|
Ohira S, Suzuki Y, Washio H, Yamamoto Y, Tateishi S, Inui S, Kanayama N, Kawamata M, Miyazaki M, Nishio T, Koizumi M, Nakanishi K, Konishi K. Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases. Strahlenther Onkol 2024; 200:39-48. [PMID: 37591978 DOI: 10.1007/s00066-023-02120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MRDR) and radiotherapy (MRRT) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. MATERIALS AND METHODS An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MRDR-DC and MRRT-DC) and without (MRDR-nDC and MRRT-nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MRRT-DC and MRRT-nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HADC and HAnDC). RESULTS The median MR distortions were approximately 0.1 mm when the distance from the MIC was < 30 mm, whereas the median distortion varied widely when the distance was > 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MRDR-DC, MRDR-nDC, MRRT-DC, and MRRT-nDC, respectively). The dose to the 98% of the GTV volume (D98%) decreased as the distance from the MIC increased. In the HADC plans, the relative dose difference of D98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (-26.5% at maximum) away from the MIC in the HAnDC plans. CONCLUSION Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuta Suzuki
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Soichiro Tateishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Minoru Kawamata
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuyuki Nakanishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
6
|
Hasler SW, Kallehauge JF, Hansen RH, Samsøe E, Arp DT, Nissen HD, Edmund JM, Bernchou U, Mahmood F. Geometric distortions in clinical MRI sequences for radiotherapy: insights gained from a multicenter investigation. Acta Oncol 2023; 62:1551-1560. [PMID: 37815867 DOI: 10.1080/0284186x.2023.2266560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND As magnetic resonance imaging (MRI) becomes increasingly integrated into radiotherapy (RT) for enhanced treatment planning and adaptation, the inherent geometric distortion in acquired MR images pose a potential challenge to treatment accuracy. This study aimed to evaluate the geometric distortion levels in the clinical MRI protocols used across Danish RT centers and discuss influence of specific sequence parameters. Based on the variety in geometric performance across centers, we assess if harmonization of MRI sequences is a relevant measure. MATERIALS AND METHODS Nine centers participated with 12 MRI scanners and MRI-Linacs (MRL). Using a travelling phantom approach, a reference MRI sequence was used to assess variation in baseline distortion level between scanners. The phantom was also scanned with local clinical MRI sequences for brain, head/neck (H/N), abdomen, and pelvis. The influence of echo time, receiver bandwidth, image weighting, and 2D/3D acquisition was investigated. RESULTS We found a large variation in geometric accuracy across 93 clinical sequences examined, exceeding the baseline variation found between MRI scanners (σ = 0.22 mm), except for abdominal sequences where the variation was lower. Brain and abdominal sequences showed lowest distortion levels ([0.22, 2.26] mm), and a large variation in performance was found for H/N and pelvic sequences ([0.19, 4.07] mm). Post hoc analyses revealed that distortion levels decreased with increasing bandwidth and a less clear increase in distortion levels with increasing echo time. 3D MRI sequences had lower distortion levels than 2D (median of 1.10 and 2.10 mm, respectively), and in DWI sequences, the echo-planar imaging read-out resulted in highest distortion levels. CONCLUSION There is a large variation in the geometric distortion levels of clinical MRI sequences across Danish RT centers, and between anatomical sites. The large variation observed makes harmonization of MRI sequences across institutions and adoption of practices from well-performing anatomical sites, a relevant measure within RT.
Collapse
Affiliation(s)
- Signe Winther Hasler
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper Folsted Kallehauge
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Hvass Hansen
- Section for Radiation Therapy, Department of Oncology, Center for Cancer and Organ Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Samsøe
- Department of Clinical Oncology, Zealand University Hospital, Naestved, Denmark
| | - Dennis Tideman Arp
- Department of Medical Physics, Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Dahl Nissen
- Department of Medical Physics, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Jens M Edmund
- Radiotherapy Research Unit, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Bernchou
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Faisal Mahmood
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Richardson SL, Buzurovic IM, Cohen GN, Culberson WS, Dempsey C, Libby B, Melhus CS, Miller RA, Scanderbeg DJ, Simiele SJ. AAPM medical physics practice guideline 13.a: HDR brachytherapy, part A. J Appl Clin Med Phys 2023; 24:e13829. [PMID: 36808798 PMCID: PMC10018677 DOI: 10.1002/acm2.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 02/22/2023] Open
Abstract
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines (MPPGs) will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: (1) Must and must not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. (2) Should and should not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. Approved by AAPM's Executive Committee April 28, 2022.
Collapse
Affiliation(s)
| | - Ivan M Buzurovic
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gil'ad N Cohen
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Claire Dempsey
- Calvary Mater Newcastle Hospital University of Newcastle, Callaghan, Australia University of Washington, Seattle, USA
| | | | | | - Robin A Miller
- Multicare Regional Cancer Center, Northwest Medical Physics Center, Tacoma, WA, USA
| | | | | |
Collapse
|
8
|
Damyanovich AZ, Tadic T, Foltz WD, Jelveh S, Bissonnette JP. Time-course assessment of 3D-image distortion on the 1.5 T Marlin/Elekta Unity MR-LINAC. Phys Med 2022; 100:90-98. [PMID: 35777256 DOI: 10.1016/j.ejmp.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The efficacy of MR-guided radiotherapy on a MR-LINAC (MR-L) is dependent on the geometric accuracy of its MR images over clinically relevant Fields-of-View (FOVs). Our objectives were to: evaluate gradient non-linearity (GNL) on the Elekta Unity MR-L across time via 76 weekly measurements of 3D-distortion over concentrically larger diameter spherical volumes (DSVs); quantify distortion measurement error; and assess the temporal stability of spatial distortion using statistical process control (SPC). METHODS MR-image distortion was assessed using a large-FOV 3D-phantom containing 1932 markers embedded in seven parallel plates, spaced 25 mm × 25 mm in- and 55 mm through-plane. Automatically analyzed T1 images yielded distortions in 200, 300, 400 and 500 mm concentric DSVs. Distortion measurement error was evaluated using median absolute difference analysis of imaging repeatability tests. RESULTS Over the measurement period absolute time-averaged distortion varied between: dr = 0.30 - 0.49 mm, 0.53 - 0.80 mm, 1.0 - 1.4 mm and 2.28 - 2.37 mm, for DSVs 200, 300, 400 and 500 mm at the 98th percentile level. Repeatability tests showed that imaging/repositioning introduces negligible error: mean ≤ 0.02 mm (max ≤ 0.3 mm). SPC analysis showed image distortion was stable across all DSVs; however, noticeable changes in GNL were observed following servicing at the one-year mark. CONCLUSIONS Image distortion on the MR-L is in the sub-millimeter range for DSVs ≤ 300 mm and stable across time, with SPC analysis indicating all measurements remain within control for each DSV.
Collapse
Affiliation(s)
- Andrei Z Damyanovich
- Department of Medical Physics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Techna Institute, Toronto, Ontario, Canada.
| | - Tony Tadic
- Department of Medical Physics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Techna Institute, Toronto, Ontario, Canada
| | - Warren D Foltz
- Department of Medical Physics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Techna Institute, Toronto, Ontario, Canada
| | - Salomeh Jelveh
- Department of Medical Physics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jean-Pierre Bissonnette
- Department of Medical Physics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Techna Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Kavaluus H, Koivula L, Salli E, Seppälä T, Saarilahti K, Tenhunen M. Motion modeling from 4D MR images of liver simulating phantom. J Appl Clin Med Phys 2022; 23:e13611. [PMID: 35413145 PMCID: PMC9278689 DOI: 10.1002/acm2.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background and purpose A novel method of retrospective liver modeling was developed based on four‐dimensional magnetic resonance (4D‐MR) images. The 4D‐MR images will be utilized in generation of the subject‐specific deformable liver model to be used in radiotherapy planning (RTP). The purpose of this study was to test and validate the developed 4D‐magnetic resonance imaging (MRI) method with extensive phantom tests. We also aimed to build a motion model with image registration methods from liver simulating phantom images. Materials and methods A deformable phantom was constructed by combining deformable tissue‐equivalent material and a programmable 4D CIRS‐platform. The phantom was imaged in 1.5 T MRI scanner with T2‐weighted 4D SSFSE and T1‐weighted Ax dual‐echo Dixon SPGR sequences, and in computed tomography (CT). In addition, geometric distortion of the 4D sequence was measured with a GRADE phantom. The motion model was developed; the phases of the 4D‐MRI were used as surrogate data, and displacement vector fields (DVF's) were used as a motion measurement. The motion model and the developed 4D‐MRI method were evaluated and validated with extensive tests. Result The 4D‐MRI method enabled an accuracy of 2 mm using our deformable phantom compared to the 4D‐CT. Results showed a mean accuracy of <2 mm between coordinates and DVF's measured from the 4D images. Three‐dimensional geometric accuracy results with the GRADE phantom were: 0.9‐mm mean and 2.5 mm maximum distortion within a 100 mm distance, and 2.2 mm mean, 5.2 mm maximum distortion within a 150 mm distance from the isocenter. Conclusions The 4D‐MRI method was validated with phantom tests as a necessary step before patient studies. The subject‐specific motion model was generated and will be utilized in the generation of the deformable liver model of patients to be used in RTP.
Collapse
Affiliation(s)
- Henna Kavaluus
- Comprehensive Cancer Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Physics, MATRENA, University of Helsinki, Helsinki, Finland.,Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lauri Koivula
- Comprehensive Cancer Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Physics, MATRENA, University of Helsinki, Helsinki, Finland
| | - Eero Salli
- Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tiina Seppälä
- Comprehensive Cancer Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kauko Saarilahti
- Comprehensive Cancer Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Tenhunen
- Comprehensive Cancer Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|