1
|
Essers M, Mesch L, Beugeling M, de Wee E, Poorter R, Hamelink R, de Kruijf W. Goodbye face masks! Accurate head and neck radiotherapy using individual dorsal shells and surface guidance. Radiother Oncol 2025; 208:110909. [PMID: 40288690 DOI: 10.1016/j.radonc.2025.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND AND PURPOSE Using surface guided radiotherapy (SGRT), head and neck (H&N) cancer patients may undergo radiotherapy without the discomfort and stress of a restricting face mask. In this study, the patient setup accuracy, number of necessary treatment interrupts, and intrafraction motion for H&N cancer patients positioned using an individual dorsal shell and monitored using SGRT was examined. MATERIAL AND METHODS Twenty-six H&N cancer patients were positioned in a dorsal shell using SGRT. A cone-beam CT (CBCT) was used for online setup correction. SGRT was also used for intrafraction motion monitoring, and repositioning of the patient when an intrafraction motion threshold of 2 mm or 2° (th2) was exceeded. Based on post-treatment CBCT's, the intrafraction motion and resulting CTV-PTV margin were determined. RESULTS For 1.1 % of fractions, the patient had to be repositioned because of motion during/after the CBCT, and for 4.4 % of fractions because of inaccurate patient posture. For 3.5 % of fractions, treatment had to be interrupted for repositioning because intrafraction motion exceeded th2. The CTV-PTV margin for intrafraction motion is 1.1 mm in all directions. A total CTV-PTV margin of 3 mm can be applied. CONCLUSIONS By replacing traditional face masks with SGRT and a dorsal shell, we can offer H&N cancer patients a more comfortable radiotherapy treatment experience without sacrificing the treatment accuracy.
Collapse
Affiliation(s)
- Marion Essers
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands.
| | - Lennart Mesch
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Maaike Beugeling
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Eva de Wee
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Robert Poorter
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Richard Hamelink
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Willy de Kruijf
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| |
Collapse
|
2
|
Loebner HA, Bertholet J, Mackeprang PH, Volken W, Fix MK, Manser P. Robustness assessment of radiotherapy treatment plans in Switzerland. Z Med Phys 2025:S0939-3889(25)00037-6. [PMID: 40263012 DOI: 10.1016/j.zemedi.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/24/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Robustness assessment is an essential part of radiotherapy plan quality assessment. However, it is often not evaluated in photon-based radiotherapy. This study aims to conduct a robustness audit to establish a baseline for the role of plan robustness in Switzerland by assessing and comparing robustness across plans from and clinical workflows in multiple institutions. MATERIALS AND METHODS A multi-institutional study involving 11 Swiss institutions was conducted. Each institution provided treatment plans for three cases and completed a questionnaire on treatment planning and assessment of robustness in their clinical practice. The plans were planned using the Eclipse treatment planning system and utilized intensity-modulated techniques using a 6 MV flattened photon beam for one brain case, and one unilateral and one bilateral head and neck cases, prescribed 60.0 Gy (one phase), 70.0 Gy (two phases) and 70.0 Gy (three phases) to 95% of the target volume, respectively. Institutions used their standard institutional protocols for the provided CT, structures and prescription. Dose distributions were subsequently recalculated in an in-house Monte Carlo (MC) framework incorporating clinically motivated uncertainties associated to patient setup and multi-leaf collimator (MLC) positions. The uncertainties' impact on the dosimetric plan quality was assessed by evaluating representative target and organ-at-risk (OAR) dose-volume endpoints (e.g. D98% and D2% of the target, mean dose of parallel OARs and near max dose of serial OARs). RESULTS Differences in target and OAR dose-volume endpoints in the presence of random patient setup uncertainties (Gaussian distributed with σ = 0.2 cm in the three translational and σ = 0.5° in the three rotational axes) were smaller than ±0.5 Gy. Exceptions were the near max dose-volume endpoints of structures near the target with differences up to ±2.2 Gy for the optic nerve in the brain case. Systematic rotational patient setup uncertainties of ≤3° in either pitch, yaw or roll had similar impact as translational uncertainties ≤0.3 cm in either left-right, superior inferior or anterior-posterior direction with maximal differences in most investigated dose-volume endpoints of 9.0 Gy. Systematic MLC uncertainties of +0.5 mm of all leaves led to an average increase of up to 3.0 Gy in the dose-volume endpoints. The questionnaire revealed diverse practices in terms of planning and assessment for robustness: all institutions use target and OAR margins, 2/11 use robust optimization and 5/11 regularly perform robustness assessments of treatment plans by recalculating the dose distribution including uncertainties. The importance of robustness in treatment planning was rated ≥8 out of 10 (10 as most important) by 6/11 institutions. The need for better commercial tools to assess or integrate robustness into treatment planning was expressed by 9/11 institutions. CONCLUSION This study presents the first multi-institutional inter-comparison of treatment plan robustness in Switzerland, establishing a robustness baseline for intensity-modulated plans. Despite diverse practices to assess plan robustness and to mitigate the impact of uncertainties on dosimetric plan quality, the robustness to the investigated uncertainties was similar across the plans and cases from all institutes. To foster standardization, we recommend to regularly conduct audits focusing on plan robustness to monitor and reduce inter-institutional variability in handling and assessing plan robustness.
Collapse
Affiliation(s)
- Hannes A Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Paul-Henry Mackeprang
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Michael K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Sánchez‐Rubio P, Rodríguez‐Romero R, Pinto‐Monedero M, Alejo‐Luque L, Martínez‐Ortega J. New findings on clinical experience on surface-guided radiotherapy for frameless non-coplanar stereotactic radiosurgery treatments. J Appl Clin Med Phys 2024; 25:e14510. [PMID: 39287562 PMCID: PMC11633809 DOI: 10.1002/acm2.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
PURPOSE The aim of this study was to assess the accuracy of a surface-guided radiotherapy (SGRT) system for setup and intra-fraction motion control in frameless non-coplanar stereotactic radiosurgery (fSRS) using actual patient data immobilized with two different types of open-faced masks and employing a novel SGRT systems settings. METHODS AND MATERIALS Forty-four SRS patients were immobilized with two types of open-faced masks. Sixty lesions were treated, involving the analysis of 68 cone-beam scans (CBCT), 157 megavoltage (MV) images, and 521 SGRT monitoring sessions. The average SGRT translations/rotations and 3D vectors (MAG-Trasl and MAG-Rot) were compared with CBCT or antero-posterior MV images for 0° table or non-coplanar beams, respectively. The intrafraction control was evaluated based on the average shifts obtained from each monitoring session. To assess the association between the SGRT system and the CBCT, the two types of masks and the 3D vectors, a generalized estimating equations (GEE) regression analysis was performed. The Wilcoxon singed-rank test for paired samples was performed to detect differences in couch rotation with longitudinal (LNG) and lateral (LAT) translations and/or yaw. RESULTS The average SGRT corrections were smaller than those detected by CBCT (≤0.5 mm and 0.1°), with largest differences in LNG and yaw. The GEE analysis indicated that the average MAG-Trasl, obtained by the SGRT system, was not statistically different (p = 0.09) for both mask types, while, the MAG-Rot was different (p = 0.01). For non-coplanar beams, the Wilcoxon singed-rank test demonstrated no significantly differences for the corrections (LNG, LAT, and yaw) for any table rotation except for LNG corrections at 65° (p = 0.04) and 75° (p = 0.03) table angle position; LAT shifts at 65° (p = 0.03) and 270° (p < 0.001) table angle position, and yaw rotation at 30° (p = 0.02) table angle position. The average intrafraction motion was < 0.1 mm and 0.1° for any table angle. CONCLUSION The SGRT system used, along with the novel workflow performed, can achieve the setup and intra-fraction motion control accuracy required to perform non-coplanar fSRS treatments. Both masks ensure the accuracy required for fSRS while providing a suitable surface for monitoring.
Collapse
Affiliation(s)
- Patricia Sánchez‐Rubio
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Ruth Rodríguez‐Romero
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - María Pinto‐Monedero
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Luis Alejo‐Luque
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Jaime Martínez‐Ortega
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| |
Collapse
|
4
|
Loebner HA, Bertholet J, Mackeprang PH, Volken W, Elicin O, Mueller S, Guyer G, Aebersold DM, Stampanoni MF, Fix MK, Manser P. Robustness analysis of dynamic trajectory radiotherapy and volumetric modulated arc therapy plans for head and neck cancer. Phys Imaging Radiat Oncol 2024; 30:100586. [PMID: 38808098 PMCID: PMC11130727 DOI: 10.1016/j.phro.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Background and purpose Dynamic trajectory radiotherapy (DTRT) has been shown to improve healthy tissue sparing compared to volumetric arc therapy (VMAT). This study aimed to assess and compare the robustness of DTRT and VMAT treatment-plans for head and neck (H&N) cancer to patient-setup (PS) and machine-positioning uncertainties. Materials and methods The robustness of DTRT and VMAT plans previously created for 46 H&N cases, prescribed 50-70 Gy to 95 % of the planning-target-volume, was assessed. For this purpose, dose distributions were recalculated using Monte Carlo, including uncertainties in PS (translation and rotation) and machine-positioning (gantry-, table-, collimator-rotation and multi-leaf collimator (MLC)). Plan robustness was evaluated by the uncertainties' impact on normal tissue complication probabilities (NTCP) for xerostomia and dysphagia and on dose-volume endpoints. Differences between DTRT and VMAT plan robustness were compared using Wilcoxon matched-pair signed-rank test (α = 5 %). Results Average NTCP for moderate-to-severe xerostomia and grade ≥ II dysphagia was lower for DTRT than VMAT in the nominal scenario (0.5 %, p = 0.01; 2.1 %, p < 0.01) and for all investigated uncertainties, except MLC positioning, where the difference was not significant. Average differences compared to the nominal scenario were ≤ 3.5 Gy for rotational PS (≤ 3°) and machine-positioning (≤ 2°) uncertainties, <7 Gy for translational PS uncertainties (≤ 5 mm) and < 20 Gy for MLC-positioning uncertainties (≤ 5 mm). Conclusions DTRT and VMAT plan robustness to the investigated uncertainties depended on uncertainty direction and location of the structure-of-interest to the target. NTCP remained on average lower for DTRT than VMAT even when considering uncertainties.
Collapse
Affiliation(s)
- Hannes A. Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Paul-Henry Mackeprang
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Olgun Elicin
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Silvan Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Gian Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel M. Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | | | - Michael K. Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Rijs Z, Kawsar KA, Saha P, van de Sande M, Lui D. Evaluation of computed tomography artefacts of carbon-fiber and titanium implants in patients with spinal oligometastatic disease undergoing stereotactic ablative radiotherapy. Sci Rep 2024; 14:6700. [PMID: 38509154 PMCID: PMC10954645 DOI: 10.1038/s41598-024-52498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/19/2024] [Indexed: 03/22/2024] Open
Abstract
This study evaluated artefacts on computed tomography (CT) images using Hounsfield units (HU) in patients with spinal oligometastatic disease who received carbon-fiber (CF; n = 11) or titanium (n = 11) spine implants and underwent stereotactic ablative radiotherapy (SABR). Pre- and postoperative HU were measured at the vertebral body, pedicle, and spinal cord at three different levels: the lower instrumented vertebra, the level of metastatic spinal cord compression, and an uninvolved level. Areas measured at each level were delicately matched pre- and postoperatively. Significant differences in HU were observed at the vertebral body, the pedicle, and the spinal cord at the lowest instrumented vertebra level for both CF and titanium (average increase 1.54-fold and 5.11-fold respectively). At the metastatic spinal cord compression level, a trend towards a higher HU-increase was observed in titanium compared with CF treated patients (average increase 2.51-fold and 1.43-fold respectively). The relatively high postoperative HU-increase after insertion of titanium implants indicated CT artefacts, while the relatively low HU-increase of CF implants was not associated with artefacts. Less CT artefacts could facilitate an easier contouring phase in radiotherapy planning. In addition, we propose a CT artefact grading system based on postoperative HU-increase. This system could serve as a valuable tool in future research to assess if less CT artefacts lead to time savings during radiotherapy treatment planning and, potentially, to better tumoricidal effects and less adverse effects if particle therapy would be administered.
Collapse
Affiliation(s)
- Zeger Rijs
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Priyanshu Saha
- Department of Orthopedic and Spinal Surgery, St. George's Hospital, London, UK
| | - Michiel van de Sande
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Darren Lui
- Department of Orthopedic and Spinal Surgery, St. George's Hospital, London, UK
| |
Collapse
|
6
|
Burgess L, Nguyen E, Tseng CL, Guckenberger M, Lo SS, Zhang B, Nielsen M, Maralani P, Nguyen QN, Sahgal A. Practice and principles of stereotactic body radiation therapy for spine and non-spine bone metastases. Clin Transl Radiat Oncol 2024; 45:100716. [PMID: 38226025 PMCID: PMC10788412 DOI: 10.1016/j.ctro.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/23/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Radiotherapy is the dominant treatment modality for painful spine and non-spine bone metastases (NSBM). Historically, this was achieved with conventional low dose external beam radiotherapy, however, stereotactic body radiotherapy (SBRT) is increasingly applied for these indications. Meta-analyses and randomized clinical trials have demonstrated improved pain response and more durable tumor control with SBRT for spine metastases. However, in the setting of NSBM, there is limited evidence supporting global adoption and large scale randomized clinical trials are in need. SBRT is technically demanding requiring careful consideration of organ at risk tolerance, and strict adherence to technical requirements including immobilization, simulation, contouring and image-guidance procedures. Additional considerations include follow up practices after SBRT, with appropriate imaging playing a critical role in response assessment. Finally, there is renewed research into promising new technologies that may further refine the use of SBRT in both spinal and NSBM in the years to come.
Collapse
Affiliation(s)
- Laura Burgess
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eric Nguyen
- Department of Radiation Oncology, Walker Family Cancer Centre, St. Catharines, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA, United States
| | - Beibei Zhang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Nielsen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, MD Anderson Cancer Centre, University of Texas, Houston, TX, United States
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Remmerts de Vries IF, Verbakel WFAR, Adema M, Slotman BJ, Dahele M. Spine Stereotactic Body Radiation Therapy Without Immobilization: Detailed Analysis of Intrafraction Motion Using High-Frequency kV Imaging During Irradiation. Int J Radiat Oncol Biol Phys 2024; 118:525-532. [PMID: 37652305 DOI: 10.1016/j.ijrobp.2023.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Spine stereotactic body radiation therapy (SBRT) requires high positioning accuracy and a stable patient to maximize target coverage and reduce excessive irradiation to organs at risk. Positional verification during spine SBRT delivery helps to ensure accurate positioning for all patients. We report our experience with noninvasive 3-dimensional target position monitoring during volumetric modulated arc therapy of spine metastases in nonimmobilized patients positioned using only a thin mattress and simple arm and knee supports. METHODS AND MATERIALS Fluoroscopic planar kV images were acquired at 7 frames/s using the on-board imaging system during volumetric modulated arc therapy spine SBRT. Template matching and triangulation were used to track the target in vertical, longitudinal, and lateral directions. If the tracking trace deviated >1 mm from the planned position in ≥1 direction, treatment was manually interrupted and 6-dimensional cone beam computed tomography (CBCT)-based couch correction was performed. Tracking data were used to retrospectively analyze the target position. Positional data, agreement with CBCT, correlation between position of the couch and direction of any positional correction, and treatment times were analyzed. RESULTS In total, 175 fractions were analyzed. Delivery was interrupted 83 times in 66 fractions for a deviation >1 mm. In 97% of cases the difference between tracking data and subsequent clinical shift performed after the CBCT match was ≤0.5 mm. Lateral/longitudinal shift performed after intervention correlated with the couch roll/pitch at the start of treatment (correlation coefficient, -0.63/0.53). Mean (SD; range) time between start of first imaging and end of the last arc was 15.2 minutes (5.1; 7.6-36.3). CONCLUSIONS Spine tracking during irradiation can be used to prompt an intervention CBCT scan and repositioning so that a spine SBRT target deviates by ≤1 mm from the planned position, even in nonimmobilized patients. kV tracking and CBCT are in good agreement. The data support verification CBCT after all 6 degrees-of-freedom positional corrections in nonimmobilized spine SBRT patients.
Collapse
Affiliation(s)
- Isabel F Remmerts de Vries
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Wilko F A R Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marrit Adema
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Essers M, Mesch L, Beugeling M, Dekker J, de Kruijf W. Setup and intra-fractional motion measurements using surface scanning in head and neck cancer radiotherapy- A feasibility study. Phys Imaging Radiat Oncol 2024; 29:100563. [PMID: 38444887 PMCID: PMC10912619 DOI: 10.1016/j.phro.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Background and purpose Surface-guided radiotherapy (SGRT) is applied to improve patient set-up and to monitor intra-fraction motion. Head and neck cancer (H&N) patients are usually fixated using 5-point thermoplastic masks, that are experienced as uncomfortable or even stressful. Therefore, the feasibility of irradiating H&N patients without a mask by using SGRT was examined. Material and methods Nineteen H&N patients were included in a simulation study. Once a week, before the standard treatment, a maskless treatment was simulated, using SGRT for setup and intrafraction motion monitoring. Initial patient setup accuracy and intrafraction motion was determined using ConeBeam CT (CBCT) images as well as SGRT before and after the (simulated) treatment. The clinical target volume to planning target volume (CTV-PTV) margin for intrafraction motion was calculated. Using patient questionnaires, the patient-friendliness H&N irradiation with and without mask was determined. Results Maskless setup with SGRT and CBCT was as accurate as with a mask. SGRT showed that intrafraction motion was gradual during the treatment. The CTV-PTV margin correcting for intrafraction motion was 1.7 mm for maskless treatment without interventions, and 1.2 mm if corrected for motions > 2 mm. For 19 % of fractions, the intrafraction motion, as detected by both SGRT and CBCT, was larger than 2 mm in at least one direction. Sixteen patients preferred maskless treatment, while 3 worried they would move too much. Conclusions Using SGRT and a standard head rest resulted in a patient-friendly treatment with accurate patient setup and acceptably small intrafraction motion for H&N patients.
Collapse
Affiliation(s)
- Marion Essers
- Institute Verbeeten, Medical Physics & Instrumentation, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Lennart Mesch
- Institute Verbeeten, Radiotherapy, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Maaike Beugeling
- Institute Verbeeten, Radiotherapy, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Janita Dekker
- Institute Verbeeten, Medical Physics & Instrumentation, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Willy de Kruijf
- Institute Verbeeten, Medical Physics & Instrumentation, PO Box 90120, 5000 LA Tilburg, the Netherlands
| |
Collapse
|
9
|
Shields B, Ramachandran P. Generating missing patient anatomy from partially acquired cone-beam computed tomography images using deep learning: a proof of concept. Phys Eng Sci Med 2023; 46:1321-1330. [PMID: 37462889 PMCID: PMC10480263 DOI: 10.1007/s13246-023-01302-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/05/2023] [Indexed: 09/07/2023]
Abstract
The patient setup technique currently in practice in most radiotherapy departments utilises on-couch cone-beam computed tomography (CBCT) imaging. Patients are positioned on the treatment couch using visual markers, followed by fine adjustments to the treatment couch position depending on the shift observed between the computed tomography (CT) image acquired for treatment planning and the CBCT image acquired immediately before commencing treatment. The field of view of CBCT images is limited to the size of the kV imager which leads to the acquisition of partial CBCT scans for lateralised tumors. The cone-beam geometry results in high amounts of streaking artifacts and in conjunction with limited anatomical information reduces the registration accuracy between planning CT and the CBCT image. This study proposes a methodology that can improve radiotherapy patient setup CBCT images by removing streaking artifacts and generating the missing patient anatomy with patient-specific precision. This research was split into two separate studies. In Study A, synthetic CBCT (sCBCT) data was created and used to train two machine learning models, one for removing streaking artifacts and the other for generating the missing patient anatomy. In Study B, planning CT and on-couch CBCT data from several patients was used to train a base model, from which a transfer of learning was performed using imagery from a single patient, producing a patient-specific model. The models developed for Study A performed well at removing streaking artifacts and generating the missing anatomy. The outputs yielded in Study B show that the model understands the individual patient and can generate the missing anatomy from partial CBCT datasets. The outputs generated demonstrate that there is utility in the proposed methodology which could improve the patient setup and ultimately lead to improving overall treatment quality.
Collapse
Affiliation(s)
- Benjamin Shields
- Biomedical Technology Services, Townsville University Hospital, Townsville, Australia.
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.
| | - Prabhakar Ramachandran
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|