1
|
Fatania K, Frood R, Mistry H, Short SC, O'Connor J, Scarsbrook AF, Currie S. Impact of intensity standardisation and ComBat batch size on clinical-radiomic prognostic models performance in a multi-centre study of patients with glioblastoma. Eur Radiol 2025; 35:3354-3366. [PMID: 39607450 PMCID: PMC12081554 DOI: 10.1007/s00330-024-11168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE To assess the effect of different intensity standardisation techniques (ISTs) and ComBat batch sizes on radiomics survival model performance and stability in a heterogenous, multi-centre cohort of patients with glioblastoma (GBM). METHODS Multi-centre pre-operative MRI acquired between 2014 and 2020 in patients with IDH-wildtype unifocal WHO grade 4 GBM were retrospectively evaluated. WhiteStripe (WS), Nyul histogram matching (HM), and Z-score (ZS) ISTs were applied before radiomic feature (RF) extraction. RFs were realigned using ComBat and minimum batch size (MBS) of 5, 10, or 15 patients. Cox proportional hazards models for overall survival (OS) prediction were produced using five different selection strategies and the impact of IST and MBS was evaluated using bootstrapping. Calibration, discrimination, relative explained variation, and model fit were assessed. Instability was evaluated using 95% confidence intervals (95% CIs), feature selection frequency and calibration curves across the bootstrap resamples. RESULTS One hundred ninety-five patients were included. Median OS = 13 (95% CI: 12-14) months. Twelve to fourteen unique MRI protocols were used per MRI sequence. HM and WS produced the highest relative increase in model discrimination, explained variation and model fit but IST choice did not greatly impact on stability, nor calibration. Larger ComBat batches improved discrimination, model fit, and explained variation but higher MBS (reduced sample size) reduced stability (across all performance metrics) and reduced calibration accuracy. CONCLUSION Heterogenous, real-world GBM data poses a challenge to the reproducibility of radiomics. ComBat generally improved model performance as MBS increased but reduced stability and calibration. HM and WS tended to improve model performance. KEY POINTS Question ComBat harmonisation of RFs and intensity standardisation of MRI have not been thoroughly evaluated in multicentre, heterogeneous GBM data. Findings The addition of ComBat and ISTs can improve discrimination, relative model fit, and explained variance but degrades the calibration and stability of survival models. Clinical relevance Radiomics risk prediction models in real-world, multicentre contexts could be improved by ComBat and ISTs, however, this degrades calibration and prediction stability and this must be thoroughly investigated before patients can be accurately separated into different risk groups.
Collapse
Affiliation(s)
- Kavi Fatania
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, England, UK.
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| | - Russell Frood
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, England, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Hitesh Mistry
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Susan C Short
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Oncology, Leeds Teaching Hospitals NHS Trust, England, UK
| | - James O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Radiology, The Christie Hospital, Manchester, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Andrew F Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, England, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Stuart Currie
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, England, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Ghosh A, Li H, Towbin A, Turpin B, Trout A. T2-weighted MRI radiomics for the prediction of pediatric and young adult rhabdomyosarcoma alveolar subtype and distant metastasis: a pilot study. Pediatr Radiol 2025; 55:1149-1161. [PMID: 40100409 DOI: 10.1007/s00247-025-06205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Rhabdomyosarcomas are the most common soft tissue sarcoma in children. While treatment outcomes have improved, risk-based therapy classification relies on staging and tumor subtypes for therapeutic planning. OBJECTIVE This study investigated the utility of T2-weighted MR radiomics features and machine learning models in identifying the presence of distant metastasis and alveolar histological subtypes at baseline imaging in children diagnosed with rhabdomyosarcoma. MATERIALS AND METHODS This retrospective cross-sectional study utilized MRIs from 86 patients, 49 (median age (IQR) 59 months (37-161), alveolar subtype=15, distant metastasis=9) of whom had been imaged at outside imaging centers (training set); and 37 (median age 52 months (24-164), alveolar subtype=14, distant metastasis=8) of whom were imaged at our institution (holdout validation set). Radiomic features were extracted from T2-weighted images. We selected features that demonstrated intra-scan repeatability and used maximum relevance and minimum redundancy supervised feature selection to identify the 50 most important features. Lasso logistic regression and support vector machine (SVM) classifiers were trained to predict binary outcomes. The median of all predictions for a given patient was used as patient-level predictions. DeLong's test compared the area under the receiver operating characteristic curves (AUC). Cut-offs obtained by maximizing the Youden index were evaluated on an external validation set, and accuracy metrics were reported. RESULTS On the validation set, the Lasso and SVM classifiers obtained patient level AUCs of 0.76 (95% CI 0.59-0.94) and 0.73 (0.54-0.92), respectively, in predicting alveolar subtype, with the Lasso regressor obtaining 71.4% (41.9-91.6) sensitivity and 60.9% (38.5-80.3) specificity. When predicting the presence of distant metastasis, the Lasso and SVM classifier had AUCs of 0.81 (0.67-0.95) and 0.77 (0.58-0.97), respectively. There were no differences between model performance (P>0.05). A total of 12 and 18 features had nonzero coefficients in the Lasso regressors for predicting alveolar subtype and tumor metastasis, respectively. CONCLUSION MRI radiomics from baseline T2-weighted MRI demonstrated potential in predicting alveolar subtype and distant metastatic disease at presentation. Larger studies are needed to explore multinomial multiclass models for better prognostication of pediatric rhabdomyosarcomas.
Collapse
Affiliation(s)
- Adarsh Ghosh
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - Hailong Li
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | | | - Brian Turpin
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Andrew Trout
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| |
Collapse
|
3
|
Hosseini SA, Hajianfar G, Hall B, Servaes S, Rosa-Neto P, Ghafarian P, Zaidi H, Ay MR. Robust vs. Non-robust radiomic features: the quest for optimal machine learning models using phantom and clinical studies. Cancer Imaging 2025; 25:33. [PMID: 40075547 PMCID: PMC11905451 DOI: 10.1186/s40644-025-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
PURPOSE This study aimed to select robust features against lung motion in a phantom study and use them as input to feature selection algorithms and machine learning classifiers in a clinical study to predict the lymphovascular invasion (LVI) of non-small cell lung cancer (NSCLC). The results of robust features were also compared with conventional techniques without considering the robustness of radiomic features. METHODS An in-house developed lung phantom was developed with two 22mm lesion sizes based on a clinical study. A specific motor was built to simulate motion in two orthogonal directions. Lesions of both clinical and phantom studies were segmented using a Fuzzy C-means-based segmentation algorithm. After inducing motion and extracting 105 radiomic features in 4 feature sets, including shape, first-, second-, and higher-order statistics features from each region of interest (ROI) of the phantom image, statistical analyses were performed to select robust features against motion. Subsequently, these robust features and a total of 105 radiomic features were extracted from 126 clinical data. Various feature selection (FS) and multiple machine learning (ML) classifiers were implemented to predict the LVI of NSCLC, followed by comparing the results of predicting LVI using robust features with common conventional techniques not considering the robustness of radiomic features. RESULTS Our results demonstrated that selecting robust features as input to FS algorithms and ML classifiers surges the sensitivity, which has a gentle negative effect on the accuracy and the area under the curve (AUC) of predictions compared with commonly used methods in 12 of 15 outcomes. The top performance of the LVI prediction was achieved by the NB classifier and RFE FS without considering the robustness of radiomic features with 95% area under the curve of AUC, 67% accuracy, and 100% sensitivity. Moreover, the top performance of the LVI prediction using robust features belonged to the NB classifier and Boruta feature selection with 92% AUC, 86% accuracy, and 100% sensitivity. CONCLUSION Robustness over various influential factors is critical and should be considered in a radiomic study. Selecting robust features is a solution to overcome the low reproducibility of radiomic features. Although setting robust features against motion in a phantom study has a minor negative impact on the accuracy and AUC of LVI prediction, it boosts the sensitivity of prediction to a large extent.
Collapse
Affiliation(s)
- Seyyed Ali Hosseini
- Translational Neuroimaging Laboratory, Douglas Hospital, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Brandon Hall
- Translational Neuroimaging Laboratory, Douglas Hospital, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, Douglas Hospital, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, Douglas Hospital, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- PET/CT and cyclotron center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, DK-500, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Molecular and Cellular Imaging (RCMCI), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
4
|
Ayers GD, Cohen AS, Bae SW, Wen X, Pollard A, Sharma S, Claus T, Payne A, Geng L, Zhao P, Tantawy MN, Gammon ST, Manning HC. Reproducibility and repeatability of 18F-(2S, 4R)-4-fluoroglutamine PET imaging in preclinical oncology models. PLoS One 2025; 20:e0313123. [PMID: 39787098 PMCID: PMC11717184 DOI: 10.1371/journal.pone.0313123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/19/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task. 18F-(2S, 4R)-4-fluoro-glutamine (18F-Gln) is a PET tracer designed for imaging glutamine uptake and metabolism. This study illustrates high reproducibility and repeatability with 18F-Gln for in vivo research. METHODS Twenty mice bearing colorectal cancer cell line xenografts were injected with ~9 MBq of 18F-Gln and imaged in an Inveon microPET. Three individuals analyzed the tumor uptake of 18F-Gln using the same set of images, the same image analysis software, and the same analysis method. Scans were randomly re-ordered for a second repeatability measurement 6 months later. Statistical analyses were performed using the methods of Bland and Altman (B&A), Gauge Reproducibility and Repeatability (Gauge R&R), and Lin's Concordance Correlation Coefficient. A comprehensive equivalency test, designed to reject a null hypothesis of non-equivalence, was also conducted. RESULTS In a two-way random effects Gauge R&R model, variance among mice and their measurement variance were 0.5717 and 0.024. Reproducibility and repeatability accounted for 31% and 69% of the total measurement error, respectively. B&A repeatability coefficients for analysts 1, 2, and 3 were 0.16, 0.35, and 0.49. One-half B&A agreement limits between analysts 1 and 2, 1 and 3, and 2 and 3 were 0.27, 0.47, and 0.47, respectively. The mean square deviation and total deviation index were lowest for analysts 1 and 2, while coverage probabilities and coefficients of the individual agreement were highest. Finally, the definitive agreement inference hypothesis test for equivalency demonstrated that all three confidence intervals for the average difference of means from repeated measures lie within our a priori limits of equivalence (i.e. ± 0.5%ID/g). CONCLUSIONS Our data indicate high individual analyst and laboratory-level reproducibility and repeatability. The assessment of R&R using the appropriate methods is critical and should be adopted by the broader imaging community.
Collapse
Affiliation(s)
- Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Allison S. Cohen
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Seong-Woo Bae
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Xiaoxia Wen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Alyssa Pollard
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shilpa Sharma
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Trey Claus
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Adria Payne
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ling Geng
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ping Zhao
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mohammed Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States of America
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - H. Charles Manning
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States of America
| |
Collapse
|
5
|
Shimozono T, Shiiba T, Takano K. Radiomics score derived from T1-w/T2-w ratio image can predict motor symptom progression in Parkinson's disease. Eur Radiol 2024; 34:7921-7933. [PMID: 38958697 DOI: 10.1007/s00330-024-10886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES To clarify the association between a radiomics score (Rad-score) derived from T1-weighted signal intensity to T2-weighted signal intensity (T1-w/T2-w) ratio images and the progression of motor symptoms in Parkinson's disease (PD). MATERIALS AND METHODS This retrospective study included patients with PD enrolled in the Parkinson's Progression Markers Initiative. The Movement Disorders Society-Unified Parkinson's Disease Rating Scale Part III score ≥ 33 and/or Hoehn and Yahr stage ≥ 3 indicated motor function decline. The Rad-score was constructed using radiomics features extracted from T1-w/T2-w ratio images. The Kaplan-Meier analysis and Cox regression analyses were used to assess the time differences in motor function decline between the high and low Rad-score groups. RESULTS A total of 171 patients with PD were divided into training (n = 101, mean age at baseline, 61.6 ± 9.3 years) and testing (n = 70, mean age at baseline, 61.6 ± 10 years). The patients in the high Rad-score group had a shorter time to motor function decline than those in the low Rad-score group in the training dataset (log-rank test, p < 0.001) and testing dataset (log-rank test, p < 0.001). The multivariate Cox regression using the Rad-score and clinical factors revealed a significant association between the Rad-score and motor function decline in the training dataset (HR = 2.368, 95%CI:1.423-3.943, p < 0.001) and testing dataset (HR = 2.931, 95%CI:1.472-5.837, p = 0.002). CONCLUSION Rad-scores based on radiomics features derived from T1-w/T2-w ratio images were associated with the progression of motor symptoms in PD. CLINICAL RELEVANCE STATEMENT The radiomics score derived from the T1-weighted/T2-weighted ratio images offers a predictive tool for assessing the progression of motor symptom in patients with PD. KEY POINTS Radiomics score derived from T1-weighted/T2-weighted ratio images is correlated with the motor symptoms of Parkinson's disease. A high radiomics score correlated with faster motor function decline in patients with Parkinson's disease. The proposed radiomics score offers predictive insight into the progression of motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Takuya Shimozono
- Department of Neuroimaging and Brain Science, Major in Health Science, Graduate School of Health Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takuro Shiiba
- Department of Molecular Imaging, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Kazuki Takano
- Department of Molecular Imaging, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
6
|
Shakeri M, Mostaar A, Sadeghi AZ, Hosseini SM, Joybari AY, Ghadiri H. A Comprehensive Evaluation of Radiomic Features in Normal Brain Magnetic Resonance Imaging: Investigating Robustness and Region Variations. J Med Phys 2024; 49:608-622. [PMID: 39926136 PMCID: PMC11801087 DOI: 10.4103/jmp.jmp_149_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 02/11/2025] Open
Abstract
Background Despite extensive research on various brain diseases, a few studies have focused on radiomic feature distribution in healthy brain images. The present study applied a novel radiomic framework to investigate the robustness and baseline values of radiomic features in normal brain magnetic resonance imaging (MRIs) regions. Materials and Methods Analyses were performed on T1 and T2 images including 276 normal brains and 14 healthy volunteers were scanned with three scanners using the same protocols. The images were divided into 1024 three-dimensional nonoverlap patches with the same pixel size. Seven patches located in the thalamus, putamen, hippocampus and brain stem were selected as volume of interest (VOI). Eighty-five radiomic features were generated. To investigate the variation of features across VOIs, the analysis of variance was performed and coefficient of variation (COV) and intraclass correlation coefficient (ICC) were explored to examine the features repeatability. Results Thalamus (right and left) and hippocampus (left) resulted in more stable features (COV ≤ 6%) in T1 and T2 images, respectively. The inter-scanner ICC analysis demonstrated the features of T2 sequences represented more repeatable results and the brain stem and thalamus (both T1 and T2) showed particularly high repeatability (higher ICC values). Robust results (ICC ≥ 0.9) were identified for energy and range features of the first order class and several textures features across different brain regions. Conclusion Our results indicated the baselines of the repeatable texture features in healthy brain structural MRI highlighting inter-scanner stability. According to the findings, MRI sequencing and VOI location impact feature robustness and should be considered in brain radiomic studies.
Collapse
Affiliation(s)
- Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging (RCMCI), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ahmad Mostaar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Zare Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mohammad Hosseini
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging (RCMCI), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Yaghobi Joybari
- Department of Radiation Oncology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghadiri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging (RCMCI), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
7
|
Khodabakhshi Z, Gabrys H, Wallimann P, Guckenberger M, Andratschke N, Tanadini-Lang S. Magnetic resonance imaging radiomic features stability in brain metastases: Impact of image preprocessing, image-, and feature-level harmonization. Phys Imaging Radiat Oncol 2024; 30:100585. [PMID: 38799810 PMCID: PMC11127267 DOI: 10.1016/j.phro.2024.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Background and purpose Magnetic resonance imaging (MRI) scans are highly sensitive to acquisition and reconstruction parameters which affect feature stability and model generalizability in radiomic research. This work aims to investigate the effect of image pre-processing and harmonization methods on the stability of brain MRI radiomic features and the prediction performance of radiomic models in patients with brain metastases (BMs). Materials and methods Two T1 contrast enhanced brain MRI data-sets were used in this study. The first contained 25 BMs patients with scans at two different time points and was used for features stability analysis. The effect of gray level discretization (GLD), intensity normalization (Z-score, Nyul, WhiteStripe, and in house-developed method named N-Peaks), and ComBat harmonization on features stability was investigated and features with intraclass correlation coefficient >0.8 were considered as stable. The second data-set containing 64 BMs patients was used for a classification task to investigate the informativeness of stable features and the effects of harmonization methods on radiomic model performance. Results Applying fixed bin number (FBN) GLD, resulted in higher number of stable features compare to fixed bin size (FBS) discretization (10 ± 5.5 % higher). `Harmonization in feature domain improved the stability for non-normalized and normalized images with Z-score and WhiteStripe methods. For the classification task, keeping the stable features resulted in good performance only for normalized images with N-Peaks along with FBS discretization. Conclusions To develop a robust MRI based radiomic model we recommend using an intensity normalization method based on a reference tissue (e.g N-Peaks) and then using FBS discretization.
Collapse
Affiliation(s)
- Zahra Khodabakhshi
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hubert Gabrys
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Wallimann
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Naval-Baudin P, Pons-Escoda A, Camins À, Arroyo P, Viveros M, Castell J, Cos M, Martínez-Yélamos A, Martínez-Yélamos S, Majós C. Deeply 3D-T1-TFE hypointense voxels are characteristic of phase-rim lesions in multiple sclerosis. Eur Radiol 2024; 34:1337-1345. [PMID: 37278854 PMCID: PMC10853299 DOI: 10.1007/s00330-023-09784-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVES The development of new drugs for the treatment of progressive multiple sclerosis (MS) highlights the need for new prognostic biomarkers. Phase-rim lesions (PRLs) have been proposed as markers of progressive disease but are difficult to identify and quantify. Previous studies have identified T1-hypointensity in PRLs. The aim of this study was to compare the intensity profiles of PRLs and non-PRL white-matter lesions (nPR-WMLs) on three-dimensional T1-weighted turbo field echo (3DT1TFE) MRI. We then evaluated the performance of a derived metric as a surrogate for PRLs as potential markers for risk of disease progression. METHODS This study enrolled a cohort of relapsing-remitting (n = 10) and secondary progressive MS (n = 10) patients for whom 3 T MRI was available. PRLs and nPR-WMLs were segmented, and voxel-wise normalized T1-intensity histograms were analyzed. The lesions were divided equally into training and test datasets, and the fifth-percentile (p5)-normalized T1-intensity of each lesion was compared between groups and used for classification prediction. RESULTS Voxel-wise histogram analysis showed a unimodal histogram for nPR-WMLs and a bimodal histogram for PRLs with a large peak in the hypointense limit. Lesion-wise analysis included 1075 nPR-WMLs and 39 PRLs. The p5 intensity of PRLs was significantly lower than that of nPR-WMLs. The T1 intensity-based PRL classifier had a sensitivity of 0.526 and specificity of 0.959. CONCLUSIONS Profound hypointensity on 3DT1TFE MRI is characteristic of PRLs and rare in other white-matter lesions. Given the widespread availability of T1-weighted imaging, this feature might serve as a surrogate biomarker for smoldering inflammation. CLINICAL RELEVANCE STATEMENT Quantitative analysis of 3DT1TFE may detect deeply hypointense voxels in multiple sclerosis lesions, which are highly specific to PRLs. This could serve as a specific indicator of smoldering inflammation in MS, aiding in early detection of disease progression. KEY POINTS • Phase-rim lesions (PRLs) in multiple sclerosis present a characteristic T1-hypointensity on 3DT1TFE MRI. • Intensity-normalized 3DT1TFE can be used to systematically identify and quantify these deeply hypointense foci. • Deep T1-hypointensity may act as an easily detectable, surrogate marker for PRLs.
Collapse
Affiliation(s)
- Pablo Naval-Baudin
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain.
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain.
| | - Albert Pons-Escoda
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain
| | - Àngels Camins
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Pablo Arroyo
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain
| | - Mildred Viveros
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Josep Castell
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Mònica Cos
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Antonio Martínez-Yélamos
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Sergio Martínez-Yélamos
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Carles Majós
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| |
Collapse
|
9
|
Lai Y, Wu Y, Chen X, Gu W, Zhou G, Weng M. MRI-based Machine Learning Radiomics Can Predict CSF1R Expression Level and Prognosis in High-grade Gliomas. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:209-229. [PMID: 38343263 PMCID: PMC10976932 DOI: 10.1007/s10278-023-00905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 03/02/2024]
Abstract
The purpose of this study is to predict the mRNA expression of CSF1R in HGG non-invasively using MRI (magnetic resonance imaging) omics technology and to evaluate the correlation between the established radiomics model and prognosis. We investigated the predictive value of CSF1R in the Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) database. The Support vector machine (SVM) and the Logistic regression (LR) algorithms were used to create a radiomics_score (Rad_score), respectively. The effectiveness and performance of the radiomics model was assessed in the training (n = 89) and tenfold cross-validation sets. We further analyzed the correlation between Rad_score and macrophage-related genes using Spearman correlation analysis. A radiomics nomogram combining the clinical factors and Rad_score was constructed to validate the radiomic signatures for individualized survival estimation and risk stratification. The results showed that CSF1R expression was markedly elevated in HGG tissues, which was related to worse prognosis. CSF1R expression was closely related to the abundance of infiltrating immune cells, such as macrophages. We identified nine features for establishing a radiomics model. The radiomics model predicting CSF1R achieved high AUC in training (0.768 in SVM and 0.792 in LR) and tenfold cross-validation sets (0.706 in SVM and 0.717 in LR). Rad_score was highly associated with tumor-related macrophage genes. A radiomics nomogram combining the Rad_score and clinical factors was constructed and revealed satisfactory performance. MRI-based Rad_score is a novel way to predict CSF1R expression and prognosis in high-grade glioma patients. The radiomics nomogram could optimize individualized survival estimation for HGG patients.
Collapse
Affiliation(s)
- Yuling Lai
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yiyang Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan.
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Guoxia Zhou
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Meilin Weng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Ghosh A, Yekeler E, Teixeira SR, Dalal D, States L. Role of MRI radiomics for the prediction of MYCN amplification in neuroblastomas. Eur Radiol 2023; 33:6726-6735. [PMID: 37178203 DOI: 10.1007/s00330-023-09628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES We evaluate MR radiomics and develop machine learning-based classifiers to predict MYCN amplification in neuroblastomas. METHODS A total of 120 patients with neuroblastomas and baseline MR imaging examination available were identified of whom 74 (mean age ± standard deviation [SD] of 6 years and 2 months ± 4 years and 9 months; 43 females and 31 males, 14 MYCN amplified) underwent imaging at our institution. This was therefore used to develop radiomics models. The model was tested in a cohort of children with the same diagnosis but imaged elsewhere (n = 46, mean age ± SD: 5 years 11 months ± 3 years 9 months, 26 females and 14 MYCN amplified). Whole tumour volumes of interest were adopted to extract first-order histogram and second-order radiomics features. Interclass correlation coefficient and maximum relevance and minimum redundancy algorithm were applied for feature selection. Logistic regression, support vector machine, and random forest were employed as the classifiers. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic accuracy of the classifiers on the external test set. RESULTS The logistic regression model and the random forest both showed an AUC of 0.75. The support vector machine classifier obtained an AUC of 0.78 on the test set with a sensitivity of 64% and a specificity of 72%. CONCLUSION The study provides preliminary retrospective evidence demonstrating the feasibility of MRI radiomics in predicting MYCN amplification in neuroblastomas. Future studies are needed to explore the correlation between other imaging features and genetic markers and to develop multiclass predictive models. KEY POINTS • MYCN amplification in neuroblastomas is an important determinant of disease prognosis. • Radiomics analysis of pre-treatment MR examinations can be used to predict MYCN amplification in neuroblastomas. • Radiomics machine learning models showed good generalisability to external test set, demonstrating reproducibility of the computational models.
Collapse
Affiliation(s)
- Adarsh Ghosh
- Department of Radiology, Cincinnati Children's Hospital and Medical Centre, Cincinnati, OH, USA.
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Ensar Yekeler
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sara Reis Teixeira
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deepa Dalal
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa States
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Chen Z, Chen J, Zhao J, Liu B, Jiang S, Si D, Ding H, Nian Y, Yang X, Xiao J. What Matters in Radiological Image Segmentation? Effect of Segmentation Errors on the Diagnostic Related Features. J Digit Imaging 2023; 36:2088-2099. [PMID: 37340195 PMCID: PMC10501981 DOI: 10.1007/s10278-023-00865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
Segmentation is a crucial step in extracting the medical image features for clinical diagnosis. Though multiple metrics have been proposed to evaluate the segmentation performance, there is no clear study on how or to what extent the segmentation errors will affect the diagnostic related features used in clinical practice. Therefore, we proposed a segmentation robustness plot (SRP) to build the link between segmentation errors and clinical acceptance, where relative area under the curve (R-AUC) was designed to help clinicians to identify the robust diagnostic related image features. In experiments, we first selected representative radiological series from time series (cardiac first-pass perfusion) and spatial series (T2 weighted images on brain tumors) of magnetic resonance images, respectively. Then, dice similarity coefficient (DSC) and Hausdorff distance (HD), as the widely used evaluation metrics, were used to systematically control the degree of the segmentation errors. Finally, the differences between diagnostic related image features extracted from the ground truth and the derived segmentation were analyzed, using the statistical method large sample size T-test to calculate the corresponding p values. The results are denoted in the SRP, where the x-axis indicates the segmentation performance using the aforementioned evaluation metric, and the y-axis shows the severity of the corresponding feature changes, which are expressed in either the p values for a single case or the proportion of patients without significant change. The experimental results in SRP show that when DSC is above 0.95 and HD is below 3 mm, the segmentation errors will not change the features significantly in most cases. However, when segmentation gets worse, additional metrics are required for further analysis. In this way, the proposed SRP indicates the impact of the segmentation errors on the severity of the corresponding feature changes. By using SRP, one could easily define the acceptable segmentation errors in a challenge. Additionally, the R-AUC calculated from SRP provides an objective reference to help the selection of reliable features in image analysis.
Collapse
Affiliation(s)
- Zihang Chen
- Bioengineering College, Chongqing University, Chongqing, China
| | - Jiafei Chen
- The department of radiology, Southwest Hospital, Chongqing, China
| | - Jun Zhao
- The department of radiology, Southwest Hospital, Chongqing, China
| | - Bowei Liu
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Shuanglong Jiang
- Bio-Med Informatics Research Center & Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Dongyue Si
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Haiyan Ding
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Yongjian Nian
- School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Xiaochao Yang
- School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jingjing Xiao
- Bio-Med Informatics Research Center & Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Jensen LJ, Kim D, Elgeti T, Steffen IG, Schaafs LA, Hamm B, Nagel SN. The role of parametric feature maps to correct different volume of interest sizes: an in vivo liver MRI study. Eur Radiol Exp 2023; 7:48. [PMID: 37670193 PMCID: PMC10480134 DOI: 10.1186/s41747-023-00362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Different volume of interest (VOI) sizes influence radiomic features. This study examined if translating images into feature maps before feature sampling could compensate for these effects in liver magnetic resonance imaging (MRI). METHODS T1- and T2-weighted sequences from three different scanners (two 3-T scanners, one 1.5-T scanner) of 66 patients with normal abdominal MRI were included retrospectively. Three differently sized VOIs (10, 20, and 30 mm in diameter) were drawn in the liver parenchyma (right lobe), excluding adjacent structures. Ninety-three features were extracted conventionally using PyRadiomics. All images were also converted to 93 parametric feature maps using a pretested software. Agreement between the three VOI sizes was assessed with overall concordance correlation coefficients (OCCCs), while OCCCs > 0.85 were rated reproducible. OCCCs were calculated twice: for the VOI sizes of 10, 20, and 30 mm and for those of 20 and 30 mm. RESULTS When extracted from original images, only 4 out of the 93 features were reproducible across all VOI sizes in T1- and T2-weighted images. When the smallest VOI was excluded, 5 features (T1-weighted) and 7 features (T2-weighted) were reproducible. Extraction from parametric maps increased the number of reproducible features to 9 (T1- and T2-weighted) across all VOIs. Excluding the 10-mm VOI, reproducibility improved to 16 (T1-weighted) and 55 features (T2-weighted). The stability of all other features also increased in feature maps. CONCLUSIONS Translating images into parametric maps before feature extraction improves reproducibility across different VOI sizes in normal liver MRI. RELEVANCE STATEMENT The size of the segmented VOI influences the feature quantity of radiomics, while software-based conversion of images into parametric feature maps before feature sampling improves reproducibility across different VOI sizes in MRI of normal liver tissue. KEY POINTS • Parametric feature maps can compensate for different VOI sizes. • The effect seems dependent on the VOI sizes and the MRI sequence. • Feature maps can visualize features throughout the entire image stack.
Collapse
Affiliation(s)
- Laura Jacqueline Jensen
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Damon Kim
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Thomas Elgeti
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ingo Günter Steffen
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Lars-Arne Schaafs
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Bernd Hamm
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sebastian Niko Nagel
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
13
|
Chaddad A, Tan G, Liang X, Hassan L, Rathore S, Desrosiers C, Katib Y, Niazi T. Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers (Basel) 2023; 15:3839. [PMID: 37568655 PMCID: PMC10416937 DOI: 10.3390/cancers15153839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The use of multiparametric magnetic resonance imaging (mpMRI) has become a common technique used in guiding biopsy and developing treatment plans for prostate lesions. While this technique is effective, non-invasive methods such as radiomics have gained popularity for extracting imaging features to develop predictive models for clinical tasks. The aim is to minimize invasive processes for improved management of prostate cancer (PCa). This study reviews recent research progress in MRI-based radiomics for PCa, including the radiomics pipeline and potential factors affecting personalized diagnosis. The integration of artificial intelligence (AI) with medical imaging is also discussed, in line with the development trend of radiogenomics and multi-omics. The survey highlights the need for more data from multiple institutions to avoid bias and generalize the predictive model. The AI-based radiomics model is considered a promising clinical tool with good prospects for application.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada
| | - Guina Tan
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | - Xiaojuan Liang
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | - Lama Hassan
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | | | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada
| | - Yousef Katib
- Department of Radiology, Taibah University, Al Madinah 42361, Saudi Arabia
| | - Tamim Niazi
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
14
|
Dinis Fernandes C, Schaap A, Kant J, van Houdt P, Wijkstra H, Bekers E, Linder S, Bergman AM, van der Heide U, Mischi M, Zwart W, Eduati F, Turco S. Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer. Cancers (Basel) 2023; 15:3074. [PMID: 37370685 DOI: 10.3390/cancers15123074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is a highly prevalent cancer type with a heterogeneous prognosis. An accurate assessment of tumor aggressiveness can pave the way for tailored treatment strategies, potentially leading to better outcomes. While tumor aggressiveness is typically assessed based on invasive methods (e.g., biopsy), radiogenomics, combining diagnostic imaging with genomic information can help uncover aggressive (imaging) phenotypes, which in turn can provide non-invasive advice on individualized treatment regimens. In this study, we carried out a parallel analysis on both imaging and transcriptomics data in order to identify features associated with clinically significant PCa (defined as an ISUP grade ≥ 3), subsequently evaluating the correlation between them. Textural imaging features were extracted from multi-parametric MRI sequences (T2W, DWI, and DCE) and combined with DCE-derived parametric pharmacokinetic maps obtained using magnetic resonance dispersion imaging (MRDI). A transcriptomic analysis was performed to derive functional features on transcription factors (TFs), and pathway activity from RNA sequencing data, here referred to as transcriptomic features. For both the imaging and transcriptomic features, different machine learning models were separately trained and optimized to classify tumors in either clinically insignificant or significant PCa. These models were validated in an independent cohort and model performance was used to isolate a subset of relevant imaging and transcriptomic features to be further investigated. A final set of 31 imaging features was correlated to 33 transcriptomic features obtained on the same tumors. Five significant correlations (p < 0.05) were found, of which, three had moderate strength (|r| ≥ 0.5). The strongest significant correlations were seen between a perfusion-based imaging feature-MRDI A median-and the activities of the TFs STAT6 (-0.64) and TFAP2A (-0.50). A higher-order T2W textural feature was also significantly correlated to the activity of the TF STAT6 (-0.58). STAT6 plays an important role in controlling cell proliferation and migration. Loss of the AP2alpha protein expression, quantified by TFAP2A, has been strongly associated with aggressiveness and progression in PCa. According to our findings, a combination of texture features extracted from T2W and DCE, as well as perfusion-based pharmacokinetic features, can be considered for the prediction of clinically significant PCa, with the pharmacokinetic MRDI A feature being the most correlated with the underlying transcriptomic information. These results highlight a link between quantitative imaging features and the underlying transcriptomic landscape of prostate tumors.
Collapse
Affiliation(s)
- Catarina Dinis Fernandes
- Electrical Engineering Department, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Annekoos Schaap
- Electrical Engineering Department, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Joan Kant
- Biomedical Engineering-Computational Biology Department, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Petra van Houdt
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Hessel Wijkstra
- Electrical Engineering Department, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Urology, Amsterdam University Medical Centers, 1100 DD Amsterdam, The Netherlands
| | - Elise Bekers
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Simon Linder
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Division of Medical Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Uulke van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Massimo Mischi
- Electrical Engineering Department, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Wilbert Zwart
- Biomedical Engineering-Computational Biology Department, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Federica Eduati
- Biomedical Engineering-Computational Biology Department, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Simona Turco
- Electrical Engineering Department, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Ubaldi L, Saponaro S, Giuliano A, Talamonti C, Retico A. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning. Phys Med 2023; 107:102538. [PMID: 36796177 DOI: 10.1016/j.ejmp.2023.102538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
PURPOSE Analysis pipelines based on the computation of radiomic features on medical images are widely used exploration tools across a large variety of image modalities. This study aims to define a robust processing pipeline based on Radiomics and Machine Learning (ML) to analyze multiparametric Magnetic Resonance Imaging (MRI) data to discriminate between high-grade (HGG) and low-grade (LGG) gliomas. METHODS The dataset consists of 158 multiparametric MRI of patients with brain tumor publicly available on The Cancer Imaging Archive, preprocessed by the BraTS organization committee. Three different types of image intensity normalization algorithms were applied and 107 features were extracted for each tumor region, setting the intensity values according to different discretization levels. The predictive power of radiomic features in the LGG versus HGG categorization was evaluated by using random forest classifiers. The impact of the normalization techniques and of the different settings in the image discretization was studied in terms of the classification performances. A set of MRI-reliable features was defined selecting the features extracted according to the most appropriate normalization and discretization settings. RESULTS The results show that using MRI-reliable features improves the performance in glioma grade classification (AUC=0.93±0.05) with respect to the use of raw (AUC=0.88±0.08) and robust features (AUC=0.83±0.08), defined as those not depending on image normalization and intensity discretization. CONCLUSIONS These results confirm that image normalization and intensity discretization strongly impact the performance of ML classifiers based on radiomic features. Thus, special attention should be provided in the image preprocessing step before typical radiomic and ML analysis are carried out.
Collapse
Affiliation(s)
- Leonardo Ubaldi
- National Institute for Nuclear Physics (INFN), Firenze Division, Firenze, Italy, Firenze, Italy; Department Biomedical Experimental and Clinical Science "Mario Serio", Univeristy of Firenze, Firenze, Italy
| | - Sara Saponaro
- University of Pisa, Pisa, Italy; National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy.
| | | | - Cinzia Talamonti
- National Institute for Nuclear Physics (INFN), Firenze Division, Firenze, Italy, Firenze, Italy; Department Biomedical Experimental and Clinical Science "Mario Serio", Univeristy of Firenze, Firenze, Italy
| | - Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| |
Collapse
|
16
|
Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, Rotili A, Bozzini AC, Penco S, Dominelli V, Trentin C, Ferrari F, Farina M, Meneghetti L, Latronico A, Abbate F, Origgi D, Carrafiello G, Cassano E. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023; 12:jcm12041372. [PMID: 36835908 PMCID: PMC9963325 DOI: 10.3390/jcm12041372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: ; Tel.: +39-02-574891
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Rapino
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Eleonora Lombardo
- UOC of Diagnostic Imaging, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Priyan Tantrige
- Department of Radiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Carla Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Mariagiorgia Farina
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Abbate
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
17
|
Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images. J Imaging 2023; 9:jimaging9020032. [PMID: 36826951 PMCID: PMC9961017 DOI: 10.3390/jimaging9020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Radiomic analysis allows for the detection of imaging biomarkers supporting decision-making processes in clinical environments, from diagnosis to prognosis. Frequently, the original set of radiomic features is augmented by considering high-level features, such as wavelet transforms. However, several wavelets families (so called kernels) are able to generate different multi-resolution representations of the original image, and which of them produces more salient images is not yet clear. In this study, an in-depth analysis is performed by comparing different wavelet kernels and by evaluating their impact on predictive capabilities of radiomic models. A dataset composed of 1589 chest X-ray images was used for COVID-19 prognosis prediction as a case study. Random forest, support vector machine, and XGBoost were trained (on a subset of 1103 images) after a rigorous feature selection strategy to build-up the predictive models. Next, to evaluate the models generalization capability on unseen data, a test phase was performed (on a subset of 486 images). The experimental findings showed that Bior1.5, Coif1, Haar, and Sym2 kernels guarantee better and similar performance for all three machine learning models considered. Support vector machine and random forest showed comparable performance, and they were better than XGBoost. Additionally, random forest proved to be the most stable model, ensuring an appropriate balance between sensitivity and specificity.
Collapse
|
18
|
Hooper GW, Ginat DT. MRI radiomics and potential applications to glioblastoma. Front Oncol 2023; 13:1134109. [PMID: 36874083 PMCID: PMC9982088 DOI: 10.3389/fonc.2023.1134109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
MRI plays an important role in the evaluation of glioblastoma, both at initial diagnosis and follow up after treatment. Quantitative analysis via radiomics can augment the interpretation of MRI in terms of providing insights regarding the differential diagnosis, genotype, treatment response, and prognosis. The various MRI radiomic features of glioblastoma are reviewed in this article.
Collapse
Affiliation(s)
- Grayson W Hooper
- Landstuhl Regional Medical Center, Department of Radiology, Landstuhl, Germany
| | - Daniel T Ginat
- University of Chicago, Department of Radiology, Chicago, IL, United States
| |
Collapse
|