1
|
Luo F, Zhang Y, Zhang S, Ji Y, Yan D, Lai M, Yang X, Zhang D, Ji X. Rational design of Near-Infrared fluorescent probe for monitoring HNO in plants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124672. [PMID: 38905899 DOI: 10.1016/j.saa.2024.124672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Nitroxyl (HNO), a reactive nitrogen species (RNS), is essential for plant growth. However, the action of HNO in plants has been difficult to understand due to the lack of highly sensitive and real-time in-situ monitoring tools. Herein, we presented a near-infrared fluorescent probe, DCI-HNO, based on dicyanoisophorone fluorophore, for real-time mapping HNO in plants. The introduction of a phosphine moiety as a specific HNO recognition unit can inhibit the intramolecular charge transfer (ICT) of probe DCI-HNO. However, in the presence of HNO, the ICT process occurred, leading to the emission at 665 nm. Probe DCI-HNO exhibited high sensitivity (97 nM), rapid response time (8 min), large Stokes shift (135 nm) for detection of HNO in plants. The novel developed probe has successfully imaged endogenous HNO produced during NO/H2S cross-talk in plant tissues. Additionally, the up-regulated in HNO levels during tobacco aging and in response to stress has been confirmed. Therefore, probe DCI-HNO has provided a reliable method for monitoring the NO/H2S cross-talk and revealing the role of HNO in plants.
Collapse
Affiliation(s)
- Fei Luo
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Ying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Shiyi Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuhang Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Dingwei Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Miao Lai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaopeng Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Di Zhang
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiaoming Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Velagic A, Li M, Deo M, Li JC, Kiriazis H, Donner DG, Anderson D, De Blasio MJ, Woodman OL, Kemp-Harper BK, Qin CX, Ritchie RH. A high-sucrose diet exacerbates the left ventricular phenotype in a high fat-fed streptozotocin rat model of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2023; 324:H241-H257. [PMID: 36607798 DOI: 10.1152/ajpheart.00390.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Left ventricular (LV) dysfunction is an early, clinically detectable sign of cardiomyopathy in type 2 diabetes mellitus (T2DM) that precedes the development of symptomatic heart failure. Preclinical models of diabetic cardiomyopathy are essential to develop therapies that may prevent or delay the progression of heart failure. This study examined the molecular, structural, and functional cardiac phenotype of two rat models of T2DM induced by a high-fat diet (HFD) with a moderate- or high-sucrose content (containing 88.9 or 346 g/kg sucrose, respectively), plus administration of low-dose streptozotocin (STZ). At 8 wk of age, male Sprague-Dawley rats commenced a moderate- or high-sucrose HFD. Two weeks later, rats received low-dose STZ (35 mg/kg ip for 2 days) and remained on their respective diets. LV function was assessed by echocardiography 1 wk before end point. At 22 wk of age, blood and tissues were collected postmortem. Relative to chow-fed sham rats, diabetic rats on a moderate- or high-sucrose HFD displayed cardiac reactive oxygen species dysregulation, perivascular fibrosis, and impaired LV diastolic function. The diabetes-induced impact on LV adverse remodeling and diastolic dysfunction was more apparent when a high-sucrose HFD was superimposed on STZ. In conclusion, a high-sucrose HFD in combination with low-dose STZ produced a cardiac phenotype that more closely resembled T2DM-induced cardiomyopathy than STZ diabetic rats subjected to a moderate-sucrose HFD.NEW & NOTEWORTHY Left ventricular dysfunction and adverse remodeling were more pronounced in diabetic rats that received low-dose streptozotocin (STZ) and a high-sucrose high-fat diet (HFD) compared with those on a moderate-sucrose HFD in combination with STZ. Our findings highlight the importance of sucrose content in diet composition, particularly in preclinical studies of diabetic cardiomyopathy, and demonstrate that low-dose STZ combined with a high-sucrose HFD is an appropriate rodent model of cardiomyopathy in type 2 diabetes.
Collapse
Affiliation(s)
- Anida Velagic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mandy Li
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Minh Deo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jasmin Chendi Li
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dovile Anderson
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Miles J De Blasio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Barbara K Kemp-Harper
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Velagic A, Li JC, Qin CX, Li M, Deo M, Marshall SA, Anderson D, Woodman OL, Horowitz JD, Kemp-Harper BK, Ritchie RH. Cardioprotective Actions of Nitroxyl Donor Angeli's Salt are Preserved in the Diabetic Heart and Vasculature in the Face of Nitric Oxide Resistance. Br J Pharmacol 2022; 179:4117-4135. [PMID: 35365882 PMCID: PMC9540873 DOI: 10.1111/bph.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose The risk of fatal cardiovascular events is increased in patients with type 2 diabetes mellitus (T2DM). A major contributor to poor prognosis is impaired nitric oxide (NO•) signalling at the level of tissue responsiveness, termed NO• resistance. This study aimed to determine if T2DM promotes NO• resistance in the heart and vasculature and whether tissue responsiveness to nitroxyl (HNO) is affected. Experimental Approach At 8 weeks of age, male Sprague–Dawley rats commenced a high‐fat diet. After 2 weeks, the rats received low‐dose streptozotocin (two intraperitoneal injections, 35 mg·kg−1, over two consecutive days) and continued on the same diet. Twelve weeks later, isolated hearts were Langendorff‐perfused to assess responses to the NO• donor diethylamine NONOate (DEA/NO) and the HNO donor Angeli's salt. Isolated mesenteric arteries were utilised to measure vascular responsiveness to the NO• donors sodium nitroprusside (SNP) and DEA/NO, and the HNO donor Angeli's salt. Key Results Inotropic, lusitropic and coronary vasodilator responses to DEA/NO were impaired in T2DM hearts, whereas responses to Angeli's salt were preserved or enhanced. Vasorelaxation to Angeli's salt was augmented in T2DM mesenteric arteries, which were hyporesponsive to the relaxant effects of SNP and DEA/NO. Conclusion and Implications This is the first evidence that inotropic and lusitropic responses are preserved, and NO• resistance in the coronary and mesenteric vasculature is circumvented, by the HNO donor Angeli's salt in T2DM. These findings highlight the cardiovascular therapeutic potential of HNO donors, especially in emergencies such as acute ischaemia or heart failure.
Collapse
Affiliation(s)
- Anida Velagic
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jasmin Chendi Li
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Mandy Li
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Minh Deo
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Sarah A Marshall
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, VIC, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Owen L Woodman
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - John D Horowitz
- Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, SA, Australia
| | - Barbara K Kemp-Harper
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
He A, Shen J, Xue Y, Xiang Li, Li Y, Huang L, Lv D, Luo M. Diacerein attenuates vascular dysfunction by reducing inflammatory response and insulin resistance in type 2 diabetic rats. Biochem Biophys Res Commun 2021; 585:68-74. [PMID: 34801936 DOI: 10.1016/j.bbrc.2021.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022]
Abstract
AIM To examine the effect of diacerein on vascular dysfunction in type 2 diabetic rats and elucidate the mechanism of diacerein. METHODS In a rat model, type 2 diabetes was induced by high-fat diet and streptozotocin. Vascular function was assessed in vascular reactivity experiment. The effect of diacerein (10 or 20 mg/kg/day) on blood glucose, inflammation and insulin signaling, and modulators in vascular tissue in diabetic rats were investigated by molecular and biochemical approaches. RESULTS In this study, diacerein inhibited diabetes-induced vascular dysfunction. Diacerein treatment normalized blood glucose, insulin tolerance test, inflammatory cytokine levels and nitric oxide synthases expression in diabetic rats. Moreover, diacerein inhibited NF-κB and NLRP3 pathways and activated insulin signaling pathway related proteins IRS-1 and AKT in diabetic rats. CONCLUSION Diacerein improved vascular function effectively in diabetic rats by suppressing inflammation and reducing insulin resistance. These results suggest that diacerein may represent a novel therapy for patients with diabetes.
Collapse
Affiliation(s)
- An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Shen
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuzhou Xue
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanjing Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Longxiang Huang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dingyi Lv
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Minghao Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Kemp-Harper B. Vasoprotective Actions of Nitroxyl (HNO): A Story of Sibling Rivalry. J Cardiovasc Pharmacol 2021; 78:S13-S18. [PMID: 34840263 DOI: 10.1097/fjc.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Nitroxyl (HNO), the 1 electron-reduced and protonated form of nitric oxide (NO•), has emerged as a nitrogen oxide with a suite of vasoprotective properties and therapeutic advantages over its redox sibling. Although HNO has garnered much attention due to its cardioprotective actions in heart failure, its ability to modulate vascular function, without the limitations of tolerance development and NO• resistance, is desirable in the treatment of vascular disease. HNO serves as a potent vasodilator and antiaggregatory agent and has an ability to limit vascular inflammation and reactive oxygen species generation. In addition, its resistance to scavenging by reactive oxygen species and ability to target distinct vascular signaling pathways (Kv, KATP, and calcitonin gene-related peptide) contribute to its preserved efficacy in hypertension, diabetes, and hypercholesterolemia. In this review, the vasoprotective actions of HNO will be compared with those of NO•, and the therapeutic utility of HNO donors in the treatment of angina, acute cardiovascular emergencies, and chronic vascular disease are discussed.
Collapse
Affiliation(s)
- Barbara Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Matthies M, Rosenstand K, Nissen I, Muitjens S, Riber LP, De Mey JGR, Bloksgaard M. Nitric oxide (NO) synthase but not NO, HNO or H 2 O 2 mediates endothelium-dependent relaxation of resistance arteries from patients with cardiovascular disease. Br J Pharmacol 2021; 179:1049-1064. [PMID: 34664280 DOI: 10.1111/bph.15712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Superoxide anions can reduce the bioavailability and actions of endothelium-derived NO. In human resistance-sized arteries, endothelium-dependent vasodilatation can be mediated by H2 O2 instead of NO. Here, we tested the hypothesis that in resistance arteries from patients with cardiovascular disease, endothelium-dependent vasodilatation is mediated by a reactive oxygen species and not impaired by oxidative stress. EXPERIMENTAL APPROACH Small arteries were isolated from biopsies of the parietal pericardium of patients undergoing elective cardiothoracic surgery and were studied using immunohistochemical and organ chamber techniques. KEY RESULTS NO synthases 1, 2 and 3, superoxide dismutase 1 and catalase proteins were observed in the microvascular wall. Relaxing responses to bradykinin were endothelium dependent. During submaximal depolarization-induced contraction, bradykinin-mediated relaxations were inhibited by inhibitors of NO synthases (NOS) and soluble guanylyl cyclase (sGC) but not by scavengers of NO or HNO, inhibitors of cyclooxygenases, neuronal NO synthase, superoxide dismutase or catalase, or by exogenous catalase. During contraction stimulated by endothelin-1, these relaxations were not reduced by any of these interventions except DETCA, which caused a small reduction. CONCLUSION AND IMPLICATIONS In resistance arteries from patients with cardiovascular disease, endothelium-dependent relaxations seem not to be mediated by NO, HNO or H2 O2 , although NOS and sGC can be involved. These vasodilator responses continue during excessive oxidative stress.
Collapse
Affiliation(s)
- Maximilian Matthies
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Inger Nissen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stan Muitjens
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars P Riber
- Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Jo G R De Mey
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Pharmacology and Personalized Medicine, Maastricht University, Maastricht, The Netherlands
| | - Maria Bloksgaard
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Li JC, Velagic A, Qin CX, Li M, Leo CH, Kemp-Harper BK, Ritchie RH, Woodman OL. Diabetes Attenuates the Contribution of Endogenous Nitric Oxide but Not Nitroxyl to Endothelium Dependent Relaxation of Rat Carotid Arteries. Front Pharmacol 2021; 11:585740. [PMID: 33716721 PMCID: PMC7944142 DOI: 10.3389/fphar.2020.585740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Endothelial dysfunction is a major risk factor for several of the vascular complications of diabetes, including ischemic stroke. Nitroxyl (HNO), the one electron reduced and protonated form of nitric oxide (NO•), is resistant to scavenging by superoxide, but the role of HNO in diabetes mellitus associated endothelial dysfunction in the carotid artery remains unknown. Aim: To assess how diabetes affects the role of endogenous NO• and HNO in endothelium-dependent relaxation in rat isolated carotid arteries. Methods: Male Sprague Dawley rats were fed a high-fat-diet (HFD) for 2 weeks prior to administration of low dose streptozotocin (STZ; 35 mg/kg i. p./day) for 2 days. The HFD was continued for a further 12 weeks. Sham rats were fed standard chow and administered with citrate vehicle. After 14 weeks total, rats were anesthetized and carotid arteries collected to assess responses to the endothelium-dependent vasodilator, acetylcholine (ACh) by myography. The combination of calcium-activated potassium channel blockers, TRAM-34 (1 μmol/L) and apamin (1 μmol/L) was used to assess the contribution of endothelium-dependent hyperpolarization to relaxation. The corresponding contribution of NOS-derived nitrogen oxide species to relaxation was assessed using the combination of the NO• synthase inhibitor, L-NAME (200 μmol/L) and the soluble guanylate cyclase inhibitor ODQ (10 μmol/L). Lastly, L-cysteine (3 mmol/L), a selective HNO scavenger, and hydroxocobalamin (HXC; 100 μmol/L), a NO• scavenger, were used to distinguish between NO• and HNO-mediated relaxation. Results: At study end, diabetic rats exhibited significantly retarded body weight gain and elevated blood glucose levels compared to sham rats. The sensitivity and the maximal relaxation response to ACh was significantly impaired in carotid arteries from diabetic rats, indicating endothelial dysfunction. The vasorelaxation evoked by ACh was abolished by L-NAME plus ODQ, but not affected by the apamin plus TRAM-34 combination, indicating that NOS-derived nitrogen oxide species are the predominant endothelium-derived vasodilators in sham and diabetic rat carotid arteries. The maximum relaxation to ACh was significantly decreased by L-cysteine in both sham and diabetic rats, whereas HXC attenuated ACh-induced relaxation only in sham rats, suggesting that diabetes impaired the contribution of NO•, whereas HNO-mediated vasorelaxation remained intact. Conclusion: Both NO• and HNO contribute to endothelium-dependent relaxation in carotid arteries. In diabetes, NO•-mediated relaxation is impaired, whereas HNO-mediated relaxation was preserved. The potential for preserved HNO activity under pathological conditions that are associated with oxidative stress indicates that HNO donors may represent a viable therapeutic approach to the treatment of vascular dysfunction.
Collapse
Affiliation(s)
- Jasmin Chendi Li
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Anida Velagic
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Mandy Li
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chen Huei Leo
- Science, Maths and Technology Cluster, Singapore University of Technology & Design, Singapore, Singapore
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rebecca H. Ritchie
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Owen L. Woodman
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Nie XW, Huang DJ, Sun MT, Bian JS. Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacol Res 2020; 159:104961. [DOI: 10.1016/j.phrs.2020.104961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
|
9
|
Cardiovascular Therapeutic Potential of the Redox Siblings, Nitric Oxide (NO•) and Nitroxyl (HNO), in the Setting of Reactive Oxygen Species Dysregulation. Handb Exp Pharmacol 2020; 264:311-337. [PMID: 32813078 DOI: 10.1007/164_2020_389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) dysregulation is a hallmark of cardiovascular disease, characterised by an imbalance in the synthesis and removal of ROS. ROS such as superoxide (•O2-), hydrogen peroxide (H2O2), hydroxyl (OH•) and peroxynitrite (ONOO-) have a marked impact on cardiovascular function, contributing to the vascular impairment and cardiac dysfunction associated with diseases such as angina, hypertension, diabetes and heart failure. Central to the vascular dysfunction is a reduction in bioavailability and/or physiological effects of vasoprotective nitric oxide (NO•), leading to vasoconstriction, inflammation and vascular remodelling. In a cardiac context, increased ROS generation can also lead to modification of key proteins involved in cardiac contractility. Whilst playing a key role in the pathogenesis of cardiovascular disease, ROS dysregulation also limits the clinical efficacy of current therapies, such as nitrosovasodilators. As such, alternate therapies are sought. This review will discuss the impact of ROS dysregulation on the therapeutic utility of NO• and its redox sibling, nitroxyl (HNO). Both nitric oxide (NO) and nitroxyl (HNO) donors signal through soluble guanylyl cyclase (sGC). NO binds to the Fe(II) form of sGC and nitroxyl possibly to both sGC heme and thiol groups. In the vasculature, nitroxyl can also signal through voltage-dependent (Kv) and ATP-sensitive (KATP) K+ channels as well as calcitonin gene-related peptide (CGRP). In the heart, HNO directly targets critical thiols to increase myocardial contractility, an effect not seen with NO. The qualitative effects via elevation of cGMP are similar, i.e. lusitropic in the heart and inhibitory on vasoconstriction, inflammation, aggregation and vascular remodelling. Of pathophysiological significance is the fact the efficacy of NO donors is impaired by ROS, e.g. through chemical scavenging of NO, to generate reactive nitrogen oxide species (RNOS), whilst nitroxyl is apparently not.
Collapse
|
10
|
Velagic A, Qin C, Woodman OL, Horowitz JD, Ritchie RH, Kemp-Harper BK. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Front Pharmacol 2020; 11:727. [PMID: 32508651 PMCID: PMC7248192 DOI: 10.3389/fphar.2020.00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is associated with an increased mortality risk due to cardiovascular complications. Hyperglycemia-induced oxidative stress underlies these complications, leading to an impairment in endogenous nitric oxide (NO•) generation, together with reductions in NO• bioavailability and NO• responsiveness in the vasculature, platelets and myocardium. The latter impairment of responsiveness to NO•, termed NO• resistance, compromises the ability of traditional NO•-based therapeutics to improve hemodynamic status during diabetes-associated cardiovascular emergencies, such as acute myocardial infarction. Whilst a number of agents can ameliorate (e.g. angiotensin converting enzyme [ACE] inhibitors, perhexiline, statins and insulin) or circumvent (e.g. nitrite and sGC activators) NO• resistance, nitroxyl (HNO) donors offer a novel opportunity to circumvent NO• resistance in diabetes. With a suite of vasoprotective properties and an ability to enhance cardiac inotropic and lusitropic responses, coupled with preserved efficacy in the setting of oxidative stress, HNO donors have intact therapeutic potential in the face of diminished NO• signaling. This review explores the major mechanisms by which hyperglycemia-induced oxidative stress drives NO• resistance, and the therapeutic potential of HNO donors to circumvent this to treat cardiovascular complications in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Anida Velagic
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Owen L. Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - John D. Horowitz
- Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Induction of caveolin-3/eNOS complex by nitroxyl (HNO) ameliorates diabetic cardiomyopathy. Redox Biol 2020; 32:101493. [PMID: 32182574 PMCID: PMC7078438 DOI: 10.1016/j.redox.2020.101493] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Nitroxyl (HNO), one-electron reduced and protonated sibling of nitric oxide (NO), is a potential regulator of cardiovascular functions. It produces positive inotropic, lusitropic, myocardial anti-hypertrophic and vasodilator properties. Despite of these favorable actions, the significance and the possible mechanisms of HNO in diabetic hearts have yet to be fully elucidated. H9c2 cells or primary neonatal mouse cardiomyocytes were incubated with normal glucose (NG) or high glucose (HG). Male C57BL/6 mice received intraperitoneal injection of streptozotocin (STZ) to induce diabetes. Here, we demonstrated that the baseline fluorescence signals of HNO in H9c2 cells were reinforced by both HNO donor Angeli's salt (AS), and the mixture of hydrogen sulfide (H2S) donor sodium hydrogen sulfide (NaHS) and NO donor sodium nitroprusside (SNP), but decreased by HG. Pretreatment with AS significantly reduced HG-induced cell vitality injury, apoptosis, reactive oxygen species (ROS) generation, and hypertrophy in H9c2 cells. This effect was mediated by induction of caveolin-3 (Cav-3)/endothelial nitric oxide (NO) synthase (eNOS) complex. Disruption of Cav-3/eNOS by pharmacological manipulation or small interfering RNA (siRNA) abolished the protective effects of AS in HG-incubated H9c2 cells. In STZ-induced diabetic mice, administration of AS ameliorated the development of diabetic cardiomyopathy, as evidenced by improved cardiac function and reduced cardiac hypertrophy, apoptosis, oxidative stress and myocardial fibrosis without affecting hyperglycemia. This study shed light on how interaction of NO and H2S regulates cardiac pathology and provide new route to treat diabetic cardiomyopathy with HNO.
Collapse
|
12
|
The Novel Small-molecule Annexin-A1 Mimetic, Compound 17b, Elicits Vasoprotective Actions in Streptozotocin-induced Diabetic Mice. Int J Mol Sci 2020; 21:ijms21041384. [PMID: 32085666 PMCID: PMC7073122 DOI: 10.3390/ijms21041384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022] Open
Abstract
The formyl peptide receptor (FPR) family are a group of G-protein coupled receptors that play an important role in the regulation of inflammatory processes. It is well-established that activation of FPRs can have cardioprotective properties. Recently, more stable small-molecule FPR1/2 agonists have been described, including both Compound 17b (Cmpd17b) and Compound 43 (Cmpd43). Both agonists activate a range of signals downstream of FPR1/2 activation in human-engineered FPR-expressing cells, including ERK1/2 and Akt. Importantly, Cmpd17b (but not Cmpd43) favours bias away from intracellular Ca2+ mobilisation in this context, which has been associated with greater cardioprotection in response to Cmpd17b over Cmpd43. However, it is unknown whether these FPR agonists impact vascular physiology and/or elicit vasoprotective effects in the context of diabetes. First, we localized FPR1 and FPR2 receptors predominantly in vascular smooth muscle cells in the aortae of male C57BL/6 mice. We then analysed the vascular effects of Cmpd17b and Cmpd43 on the aorta using wire-myography. Cmpd17b but not Cmpd43 evoked a concentration-dependent relaxation of the mouse aorta. Removal of the endothelium or blockade of endothelium-derived relaxing factors using pharmacological inhibitors had no effect on Cmpd17b-evoked relaxation, demonstrating that its direct vasodilator actions were endothelium-independent. In aortae primed with elevated K+ concentration, increasing concentrations of CaCl2 evoked concentration-dependent contraction that is abolished by Cmpd17b, suggesting the involvement of the inhibition of Ca2+ mobilisation via voltage-gated calcium channels. Treatment with Cmpd17b for eight weeks reversed endothelial dysfunction in STZ-induced diabetic aorta through the upregulation of vasodilator prostanoids. Our data indicate that Cmpd17b is a direct endothelium-independent vasodilator, and a vasoprotective molecule in the context of diabetes.
Collapse
|
13
|
Qin CX, Anthonisz J, Leo CH, Kahlberg N, Velagic A, Li M, Jap E, Woodman OL, Parry LJ, Horowitz JD, Kemp-Harper BK, Ritchie RH. Nitric Oxide Resistance, Induced in the Myocardium by Diabetes, Is Circumvented by the Nitric Oxide Redox Sibling, Nitroxyl. Antioxid Redox Signal 2020; 32:60-77. [PMID: 31680536 DOI: 10.1089/ars.2018.7706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim: Impairment of tissue responsiveness to exogenous and endogenous nitric oxide (NO•), known as NO• resistance, occurs in many cardiovascular disease states, prominently in diabetes and especially in the presence of marked hyperglycemia. In this study, we sought to determine in moderate and severe diabetes (i) whether NO• resistance also occurs in the myocardium, and (ii) whether the NO• redox sibling nitroxyl (HNO) circumvents this. Results: The spectrum of acute NO• effects (induced by diethylamine-NONOate), including vasodilation, and enhanced myocardial contraction and relaxation were impaired by moderately diabetic rats ([blood glucose] ∼20 mM). In contrast, acute HNO effects (induced by isopropylamine-NONOate) were preserved even in more severe diabetes ([blood glucose] >28 mM). Intriguingly, the positive inotropic effects of HNO were significantly enhanced in diabetic rat hearts. Further, progressive attenuation of soluble guanylyl cyclase (sGC) contribution to myocardial NO• responses occurred with increasing severity of diabetes. Nevertheless, activation of sGC by HNO remained intact in the myocardium. Innovation: Diabetes is associated with marked attenuation of vascular and myocardial effects of NO and NO donors, and this NO• resistance is circumvented by HNO, suggesting potential therapeutic utility for HNO donors in cardiovascular emergencies in diabetics. Conclusion: These results provide the first evidence that NO• resistance occurs in diabetic hearts, and that HNO largely circumvents this problem. Further, the positive inotropic and lusitropic effects of HNO are enhanced in a severely diabetic myocardium, a finding that warrants further mechanistic interrogation. The results support a potential role for therapeutic HNO administration in acute treatment of ischemia and/or heart failure in diabetics.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Jarryd Anthonisz
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Chen Huei Leo
- School of Biosciences, University of Melbourne, Parkville, Australia.,Science and Maths Cluster, Singapore University of Technology & Design, Singapore Singapore
| | - Nicola Kahlberg
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Anida Velagic
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Edwina Jap
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Owen L Woodman
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Laura J Parry
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - John D Horowitz
- Cardiology Unit, The Queen Elizabeth Hospital, Basil Hetzel Institute, The University of Adelaide, Woodville SA, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Abstract
Vascular myography is an in vitro technique used to examine functional responses of isolated blood vessels. This classical pharmacological technique has been in use for over a century. The assay technique studies changes in isometric tone of large and small vessels, arteries and veins, and tissues from genetic or disease models. This chapter describes the apparatus required, tissue collection methods, and the mounting of the tissues in the chambers of both large organ baths and the small vessel myograph. Considerations of the experimental conditions and design are discussed as well as the analysis of the collected data.
Collapse
|
15
|
Endothelial dysfunction in renal arcuate arteries of obese Zucker rats: The roles of nitric oxide, endothelium-derived hyperpolarizing factors, and calcium-activated K+ channels. PLoS One 2017; 12:e0183124. [PMID: 28817716 PMCID: PMC5560550 DOI: 10.1371/journal.pone.0183124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/31/2017] [Indexed: 12/05/2022] Open
Abstract
The roles of nitric oxide (NO), endothelium-derived hyperpolarizing factors (EDHF), and calcium-activated K+ (KCa) channels in diabetes-associated endothelial dysfunction of small renal arteries are not clear. The present study investigated acetylcholine (ACh)-induced vasorelaxation of renal arcuate arteries from obese Zucker (OZ) rats at different diabetes durations, and the relative contribution of NO, EDHF, and KCa channels to the endothelial dysfunction. OZ rats of 7 weeks (prediabetic stage), 12 weeks (early diabetic stage), and 20 weeks (late diabetic stage), and time-matched lean control rats, were studied. Segments of arcuate arteries (130 to 180 μm) were isolated, cannulated and pressurized. Vascular endothelial functions were tested using ACh-induced vasodilation. Our experiments demonstrated: (1) ACh-elicited vasodilation was impaired in OZ rats of 20 weeks, but not in rats of 7 and 12 weeks; (2) inhibition of NO or EDHF (contributed by epoxyeicosatrienoic acids [EETs]) production significantly decreased ACh-induced vasodilation in both lean and OZ rats of 20 weeks. The reduction of ACh-induced vasodilation by inhibition of NO or EDHF formation was less in OZ rats, as compared to lean rats; and (3) inhibition of KCa channels markedly reduced ACh-induced vasodilation in lean control rats, but not in OZ rats of 20 weeks. Our observations indicated that endothelium-dependent vasodilation in renal arcuate arteries is impaired in diabetes mellitus; NO and EDHF, mainly EETs, dominate the ACh-induced vasodilation in renal arcuate arteries; the contribution of NO and EETs is impaired in diabetic rats; KCa channels are involved in ACh-induced vasodilation; and the activity of KCa channels is downregulated in diabetes mellitus.
Collapse
|
16
|
Leo CH, Fernando DT, Tran L, Ng HH, Marshall SA, Parry LJ. Serelaxin Treatment Reduces Oxidative Stress and Increases Aldehyde Dehydrogenase-2 to Attenuate Nitrate Tolerance. Front Pharmacol 2017; 8:141. [PMID: 28377719 PMCID: PMC5359255 DOI: 10.3389/fphar.2017.00141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/07/2017] [Indexed: 02/01/2023] Open
Abstract
Background: Glyceryl trinitrate (GTN) is a commonly prescribed treatment for acute heart failure patients. However, prolonged GTN treatment induces tolerance, largely due to increased oxidative stress and reduced aldehyde dehydrogenase-2 (ALDH-2) expression. Serelaxin has several vasoprotective properties, which include reducing oxidative stress and augmenting endothelial function. We therefore tested the hypothesis in rodents that serelaxin treatment could attenuate low-dose GTN-induced tolerance. Methods and Results: Co-incubation of mouse aortic rings ex vivo with GTN (10 μM) and serelaxin (10 nM) for 1 h, restored GTN responses, suggesting that serelaxin prevented the development of GTN tolerance. Male Wistar rats were subcutaneously infused with ethanol (control), low-dose GTN+placebo or low-dose GTN+serelaxin via osmotic minipumps for 3 days. Aortic vascular function and superoxide levels were assessed using wire myography and lucigenin-enhanced chemiluminescence assay respectively. Changes in aortic ALDH-2 expression were measured by qPCR and Western blot respectively. GTN+placebo infusion significantly increased superoxide levels, decreased ALDH-2 and attenuated GTN-mediated vascular relaxation. Serelaxin co-treatment with GTN significantly enhanced GTN-mediated vascular relaxation, reduced superoxide levels and increased ALDH-2 expression compared to GTN+placebo-treated rats. Conclusion: Our data demonstrate that a combination of serelaxin treatment with low dose GTN attenuates the development of GTN-induced tolerance by reducing superoxide production and increasing ALDH-2 expression in the rat aorta. We suggest that serelaxin may improve nitrate efficacy in a clinical setting.
Collapse
Affiliation(s)
- Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | | | - Lillie Tran
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | - Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | - Sarah A Marshall
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| |
Collapse
|
17
|
Tare M, Kalidindi RSR, Bubb KJ, Parkington HC, Boon WM, Li X, Sobey CG, Drummond GR, Ritchie RH, Kemp-Harper BK. Vasoactive actions of nitroxyl (HNO) are preserved in resistance arteries in diabetes. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:397-408. [PMID: 28074232 DOI: 10.1007/s00210-016-1336-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
Endothelial dysfunction is a major risk factor for the vascular complications of diabetes. Increased reactive oxygen species (ROS) generation, a hallmark of diabetes, reduces the bioavailability of endothelial vasodilators, including nitric oxide (NO·). The vascular endothelium also produces the one electron reduced and protonated form of NO·, nitroxyl (HNO). Unlike NO·, HNO is resistant to scavenging by superoxide anions (·O2─). The fate of HNO in resistance arteries in diabetes is unknown. We tested the hypothesis that the vasodilator actions of endogenous and exogenous HNO are preserved in resistance arteries in diabetes. We investigated the actions of HNO in small arteries from the mesenteric and femoral beds as they exhibit marked differences in endothelial vasodilator function following 8 weeks of streptozotocin (STZ)-induced diabetes mellitus. Vascular reactivity was assessed using wire myography and ·O2─ generation using lucigenin-enhanced chemiluminescence. The HNO donor, Angeli's salt, and the NO· donor, DEA/NO, evoked relaxations in both arteries of control rats, and these responses were unaffected by diabetes. Nox2 oxidase expression and ·O2─ generation were upregulated in mesenteric, but unchanged, in femoral arteries of diabetic rats. Acetylcholine-induced endothelium-dependent relaxation was impaired in mesenteric but not femoral arteries in diabetes. The HNO scavenger, L-cysteine, reduced this endothelium-dependent relaxation to a similar extent in femoral and mesenteric arteries from control and diabetic animals. In conclusion, HNO and NO· contribute to the NO synthase (NOS)-sensitive component of endothelium-dependent relaxation in mesenteric and femoral arteries. The role of HNO is sustained in diabetes, serving to maintain endothelium-dependent relaxation.
Collapse
Affiliation(s)
- Marianne Tare
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.,Monash Rural Health, Monash University, Churchill, VIC, Australia
| | - Rushita S R Kalidindi
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kristen J Bubb
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.,Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Helena C Parkington
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Wee-Ming Boon
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Xiang Li
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher G Sobey
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia
| | - Grant R Drummond
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
18
|
Ng HH, Leo CH, O'Sullivan K, Alexander SA, Davies MJ, Schiesser CH, Parry LJ. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress. Biochem Pharmacol 2016; 128:34-45. [PMID: 28027880 DOI: 10.1016/j.bcp.2016.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Hyperglycaemia increases the generation of reactive oxidants in blood vessels and is a major cause of endothelial dysfunction. A water-soluble selenium-containing sugar (1,4-Anhydro-4-seleno-d-talitol, SeTal) has potent antioxidant activity in vitro and is a promising treatment to accelerate wound healing in diabetic mice. One possible mechanism of SeTal action is a direct effect on blood vessels. Therefore, we tested the hypothesis that SeTal prevents endothelial dysfunction by scavenging reactive oxidants in isolated mouse aorta under conditions of acute oxidative stress induced by hyperglycaemia. Aortae were isolated from C57BL/6 male mice and mounted on a wire-myograph to assess vascular function. In the presence of a superoxide radical generator, pyrogallol, 300μM and 1mM of SeTal effectively prevented endothelial dysfunction compared to other selenium-containing compounds. In a second set of ex vivo experiments, mouse aortae were incubated for three days with either normal or high glucose, and co-incubated with SeTal at 37°C in 5% CO2. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh), increased superoxide production and decreased basal nitric oxide (NO) availability. SeTal (1mM) co-treatment prevented high glucose-induced endothelial dysfunction and oxidative stress in the mouse aorta. The presence of a cyclooxygenase inhibitor, indomethacin significantly improved the sensitivity to ACh in high glucose-treated aortae, but had no effect in SeTal-treated aortae. Our data show that SeTal has potent antioxidant activity in isolated mouse aortae and prevents high glucose-induced endothelial dysfunction by decreasing superoxide levels, increasing basal NO availability and normalising the contribution of vasoconstrictor prostanoids.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Kelly O'Sullivan
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stefanie-Ann Alexander
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Carl H Schiesser
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
19
|
The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res 2016; 116:57-69. [PMID: 27988384 DOI: 10.1016/j.phrs.2016.12.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) plays a pivotal role in the maintenance of cardiovascular homeostasis. A reduction in the bioavailability of endogenous NO, manifest as a decrease in the production and/or impaired signaling, is associated with many cardiovascular diseases including hypertension, atherosclerosis, stroke and heart failure. There is substantial evidence that reactive oxygen species (ROS), generated predominantly from NADPH oxidases (Nox), are responsible for the reduced NO bioavailability in vascular and cardiac pathologies. ROS can compromise NO function via a direct inactivation of NO, together with a reduction in NO synthesis and oxidation of its receptor, soluble guanylyl cyclase. Whilst nitrovasodilators are administered to compensate for the ROS-mediated loss in NO bioactivity, their clinical utility is limited due to the development of tolerance and resistance and systemic hypotension. Moreover, efforts to directly scavenge ROS with antioxidants has had limited clinical efficacy. This review outlines the therapeutic utility of NO-based therapeutics in cardiovascular diseases and describes the source and impact of ROS in these pathologies, with particular focus on the interaction with NO. Future therapeutic approaches in the treatment of cardiovascular diseases are highlighted with a focus on nitroxyl (HNO) donors as an alternative to traditional NO donors and the development of novel Nox inhibitors.
Collapse
|
20
|
Kahlberg N, Qin CX, Anthonisz J, Jap E, Ng HH, Jelinic M, Parry LJ, Kemp-Harper BK, Ritchie RH, Leo CH. Adverse vascular remodelling is more sensitive than endothelial dysfunction to hyperglycaemia in diabetic rat mesenteric arteries. Pharmacol Res 2016; 111:325-335. [DOI: 10.1016/j.phrs.2016.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/15/2016] [Accepted: 06/26/2016] [Indexed: 11/26/2022]
|
21
|
Kemp-Harper BK, Horowitz JD, Ritchie RH. Therapeutic Potential of Nitroxyl (HNO) Donors in the Management of Acute Decompensated Heart Failure. Drugs 2016; 76:1337-48. [DOI: 10.1007/s40265-016-0631-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways. Molecules 2016; 21:495. [PMID: 27092479 PMCID: PMC6274436 DOI: 10.3390/molecules21040495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s) that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.
Collapse
|
23
|
Ng HH, Leo CH, Parry LJ. Serelaxin (recombinant human relaxin-2) prevents high glucose-induced endothelial dysfunction by ameliorating prostacyclin production in the mouse aorta. Pharmacol Res 2016; 107:220-228. [PMID: 26993102 DOI: 10.1016/j.phrs.2016.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/22/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
Diabetes-induced endothelial dysfunction is a critical initiating factor in the development of cardiovascular complications. Treatment with relaxin improves tumour necrosis factor α-induced endothelial dysfunction by enhancing endothelial nitric oxide synthase (eNOS) activity and restoring superoxide dismutase 1 protein in rat aortic rings ex vivo. It is, therefore, possible that relaxin treatment could alleviate endothelial dysfunction in diabetes. This study aimed to test the hypothesis that serelaxin (recombinant human relaxin-2) prevents high glucose-induced vascular dysfunction in the mouse aorta. Abdominal aortae were isolated from C57BL/6 male mice and incubated in M199 media for 3days with either normal glucose (5.5mM) or high glucose (30mM), and co-incubated with placebo (20mM sodium acetate) or 10nM serelaxin at 37°C in 5% CO2. Vascular function was analysed using wire-myography. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh) (pEC50; normal glucose=7.66±0.10 vs high glucose=7.29±0.10, n=11-12, P<0.05) and the contraction induced by NOS inhibitor, L-NAME (200μM) (normal glucose=59.9±8.3% vs high glucose=38.7±4.3%, n=6, P<0.05), but had no effect on the endothelium-independent agonist, sodium nitroprusside (SNP)-mediated relaxation. Treatment with serelaxin restored endothelial function (pEC50; 7.83±0.11, n=11) but not NO availability. The presence of the cyclooxygenase (COX) inhibitor, indomethacin (1μM) (pEC50; control=7.29±0.10 vs indo=7.74±0.18, n=6-12, P<0.05) and a superoxide dismutase mimetic, tempol (10μM) (pEC50; control=7.29±0.10 vs tempol=7.82±0.05, n=6-12, P<0.01) significantly improved sensitivity to ACh in high glucose treated aortae, but had no effect in serelaxin treated aortae. This suggests that high glucose incubation alters the superoxide and COX-sensitive pathway, which was normalized by co-incubation with serelaxin. Neither high glucose incubation nor serelaxin treatment had an effect on cyclooxygenase 1 and 2 (Ptgs1, Ptgs2), prostacyclin synthase (PTGIS) and receptor (Ptgir) as well as thromboxane A2 receptor (Tbxa2r) mRNA expression. Importantly, production of prostacyclin was significantly (P<0.05) attenuated in high glucose treated aortae, which was prevented by serelaxin treatment. Our data show that serelaxin treatment for 3 days restores high glucose-induced endothelial dysfunction by ameliorating vasodilator prostacyclin production and possibly through the reduction of superoxide in the mouse aorta.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
24
|
Abstract
As flavonols are present in fruits and vegetables, they are consumed in considerable amounts in the diet. There is growing evidence that the well-recognized antioxidant, anti-inflammatory, and vasorelaxant actions of flavonols may, at least in part, result from modulation of biochemical signaling pathways and kinases. It is well established that diabetes is associated with increased cardiovascular morbidity and mortality. Despite clinical management of blood glucose levels, diabetes often results in cardiovascular disease. There is good evidence that endothelial dysfunction contributes significantly to the progression of diabetic cardiovascular diseases. This review describes the biological actions of flavonols that may ameliorate adverse cardiovascular events in diabetes. We discuss evidence that flavonols may be developed as novel pharmacological agents to prevent diabetes-induced vascular dysfunction.
Collapse
|
25
|
Leo CH, Jelinic M, Ng HH, Tare M, Parry LJ. Time-dependent activation of prostacyclin and nitric oxide pathways during continuous i.v. infusion of serelaxin (recombinant human H2 relaxin). Br J Pharmacol 2016; 173:1005-17. [PMID: 26660642 DOI: 10.1111/bph.13404] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE In the RELAX-AHF trial, a 48 h i.v. serelaxin infusion reduced systemic vascular resistance in patients with acute heart failure. Consistent with preclinical studies, serelaxin augments endothelial vasodilator function in rat mesenteric arteries. Little is known about the contribution of endothelium-derived relaxing factors after a longer duration of continuous serelaxin treatment. Here we have assessed vascular reactivity and mechanistic pathways in mesenteric arteries and veins and the aorta after 48 or 72 h continuous i.v. infusion of serelaxin. EXPERIMENTAL APPROACH Male rats were infused with either placebo or serelaxin (13.3 μg·kg(-1) ·h(-1) ) via the jugular vein using osmotic minipumps. Vascular function was assessed using wire myography. Changes in gene and protein expression and 6-keto PGF1α levels were determined by quantitative PCR, Western blot and ELISA respectively. KEY RESULTS Continuous i.v. serelaxin infusion augmented endothelium-dependent relaxation in arteries (mesenteric and aorta) but not in mesenteric veins. In mesenteric arteries, 48 h i.v. serelaxin infusion increased basal NOS activity, associated with increased endothelial NOS (eNOS) expression. Interestingly, phosphorylated-eNOS(Ser1177) , eNOS and basal NOS activity were reduced in mesenteric arteries following 72 h serelaxin treatment. At 72 h, serelaxin treatment improved bradykinin-mediated relaxation through COX2-derived PGI2 production. CONCLUSIONS AND IMPLICATIONS Continuous i.v. serelaxin infusion enhanced endothelial vasodilator function in arteries but not in veins. The underlying mediator at 48 h was NO but there was a transition to PGI2 by 72 h. Activation of the PGI2 -dependent pathway is key to the prolonged vascular response to serelaxin treatment.
Collapse
Affiliation(s)
- C H Leo
- School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - M Jelinic
- School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - H H Ng
- School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - M Tare
- Department of Physiology and School of Rural Health, Monash University, Parkville, Vic, Australia
| | - L J Parry
- School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
26
|
Chin KY, Michel L, Qin CX, Cao N, Woodman OL, Ritchie RH. The HNO donor Angeli’s salt offers potential haemodynamic advantages over NO or dobutamine in ischaemia–reperfusion injury in the rat heart ex vivo. Pharmacol Res 2016; 104:165-75. [DOI: 10.1016/j.phrs.2015.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 11/29/2022]
|
27
|
Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T, Takimoto E, Paolocci N, Berkowitz DE, Friebe A, Kass DA. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension 2014; 65:385-92. [PMID: 25452469 DOI: 10.1161/hypertensionaha.114.04285] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitroxyl (HNO), the reduced and protonated form of nitric oxide (NO·), confers unique physiological effects including vasorelaxation and enhanced cardiac contractility. These features have spawned current pharmaceutical development of HNO donors as heart failure therapeutics. HNO interacts with selective redox sensitive cysteines to effect signaling but is also proposed to activate soluble guanylate cyclase (sGC) in vitro to induce vasodilation and potentially enhance contractility. Here, we tested whether sGC stimulation is required for these HNO effects in vivo and if HNO also modifies a redox-sensitive cysteine (C42) in protein kinase G-1α to control vasorelaxation. Intact mice and isolated arteries lacking the sGC-β subunit (sGCKO, results in full sGC deficiency) or expressing solely a redox-dead C42S mutant protein kinase G-1α were exposed to the pure HNO donor, CXL-1020. CXL-1020 induced dose-dependent systemic vasodilation while increasing contractility in controls; however, vasodilator effects were absent in sGCKO mice whereas contractility response remained. The CXL-1020 dose reversing 50% of preconstricted force in aortic rings was ≈400-fold greater in sGCKO than controls. Cyclic-GMP and cAMP levels were unaltered in myocardium exposed to CXL-1020, despite its inotropic-vasodilator activity. In protein kinase G-1α(C42S) mice, CXL-1020 induced identical vasorelaxation in vivo and in isolated aortic and mesenteric vessels as in littermate controls. In both groups, dilation was near fully blocked by pharmacologically inhibiting sGC. Thus, sGC and cGMP-dependent signaling are necessary and sufficient for HNO-induced vasodilation in vivo but are not required for positive inotropic action. Redox modulation of protein kinase G-1α is not a mechanism for HNO-mediated vasodilation.
Collapse
Affiliation(s)
- Guangshuo Zhu
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Dieter Groneberg
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Gautam Sikka
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Daijiro Hori
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Mark J Ranek
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Taishi Nakamura
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Eiki Takimoto
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Nazareno Paolocci
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Dan E Berkowitz
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Andreas Friebe
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - David A Kass
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD.
| |
Collapse
|
28
|
Dautov RF, Ngo DTM, Licari G, Liu S, Sverdlov AL, Ritchie RH, Kemp-Harper BK, Horowitz JD, Chirkov YY. The nitric oxide redox sibling nitroxyl partially circumvents impairment of platelet nitric oxide responsiveness. Nitric Oxide 2013; 35:72-8. [PMID: 24012721 DOI: 10.1016/j.niox.2013.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 01/17/2023]
Abstract
Impaired platelet responsiveness to nitric oxide (NO resistance) is a common characteristic of many cardiovascular disease states and represents an independent risk factor for cardiac events and mortality. NO resistance reflects both scavenging of NO by superoxide (O2(-)), and impairment of the NO receptor, soluble guanylate cyclase (sGC). There is thus an urgent need for circumvention of NO resistance in order to improve clinical outcomes. Nitroxyl (HNO), like NO, produces vasodilator and anti-aggregatory effects, largely via sGC activation, but is not inactivated by O2(-). We tested the hypothesis that HNO circumvents NO resistance in human platelets. In 57 subjects with or without ischemic heart disease, platelet responses to the HNO donor isopropylamine NONOate (IPA/NO) and the NO donor sodium nitroprusside (SNP) were compared. While SNP (10μM) induced 29±3% (p<0.001) inhibition of platelet aggregation, IPA/NO (10μM) caused 75±4% inhibition (p<0.001). In NO-resistant subjects (n=28), the IPA/NO:SNP response ratio was markedly increased (p<0.01), consistent with partial circumvention of NO resistance. Similarly, cGMP accumulation in platelets was greater (p<0.001) with IPA/NO than with SNP stimulation. The NO scavenger carboxy-PTIO (CPTIO, 200μM) inhibited SNP and IPA/NO responses by 92±7% and 17±4% respectively (p<0.001 for differential inhibition), suggesting that effects of IPA/NO are only partially NO-mediated. ODQ (10μM) inhibited IPA/NO responses by 36±8% (p<0.001), consistent with a contribution of sGC/haem to IPA/NO inhibition of aggregation. There was no significant relationship between whole blood ROS content and IPA/NO responses. Thus the HNO donor IPA/NO substantially circumvents platelet NO resistance while acting, at least partially, as a haem-mediated sGC activator.
Collapse
Affiliation(s)
- R F Dautov
- Cardiology Unit, Basil Hetzel Institute, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Miller AA, Maxwell KF, Chrissobolis S, Bullen ML, Ku JM, Michael De Silva T, Selemidis S, Hooker EU, Drummond GR, Sobey CG, Kemp-Harper BK. Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity. Free Radic Biol Med 2013; 60:264-71. [PMID: 23459072 DOI: 10.1016/j.freeradbiomed.2013.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/18/2013] [Accepted: 02/22/2013] [Indexed: 11/19/2022]
Abstract
Nox2 oxidase activity underlies the oxidative stress and vascular dysfunction associated with several vascular-related diseases. We have reported that nitric oxide (NO) decreases reactive oxygen species production by endothelial Nox2. This study tested the hypothesis that nitroxyl (HNO), the redox sibling of NO, also suppresses vascular Nox2 oxidase activity. Specifically, we examined the influence of two well-characterized HNO donors, Angeli's salt and isopropylamine NONOate (IPA/NO), on Nox2-dependent responses to angiotensin II (reactive oxygen species production and vasoconstriction) in mouse cerebral arteries. Angiotensin II (0.1μmol/L)-stimulated superoxide (measured by lucigenin-enhanced chemiluminescence) and hydrogen peroxide (Amplex red fluorescence) levels in cerebral arteries (pooled basilar and middle cerebral (MCA)) from wild-type (WT) mice were ~60% lower (P<0.05) in the presence of either Angeli's salt (1μmol/L) or IPA/NO (1μmol/L). Similarly, phorbyl 12,13-dibutyrate (10μmol/L; Nox2 activator)-stimulated hydrogen peroxide levels were ~40% lower in the presence of IPA/NO (1μmol/L; P<0.05). The ability of IPA/NO to decrease superoxide levels was reversible and abolished by the HNO scavenger l-cysteine (3mmol/L; P<0.05), but was unaffected by hydroxocobalamin (100μmol/L; NO scavenger), ODQ (10μmol/L; soluble guanylyl cyclase (sGC) inhibitor), or Rp-8-pCPT-cGMPS (10μmol/L; cyclic guanosine monophosphate (cGMP)-dependent protein kinase inhibitor). Angiotensin II-stimulated superoxide was substantially less in arteries from Nox2-deficient (Nox2(-/y)) versus WT mice (P<0.05). In contrast to WT, IPA/NO (1μmol/L) had no effect on superoxide levels in arteries from Nox2(-/y) mice. Finally, angiotensin II (1-1000μmol/L)-induced constriction of WT MCA was virtually abolished by IPA/NO (1μmol/L), whereas constrictor responses to either the thromboxane A2 mimetic U46619 (1-100 nmol/L) or high potassium (122.7mmol/L) were unaffected. In conclusion, HNO suppresses vascular Nox2 oxidase activity via a sGC-cGMP-independent pathway. Thus, HNO donors might be useful therapeutic agents to limit and/or prevent Nox2-dependent vascular dysfunction.
Collapse
Affiliation(s)
- Alyson A Miller
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chronic NaHS Treatment Is Vasoprotective in High-Fat-Fed ApoE(-/-) Mice. Int J Vasc Med 2013; 2013:915983. [PMID: 23864951 PMCID: PMC3707268 DOI: 10.1155/2013/915983] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/12/2013] [Indexed: 01/23/2023] Open
Abstract
Hydrogen sulfide is emerging as an important mediator of vascular function that has antioxidant and cytoprotective effects. The aim of this study was to investigate the role of endogenous H2S and the effect of chronic exogenous H2S treatment on vascular function during the progression of atherosclerotic disease. ApoE−/− mice were fed a high-fat diet for 16 weeks and treated with the H2S donor NaHS or the cystathionine-γ-lyase (CSE) inhibitor D,L-propargylglycine (PPG), to inhibit endogenous H2S production for the final 4 weeks. Fat-fed ApoE−/− mice displayed significant aortic atherosclerotic lesions and significantly impaired endothelial function compared to wild-type mice. Importantly, 4 weeks of NaHS treatment significantly reduced vascular dysfunction and inhibited vascular superoxide generation. NaHS treatment significantly reduced the area of aortic atherosclerotic lesions and attenuated systolic blood pressure. Interestingly, inhibiting endogenous, CSE-dependent H2S production with PPG did not exacerbate the deleterious vascular changes seen in the untreated fat-fed ApoE−/− mice. The results indicate NaHS can improve vascular function by reducing vascular superoxide generation and impairing atherosclerotic lesion development. Endogenous H2S production via CSE is insufficient to counter the atherogenic effects seen in this model; however exogenous H2S treatment has a significant vasoprotective effect.
Collapse
|
31
|
Donzelli S, Fischer G, King BS, Niemann C, DuMond JF, Heeren J, Wieboldt H, Baldus S, Gerloff C, Eschenhagen T, Carrier L, Böger RH, Espey MG. Pharmacological characterization of 1-nitrosocyclohexyl acetate, a long-acting nitroxyl donor that shows vasorelaxant and antiaggregatory effects. J Pharmacol Exp Ther 2013; 344:339-47. [PMID: 23211362 PMCID: PMC3558825 DOI: 10.1124/jpet.112.199836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022] Open
Abstract
Nitroxyl (HNO) donors have potential benefit in the treatment of heart failure and other cardiovascular diseases. 1-Nitrosocyclohexyl acetate (NCA), a new HNO donor, in contrast to the classic HNO donors Angeli's salt and isopropylamine NONOate, predominantly releases HNO and has a longer half-life. This study investigated the vasodilatative properties of NCA in isolated aortic rings and human platelets and its mechanism of action. NCA was applied on aortic rings isolated from wild-type mice and apolipoprotein E-deficient mice and in endothelial-denuded aortae. The mechanism of action of HNO was examined by applying NCA in the absence and presence of the HNO scavenger glutathione (GSH) and inhibitors of soluble guanylyl cyclase (sGC), adenylyl cyclase (AC), calcitonin gene-related peptide receptor (CGRP), and K(+) channels. NCA induced a concentration-dependent relaxation (EC(50), 4.4 µM). This response did not differ between all groups, indicating an endothelium-independent relaxation effect. The concentration-response was markedly decreased in the presence of excess GSH; the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide had no effect. Inhibitors of sGC, CGRP, and voltage-dependent K(+) channels each significantly impaired the vasodilator response to NCA. In contrast, inhibitors of AC, ATP-sensitive K(+) channels, or high-conductance Ca(2+)-activated K(+) channels did not change the effects of NCA. NCA significantly reduced contractile response and platelet aggregation mediated by the thromboxane A(2) mimetic 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F(2)(α) in a cGMP-dependent manner. In summary, NCA shows vasoprotective effects and may have a promising profile as a therapeutic agent in vascular dysfunction, warranting further evaluation.
Collapse
Affiliation(s)
- Sonia Donzelli
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf., Martinistr. 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|