1
|
Kim SA, Kim HG, Wijesinghe WCB, Min D, Yoon TY. Emerging Patterns in Membrane Protein Folding Pathways. Annu Rev Biophys 2025; 54:141-162. [PMID: 40327440 DOI: 10.1146/annurev-biophys-070524-100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Studies of membrane protein folding have progressed from simple systems such as bacteriorhodopsin to complex structures such as ATP-binding cassette transporters and voltage-gated ion channels. Advances in techniques such as single-molecule force spectroscopy and in vivo force profiling now allow for the detailed examination of membrane protein folding pathways at amino acid resolutions. These proteins navigate rugged energy landscapes partly shaped by the absence of hydrophobic collapse and the viscous nature of the lipid bilayer, imposing biophysical limitations on folding speeds. Furthermore, many transmembrane (TM) helices display reduced hydrophobicity to support functional requirements, simultaneously increasing the energy barriers for membrane insertion, a manifestation of the evolutionary trade-off between functionality and foldability. These less hydrophobic TM helices typically insert and fold as helical hairpins, following the protein synthesis direction from the N terminus to the C terminus, with assistance from endoplasmic reticulum (ER) chaperones like the Sec61 translocon and the ER membrane protein complex. The folding pathways of multidomain membrane proteins are defined by allosteric networks that extend across various domains, where mutations and folding correctors affect seemingly distant domains. A common evolutionary strategy is likely to be domain specialization, where N-terminal domains enhance foldability and C-terminal domains enhance functionality. Thus, despite inherent biophysical constraints, evolution has finely tuned membrane protein sequences to optimize foldability, stability, and functionality.
Collapse
Affiliation(s)
- Sang Ah Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - Hyun Gyu Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea;
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea;
| | - Tae-Young Yoon
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| |
Collapse
|
2
|
Farr CV, Xiao Y, El-Kasaby A, Schupp M, Hotka M, di Mauro G, Clarke A, Pastor Fernandez M, Sandtner W, Stockner T, Klade C, Maulide N, Freissmuth M. Probing the Chemical Space of Guanidino-Carboxylic Acids to Identify the First Blockers of the Creatine-Transporter-1. Mol Pharmacol 2024; 106:319-333. [PMID: 39322412 DOI: 10.1124/molpharm.124.000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
The creatine transporter-1 (CRT-1/SLC6A8) maintains the uphill transport of creatine into cells against a steep concentration gradient. Cellular creatine accumulation is required to support the ATP-buffering by phosphocreatine. More than 60 compounds have been explored in the past for their ability to inhibit cellular creatine uptake, but the number of active compounds is very limited. Here, we show that all currently known inhibitors are full alternative substrates. We analyzed their structure-activity relationship for inhibition of CRT-1 to guide a rational approach to the synthesis of novel creatine transporter ligands. Measurements of both inhibition of [3H]creatine uptake and transport associated currents allowed for differentiating between full and partial substrates and true inhibitors. This combined approach led to a refined understanding of the structural requirements for binding to CRT-1, which translated into the identification of three novel compounds - i.e., compound 1 (2-(N-benzylcarbamimidamido)acetic acid), MIPA572 (=carbamimidoylphenylalanine), and MIPA573 (=carbamimidoyltryptophane) that blocked CRT-1 transport, albeit with low affinity. In addition, we found two new alternative full substrates, namely MIPA574 (carbamimidoylalanine) and GiDi1257 (1-carbamimidoylazetidine-3-carboxylic acid), which was superior in affinity to all known CTR-1 ligands, and one partial substrate, namely GiDi1254 (1-carbamimidoylpiperidine-4-carboxylic acid). SIGNIFICANCE STATEMENT: The creatine transporter-1 (CRT-1) is required to maintain intracellular creatine levels. Inhibition of CRT-1 has been recently proposed as a therapeutic strategy for cancer, but pharmacological tools are scarce. In fact, all available inhibitors are alternative substrates. We tested existing and newly synthesized guanidinocarboxylic acids for CRT-1 inhibition and identified three blockers, one partial and two full substrates of CRT-1. Our results support a refined structural understanding of ligand binding to CRT-1 and provide a proof-of-principle for blockage of CRT-1.
Collapse
Affiliation(s)
- Clemens V Farr
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Yi Xiao
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Manuel Schupp
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Matej Hotka
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Giovanni di Mauro
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Amy Clarke
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Miryam Pastor Fernandez
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Christoph Klade
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Nuno Maulide
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| |
Collapse
|
3
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
4
|
Ün D, Kovalchuk V, El-Kasaby A, Kasture A, Koban F, Kudlacek O, Freissmuth M, Sucic S. Breaking the rules of SLC6 transporters: Export of the human creatine transporter-1 from the endoplasmic reticulum is supported by its N-terminus. J Neurochem 2024; 168:2007-2021. [PMID: 38419374 DOI: 10.1111/jnc.16088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Mutations in the human creatine transporter 1 (CRT1/SLC6A8) cause the creatine transporter deficiency syndrome, which is characterized by intellectual disability, epilepsy, autism, and developmental delay. The vast majority of mutations cause protein misfolding and hence reduce cell surface expression. Hence, it is important to understand the molecular machinery supporting folding and export of CRT1 from the endoplasmic reticulum (ER). All other SLC6 members thus far investigated rely on a C-terminal motif for binding the COPII-component SEC24 to drive their ER export; their N-termini are dispensable. Here, we show that, in contrast, in CRT1 the C-terminal ER-export motif is cryptic and it is the N-terminus, which supports ER export. This conclusion is based on the following observations: (i) siRNA-induced depletion of individual SEC24 isoforms revealed that CRT1 relied on SEC24C for ER export. However, mutations of the C-terminal canonical ER-export motif of CRT1 did not impair its cell surface delivery. (ii) Nevertheless, the C-terminal motif of CRT1 was operational in a chimeric protein comprising the serotonin transporter (SERT/SLC6A4) and the C-terminus of CRT1. (iii) Tagging of the N-terminus-but not the C-terminus-with yellow fluorescent protein (YFP) resulted in ER retention. (iv) Serial truncations of the N-terminus showed that removal of ≥51 residues of CRT1 impaired surface delivery, because the truncated CRT1 were confined to the ER. (v) Mutation of P51 to alanine also reduced cell surface delivery of CRT1 and relieved its dependence on SEC24C. Thus, the ER-export motif in the N-terminus of CRT1 overrides the canonical C-terminal motif.
Collapse
Affiliation(s)
- Didem Ün
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Vasylyna Kovalchuk
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ameya Kasture
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Florian Koban
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Kudlacek
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Shah N, Kasture AS, Fischer FP, Sitte HH, Hummel T, Sucic S. A transporter's doom or destiny: SLC6A1 in health and disease, novel molecular targets and emerging therapeutic prospects. Front Mol Neurosci 2024; 17:1466694. [PMID: 39268250 PMCID: PMC11390516 DOI: 10.3389/fnmol.2024.1466694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
As the first member of the solute carrier 6 (SLC6) protein family, the γ-aminobutyric acid (GABA) transporter 1 (GAT1, SLC6A1), plays a pivotal role in the uptake of GABA from the synaptic cleft into neurons and astrocytes. This process facilitates the subsequent storage of GABA in presynaptic vesicles. The human SLC6A1 gene is highly susceptible to missense mutations, leading to severe clinical outcomes, such as epilepsy, in the afflicted patients. The molecular mechanisms of SLC6A1-associated disorders are discerned to some degree; many SLC6A1 mutations are now known to impair protein folding, and consequently fail to reach the plasma membrane. Inherently, once inside the endoplasmic reticulum (ER), GAT1 abides by a complex cascade of events that enable efficient intracellular trafficking. This involves association with specialized molecular chaperones responsible for steering the protein folding process, oligomerization, sorting through the Golgi apparatus, and ultimately delivery to the cell surface. The entire process is subject to stringent quality control mechanisms at multiple checkpoints. While the majority of the existing loss-of-function SLC6A1 variants interfere with folding and membrane targeting, certain mutants retain abundant surface expression. In either scenario, suppressed GAT1 activity disrupts GABAergic neurotransmission, preceding the disease manifestation in individuals harboring these mutations. The nervous system is enthralling and calls for systematic, groundbreaking research efforts to dissect the precise molecular factors associated with the onset of complex neurological disorders, and uncover additional non-canonical therapeutic targets. Recent research has given hope for some of the misfolded SLC6A1 variants, which can be salvaged by small molecules, i.e., chemical and pharmacological chaperones, acting on multiple upstream targets in the secretory pathway. We here highlight the significance of pharmacochaperoning as a therapeutic strategy for the treatment of SLC6A1-related disorders.
Collapse
Affiliation(s)
- Nikita Shah
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Harald H. Sitte
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Center for Addiction Research and Science-AddRess, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Yin Z, Lv Y, Deng L, Li G, Ou R, Chen L, Zhu Y, Zhong Q, Liu Z, Huang J, Wu H, Zhang Q, Fei J, Liu S. Targeting ABCB6 with nitidine chloride inhibits PI3K/AKT signaling pathway to promote ferroptosis in multiple myeloma. Free Radic Biol Med 2023; 203:86-101. [PMID: 37044150 DOI: 10.1016/j.freeradbiomed.2023.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Since multiple myeloma (MM) remains a cureless malignancy of plasma cells to date, it becomes imperative to develop novel drugs and therapeutic targets for MM. We screened a small molecule library comprising 3633 natural product drugs, which demonstrated that Nitidine Chloride (NC), an extract from traditional Chinese medicine Zanthoxylum nitidum. We used Surface Plasmon Resonance-High Performance Liquid Chromatography-Protein Mass Spectrometry (SPR-HPLC-MS), Cellular Thermal Shift Assay (CETSA), molecular docking, and SPR assay to identify the potential targets of NC, in which ABCB6 was the unique target of NC. The effects of ABCB6 on cellular proliferation and drug resistance were determined by CCK8, western blot, flow cytometry, site-mutation cells, transmission electron microscopy, immunohistochemistry staining and xenograft model in vitro and in vivo. NC induced MM cell death by promoting ferroptosis. ABCB6 is the direct target of NC. ABCB6 expression was increased in MM samples compared to normal controls, which was significantly associated with MM relapse and poor outcomes. VGSK was the inferred binding epitope of NC on the ABCB6 protein. In the ABCB6-mutated MM cells, NC did not display cancer resistance, implying the vital role of ABCB6 in NC's bioactivity. Moreover, the silencing of ABCB6 significantly inhibited MM cell growth. Mechanistically, the direct binding of NC to ABCB6 suppressed PI3K/AKT signaling pathway to promote ferroptosis. In conclusion, ABCB6 can be a potential therapeutic target and prognostic biomarker in MM, while NC can be considered a novel drug for MM treatment.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Lizhi Chen
- Department of Science and Education, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Qi Zhong
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Jing Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Hong Wu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, 510632, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China.
| |
Collapse
|
7
|
Bhat S, El-Kasaby A, Kasture A, Boytsov D, Reichelt JB, Hummel T, Sucic S, Pifl C, Freissmuth M, Sandtner W. A mechanism of uncompetitive inhibition of the serotonin transporter. eLife 2023; 12:e82641. [PMID: 36648438 PMCID: PMC9883013 DOI: 10.7554/elife.82641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023] Open
Abstract
The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action - that is, the retrieval of serotonin from the extracellular space - SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle. This results in competitive or non-competitive transport inhibition. Here, we explored the action of N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (ECSI#6) on SERT: inhibition of serotonin uptake by ECSI#6 was enhanced with increasing serotonin concentration. Conversely, the KM for serotonin was lowered by augmenting ECSI#6. ECSI#6 bound with low affinity to the outward-facing state of SERT but with increased affinity to a potassium-bound state. Electrophysiological recordings showed that ECSI#6 preferentially interacted with the inward-facing state. Kinetic modeling recapitulated the experimental data and verified that uncompetitive inhibition arose from preferential binding of ECSI#6 to the K+-bound, inward-facing conformation of SERT. This binding mode predicted a pharmacochaperoning action of ECSI#6, which was confirmed by examining its effect on the folding-deficient mutant SERT-PG601,602AA: preincubation of HEK293 cells with ECSI#6 restored export of SERT-PG601,602AA from the endoplasmic reticulum and substrate transport. Similarly, in transgenic flies, the administration of ECSI#6 promoted the delivery of SERT-PG601,602AA to the presynaptic specialization of serotonergic neurons. To the best of our knowledge, ECSI#6 is the first example of an uncompetitive SLC inhibitor. Pharmacochaperones endowed with the binding mode of ECSI#6 are attractive, because they can rescue misfolded transporters at concentrations, which cause modest transport inhibition.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Ameya Kasture
- Department of Neurobiology, University of ViennaViennaAustria
| | - Danila Boytsov
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Julian B Reichelt
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Thomas Hummel
- Department of Neurobiology, University of ViennaViennaAustria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Christian Pifl
- Center for Brain Research, Medical University of ViennaViennaAustria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| |
Collapse
|
8
|
Luethi D, Maier J, Rudin D, Szöllősi D, Angenoorth TJF, Stankovic S, Schittmayer M, Burger I, Yang JW, Jaentsch K, Holy M, Das AK, Brameshuber M, Camacho-Hernandez GA, Casiraghi A, Newman AH, Kudlacek O, Birner-Gruenberger R, Stockner T, Schütz GJ, Sitte HH. Phosphatidylinositol 4,5-bisphosphate (PIP 2) facilitates norepinephrine transporter dimerization and modulates substrate efflux. Commun Biol 2022; 5:1259. [PMID: 36396757 PMCID: PMC9672106 DOI: 10.1038/s42003-022-04210-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
The plasmalemmal norepinephrine transporter (NET) regulates cardiovascular sympathetic activity by clearing extracellular norepinephrine in the synaptic cleft. Here, we investigate the subunit stoichiometry and function of NET using single-molecule fluorescence microscopy and flux assays. In particular, we show the effect of phosphatidylinositol 4,5-bisphosphate (PIP2) on NET oligomerization and efflux. NET forms monomers (~60%) and dimers (~40%) at the plasma membrane. PIP2 depletion results in a decrease in the average oligomeric state and decreases NET-mediated substrate efflux while not affecting substrate uptake. Mutation of the putative PIP2 binding residues R121, K334, and R440 to alanines does not affect NET dimerization but results in decreased substrate efflux that is not altered upon PIP2 depletion; this indicates that PIP2 interactions with these residues affect NET-mediated efflux. A dysregulation of norepinephrine and PIP2 signaling have both been implicated in neuropsychiatric and cardiovascular diseases. This study provides evidence that PIP2 directly regulates NET organization and function.
Collapse
Affiliation(s)
- Dino Luethi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060, Vienna, Austria
| | - Julian Maier
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Deborah Rudin
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Thomas J F Angenoorth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Stevan Stankovic
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Isabella Burger
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Jae-Won Yang
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Kathrin Jaentsch
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Anand Kant Das
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060, Vienna, Austria
- Physics Program, New York University Abu Dhabi, Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates
| | - Mario Brameshuber
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060, Vienna, Austria
| | - Gisela Andrea Camacho-Hernandez
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD, 21224, USA
| | - Andrea Casiraghi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD, 21224, USA
| | - Oliver Kudlacek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060, Vienna, Austria.
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Farr CV, El-Kasaby A, Erdem FA, Sucic S, Freissmuth M, Sandtner W. Cooperative Binding of Substrate and Ions Drives Forward Cycling of the Human Creatine Transporter-1. Front Physiol 2022; 13:919439. [PMID: 35837012 PMCID: PMC9273935 DOI: 10.3389/fphys.2022.919439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Creatine serves as an ATP buffer and is thus an integral component of cellular energy metabolism. Most cells maintain their creatine levels via uptake by the creatine transporter (CRT-1, SLC6A8). The activity of CRT-1, therefore, is a major determinant of cytosolic creatine concentrations. We determined the kinetics of CRT-1 in real time by relying on electrophysiological recordings of transport-associated currents. Our analysis revealed that CRT-1 harvested the concentration gradient of NaCl and the membrane potential but not the potassium gradient to achieve a very high concentrative power. We investigated the mechanistic basis for the ability of CRT-1 to maintain the forward cycling mode in spite of high intracellular concentrations of creatine: this is achieved by cooperative binding of substrate and co-substrate ions, which, under physiological ion conditions, results in a very pronounced (i.e. about 500-fold) drop in the affinity of creatine to the inward-facing state of CRT-1. Kinetic estimates were integrated into a mathematical model of the transport cycle of CRT-1, which faithfully reproduced all experimental data. We interrogated the kinetic model to examine the most plausible mechanistic basis of cooperativity: based on this systematic exploration, we conclude that destabilization of binary rather than ternary complexes is necessary for CRT-1 to maintain the observed cytosolic creatine concentrations. Our model also provides a plausible explanation why neurons, heart and skeletal muscle cells must express a creatine releasing transporter to achieve rapid equilibration of the intracellular creatine pool.
Collapse
Affiliation(s)
| | | | | | | | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
10
|
Schicker K, Farr CV, Boytsov D, Freissmuth M, Sandtner W. Optimizing the Substrate Uptake Rate of Solute Carriers. Front Physiol 2022; 13:817886. [PMID: 35185619 PMCID: PMC8850955 DOI: 10.3389/fphys.2022.817886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The diversity in solute carriers arose from evolutionary pressure. Here, we surmised that the adaptive search for optimizing the rate of substrate translocation was also shaped by the ambient extracellular and intracellular concentrations of substrate and co-substrate(s). We explored possible solutions by employing kinetic models, which were based on analytical expressions of the substrate uptake rate, that is, as a function of the microscopic rate constants used to parameterize the transport cycle. We obtained the defining terms for five reaction schemes with identical transport stoichiometry (i.e., Na+: substrate = 2:1). We then utilized an optimization algorithm to find the set of numeric values for the microscopic rate constants, which provided the largest value for the substrate uptake rate: The same optimized rate was achieved by different sets of numerical values for the microscopic rate constants. An in-depth analysis of these sets provided the following insights: (i) In the presence of a low extracellular substrate concentration, a transporter can only cycle at a high rate, if it has low values for both, the Michaelis-Menten constant (KM) for substrate and the maximal substrate uptake rate (Vmax). (ii) The opposite is true for a transporter operating at high extracellular substrate concentrations. (iii) Random order of substrate and co-substrate binding is superior to sequential order, if a transporter is to maintain a high rate of substrate uptake in the presence of accumulating intracellular substrate. Our kinetic models provide a framework to understand how and why the transport cycles of closely related transporters differ.
Collapse
Affiliation(s)
| | | | | | | | - Walter Sandtner
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Shaukat I, Bakhos-Douaihy D, Zhu Y, Seaayfan E, Demaretz S, Frachon N, Weber S, Kömhoff M, Vargas-Poussou R, Laghmani K. New insights into the role of endoplasmic reticulum-associated degradation in Bartter Syndrome Type 1. Hum Mutat 2021; 42:947-968. [PMID: 33973684 DOI: 10.1002/humu.24217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Mutations in Na-K-2Cl co-transporter, NKCC2, lead to type I Bartter syndrome (BS1), a life-threatening kidney disease. Yet, our knowledge of the molecular regulation of NKCC2 mutants remains poor. Here, we aimed to identify the molecular pathogenic mechanisms of one novel and three previously reported missense NKCC2 mutations. Co-immunolocalization studies revealed that all NKCC2 variants are not functional because they are not expressed at the cell surface due to retention in the endoplasmic reticulum (ER). Cycloheximide chase assays together with treatment by protein degradation and mannose trimming inhibitors demonstrated that the defect in NKCC2 maturation arises from ER retention and associated degradation (ERAD). Small interfering RNA (siRNA) knock-down experiments revealed that the ER lectin OS9 is involved in the ERAD of NKCC2 mutants. 4-phenyl butyric acid (4-PBA) treatment mimicked OS9 knock-down effect on NKCC2 mutants by stabilizing their immature forms. Importantly, out of the four studied mutants, only one showed an increased protein maturation upon treatment with glycerol. In summary, our study reveals that BS1 is among diseases linked to the ERAD pathway. Moreover, our data open the possibility that maturation of some ER retained NKCC2 variants is correctable by chemical chaperones offering, therefore, promising avenues in elucidating the molecular pathways governing the ERAD of NKCC2 folding mutants.
Collapse
Affiliation(s)
- Irfan Shaukat
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Yingying Zhu
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Stefanie Weber
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | | | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| |
Collapse
|
12
|
Bhat S, Guthrie DA, Kasture A, El-Kasaby A, Cao J, Bonifazi A, Ku T, Giancola JB, Hummel T, Freissmuth M, Newman AH. Tropane-Based Ibogaine Analog Rescues Folding-Deficient Serotonin and Dopamine Transporters. ACS Pharmacol Transl Sci 2021; 4:503-516. [PMID: 33860180 PMCID: PMC8033614 DOI: 10.1021/acsptsci.0c00102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 02/05/2023]
Abstract
![]()
Missense
mutations that give rise to protein misfolding are rare,
but collectively, defective protein folding diseases are consequential.
Folding deficiencies are amenable to pharmacological correction (pharmacochaperoning),
but the underlying mechanisms remain enigmatic. Ibogaine and its active
metabolite noribogaine correct folding defects in the dopamine transporter
(DAT), but they rescue only a very limited number of folding-deficient
DAT mutant proteins, which give rise to infantile Parkinsonism and
dystonia. Herein, a series of analogs was generated by reconfiguring
the complex ibogaine ring system and exploring the structural requirements
for binding to wild-type transporters, as well as for rescuing two
equivalent synthetic folding-deficient mutants, SERT-PG601,602AA and DAT-PG584,585AA. The most active tropane-based
analog (9b) was also an effective pharmacochaperone in vivo in Drosophila harboring the DAT-PG584,585AA mutation and rescued 6 out of 13 disease-associated
human DAT mutant proteins in vitro. Hence, a novel
lead pharmacochaperone has been identified that demonstrates medication
development potential for patients harboring DAT mutations.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Waehringerstrasse 13a, Vienna 1090, Austria
| | - Daryl A Guthrie
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Ameya Kasture
- Department of Neurobiology, University of Vienna, Vienna 1090, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Waehringerstrasse 13a, Vienna 1090, Austria
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Therese Ku
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - JoLynn B Giancola
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna 1090, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Waehringerstrasse 13a, Vienna 1090, Austria
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
13
|
Rescue of two trafficking-defective variants of the neuronal glycine transporter GlyT2 associated to hyperekplexia. Neuropharmacology 2021; 189:108543. [PMID: 33794243 DOI: 10.1016/j.neuropharm.2021.108543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022]
Abstract
Hyperekplexia is a rare sensorimotor syndrome characterized by pathological startle reflex in response to unexpected trivial stimuli for which there is no specific treatment. Neonates suffer from hypertonia and are at high risk of sudden death due to apnea episodes. Mutations in the human SLC6A5 gene encoding the neuronal glycine transporter GlyT2 may disrupt the inhibitory glycinergic neurotransmission and cause a presynaptic form of the disease. The phenotype of missense mutations giving rise to protein misfolding but maintaining residual activity could be rescued by facilitating folding or intracellular trafficking. In this report, we characterized the trafficking properties of two mutants associated with hyperekplexia (A277T and Y707C, rat numbering). Transporter molecules were partially retained in the endoplasmic reticulum showing increased interaction with the endoplasmic reticulum chaperone calnexin. One transporter variant had export difficulties and increased ubiquitination levels, suggestive of enhanced endoplasmic reticulum-associated degradation. However, the two mutant transporters were amenable to correction by calnexin overexpression. Within the search for compounds capable of rescuing mutant phenotypes, we found that the arachidonic acid derivative N-arachidonoyl glycine can rescue the trafficking defects of the two variants in heterologous cells and rat brain cortical neurons. N-arachidonoyl glycine improves the endoplasmic reticulum output by reducing the interaction transporter/calnexin, increasing membrane expression and improving transport activity in a comparable way as the well-established chemical chaperone 4-phenyl-butyrate. This work identifies N-arachidonoyl glycine as a promising compound with potential for hyperekplexia therapy.
Collapse
|
14
|
Schicker K, Bhat S, Farr C, Burtscher V, Horner A, Freissmuth M, Sandtner W. Descriptors of Secondary Active Transporter Function and How They Relate to Partial Reactions in the Transport Cycle. MEMBRANES 2021; 11:178. [PMID: 33802510 PMCID: PMC8001282 DOI: 10.3390/membranes11030178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
Plasmalemmal solute carriers (SLCs) gauge and control solute abundance across cellular membranes. By virtue of this action, they play an important role in numerous physiological processes. Mutations in genes encoding the SLCs alter amino acid sequence that often leads to impaired protein function and onset of monogenic disorders. To understand how these altered proteins cause disease, it is necessary to undertake relevant functional assays. These experiments reveal descriptors of SLC function such as the maximal transport velocity (Vmax), the Michaelis constant for solute uptake (KM), potencies for inhibition of transporter function (IC50/EC50), and many more. In several instances, the mutated versions of different SLC transporters differ from their wild-type counterparts in the value of these descriptors. While determination of these experimental parameters can provide conjecture as to how the mutation gives rise to disease, they seldom provide any definitive insights on how a variant differ from the wild-type transporter in its operation. This is because the experimental determination of association between values of the descriptors and several partial reactions a transporter undergoes is casual, but not causal, at best. In the present study, we employ kinetic models that allow us to derive explicit mathematical terms and provide experimental descriptors as a function of the rate constants used to parameterize the kinetic model of the transport cycle. We show that it is possible to utilize these mathematical expressions to deduce, from experimental outcomes, how the mutation has impinged on partial reactions in the transport cycle.
Collapse
Affiliation(s)
- Klaus Schicker
- Center for Physiology and Pharmacology, Division of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Shreyas Bhat
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Clemens Farr
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Verena Burtscher
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria;
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| |
Collapse
|
15
|
Sohail MI, Dönmez-Cakil Y, Szöllősi D, Stockner T, Chiba P. The Bile Salt Export Pump: Molecular Structure, Study Models and Small-Molecule Drugs for the Treatment of Inherited BSEP Deficiencies. Int J Mol Sci 2021; 22:E784. [PMID: 33466755 PMCID: PMC7830293 DOI: 10.3390/ijms22020784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The bile salt export pump (BSEP/ABCB11) is responsible for the transport of bile salts from hepatocytes into bile canaliculi. Malfunction of this transporter results in progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2) and intrahepatic cholestasis of pregnancy (ICP). Over the past few years, several small molecular weight compounds have been identified, which hold the potential to treat these genetic diseases (chaperones and potentiators). As the treatment response is mutation-specific, genetic analysis of the patients and their families is required. Furthermore, some of the mutations are refractory to therapy, with the only remaining treatment option being liver transplantation. In this review, we will focus on the molecular structure of ABCB11, reported mutations involved in cholestasis and current treatment options for inherited BSEP deficiencies.
Collapse
Affiliation(s)
| | - Yaprak Dönmez-Cakil
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Maltepe, 34857 Istanbul, Turkey;
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, 13A, 1090 Vienna, Austria;
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, 13A, 1090 Vienna, Austria;
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, 10, 1090 Vienna, Austria
| |
Collapse
|
16
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
17
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
18
|
Salazar MD, Zelt NB, Saldivar R, Kuntz CP, Chen S, Penn WD, Bonneau R, Koehler Leman J, Schlebach JP. Classification of the Molecular Defects Associated with Pathogenic Variants of the SLC6A8 Creatine Transporter. Biochemistry 2020; 59:1367-1377. [PMID: 32207963 DOI: 10.1021/acs.biochem.9b00956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
More than 80 loss-of-function (LOF) mutations in the SLC6A8 creatine transporter (hCRT1) are responsible for cerebral creatine deficiency syndrome (CCDS), which gives rise to a spectrum of neurological defects, including intellectual disability, epilepsy, and autism spectrum disorder. To gain insight into the nature of the molecular defects caused by these mutations, we quantitatively profiled the cellular processing, trafficking, expression, and function of eight pathogenic CCDS variants in relation to the wild type (WT) and one neutral isoform. All eight CCDS variants exhibit measurable proteostatic deficiencies that likely contribute to the observed LOF. However, the magnitudes of their specific effects on the expression and trafficking of hCRT1 vary considerably, and we find that the LOF associated with two of these variants primarily arises from the disruption of the substrate-binding pocket. In conjunction with an analysis of structural models of the transporter, we use these data to suggest mechanistic classifications for these variants. To evaluate potential avenues for therapeutic intervention, we assessed the sensitivity of these variants to temperature and measured their response to the proteostasis regulator 4-phenylbutyrate (4-PBA). Only one of the tested variants (G132V) is sensitive to temperature, though its response to 4-PBA is negligible. Nevertheless, 4-PBA significantly enhances the activity of WT hCRT1 in HEK293T cells, which suggests it may be worth evaluating as a therapeutic for female intellectual disability patients carrying a single CCDS mutation. Together, these findings reveal that pathogenic SLC6A8 mutations cause a spectrum of molecular defects that should be taken into consideration in future efforts to develop CCDS therapeutics.
Collapse
Affiliation(s)
- Martin D Salazar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nathan B Zelt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Robert Saldivar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles P Kuntz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sheng Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States.,Department of Biology, New York University, New York, New York 10003, United States.,Department of Computer Science, New York University, New York, New York 10012, United States.,Center for Data Science, New York University, New York, New York 10011, United States
| | - Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States
| | - Jonathan P Schlebach
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
19
|
Amino acid transporter SLC6A14 depends on heat shock protein HSP90 in trafficking to the cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1544-1555. [PMID: 31326539 DOI: 10.1016/j.bbamcr.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Plasma membrane transporter SLC6A14 transports all neutral and basic amino acids in a Na/Cl - dependent way and it is up-regulated in many types of cancer. Mass spectrometry analysis of overexpressed SLC6A14-associated proteins identified, among others, the presence of cytosolic heat shock proteins (HSPs) and co-chaperones. We detected co-localization of overexpressed and native SLC6A14 with HSP90-beta and HSP70 (HSPA14). Proximity ligation assay confirmed a direct interaction of overexpressed SLC6A14 with both HSPs. Treatment with radicicol and VER155008, specific inhibitors of HSP90 and HSP70, respectively, attenuated these interactions and strongly reduced transporter presence at the cell surface, what resulted from the diminished level of the total transporter protein. Distortion of SLC6A14 proper folding by both HSPs inhibitors directed the transporter towards endoplasmic reticulum-associated degradation pathway, a process reversed by the proteasome inhibitor - bortezomib. As demonstrated in an in vitro ATPase assay of recombinant purified HSP90-beta, the peptides corresponding to C-terminal amino acid sequence following the last transmembrane domain of SLC6A14 affected the HSP90-beta activity. These results indicate that a plasma membrane protein folding can be controlled not only by chaperones in the endoplasmic reticulum, but also those localized in the cytosol.
Collapse
|
20
|
How to rescue misfolded SERT, DAT and NET: targeting conformational intermediates with atypical inhibitors and partial releasers. Biochem Soc Trans 2019; 47:861-874. [PMID: 31064865 PMCID: PMC6599159 DOI: 10.1042/bst20180512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
Point mutations in the coding sequence for solute carrier 6 (SLC6) family members result in clinically relevant disorders, which are often accounted for by a loss-of-function phenotype. In many instances, the mutated transporter is not delivered to the cell surface because it is retained in the endoplasmic reticulum (ER). The underlying defect is improper folding of the transporter and is the case for many of the known dopamine transporter mutants. The monoamine transporters, i.e. the transporters for norepinephrine (NET/SLC6A2), dopamine (DAT/SLC6A3) and serotonin (SERT/SLC6A4), have a rich pharmacology; hence, their folding-deficient mutants lend themselves to explore the concept of pharmacological chaperoning. Pharmacochaperones are small molecules, which bind to folding intermediates with exquisite specificity and scaffold them to a folded state, which is exported from the ER and delivered to the cell surface. Pharmacochaperoning of mutant monoamine transporters, however, is not straightforward: ionic conditions within the ER are not conducive to binding of most typical monoamine transporter ligands. A collection of compounds exists, which are classified as atypical ligands because they trap monoamine transporters in unique conformational states. The atypical binding mode of some DAT inhibitors has been linked to their anti-addictive action. Here, we propose that atypical ligands and also compounds recently classified as partial releasers can serve as pharmacochaperones.
Collapse
|
21
|
Asjad HMM, Nasrollahi-Shirazi S, Sucic S, Freissmuth M, Nanoff C. Relax, Cool Down and Scaffold: How to Restore Surface Expression of Folding-Deficient Mutant GPCRs and SLC6 Transporters. Int J Mol Sci 2017; 18:ijms18112416. [PMID: 29135937 PMCID: PMC5713384 DOI: 10.3390/ijms18112416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 01/01/2023] Open
Abstract
Many diseases arise from mutations, which impair protein folding. The study of folding-deficient variants of G protein-coupled receptors and solute carrier 6 (SLC6) transporters has shed light on the folding trajectory, how it is monitored and how misfolding can be remedied. Reducing the temperature lowers the energy barrier between folding intermediates and thereby eliminates stalling along the folding trajectory. For obvious reasons, cooling down is not a therapeutic option. One approach to rescue misfolded variants is to use membrane-permeable orthosteric ligands. Antagonists of GPCRs are—in many instances—effective pharmacochaperones: they restore cell surface expression provided that they enter cells and bind to folding intermediates. Pharmacochaperoning of SLC6 transporters is less readily achieved because the ionic conditions in the endoplasmic reticulum (ER) are not conducive to binding of typical inhibitors. The second approach is to target the heat-shock protein (HSP) relay, which monitors the folding trajectory on the cytosolic side. Importantly, orthosteric ligands and HSP-inhibitors are not mutually exclusive. In fact, pharmacochaperones and HSP-inhibitors can act in an additive or synergistic manner. This was exemplified by rescuing disease-causing, folding-deficient variants of the human dopamine transporters with the HSP70 inhibitor pifithrin-μ and the pharmacochaperone noribogaine in Drosophila melanogaster.
Collapse
Affiliation(s)
- H M Mazhar Asjad
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Shahrooz Nasrollahi-Shirazi
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Christian Nanoff
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
22
|
Kasture A, Stockner T, Freissmuth M, Sucic S. An unfolding story: Small molecules remedy misfolded monoamine transporters. Int J Biochem Cell Biol 2017; 92:1-5. [PMID: 28890376 PMCID: PMC5679356 DOI: 10.1016/j.biocel.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
The key role of monoamine transporters is to take up neurotransmitters from the synaptic cleft and rapidly terminate neurotransmission. Monoamine transporters begin their journey by folding in the endoplasmic reticulum. Upon achieving their natively-folded state, the oligomerized transporters engage the coat protein complex II machinery and exit the endoplasmic reticulum compartment in a concentrative fashion. The transporters are subsequently sorted in the endoplasmic reticulum-Golgi intermediate complex and the Golgi apparatus, prior to reaching their pivotal site of action at the plasma membrane. Stringent quality-control mechanisms ensure that only the correctly-folded protein cargo departs the endoplasmic reticulum. Genetic point mutations in the coding sequences of monoamine transporters can trigger severe physiologic deficiencies by inducing folding defects. Protein misfolding precludes the delivery of functional monoamine transporters to the cell surface. Chemical- and/or pharmacological-chaperone molecules, which facilitate folding, have proven effective in restoring the activity of several misfolded pathological variants of monoamine transporters.
Collapse
Affiliation(s)
- Ameya Kasture
- Institute of Pharmacology, Center of Physiology and Pharmacology and Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center of Physiology and Pharmacology and Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center of Physiology and Pharmacology and Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Center of Physiology and Pharmacology and Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Austria.
| |
Collapse
|
23
|
Khunweeraphong N, Stockner T, Kuchler K. The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion. Sci Rep 2017; 7:13767. [PMID: 29061978 PMCID: PMC5653816 DOI: 10.1038/s41598-017-11794-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Center for Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Währingerstrasse 13A, A-1090, Vienna, Austria
| | - Karl Kuchler
- Center for Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030, Vienna, Austria.
| |
Collapse
|
24
|
Sohail MI, Schmid D, Wlcek K, Spork M, Szakács G, Trauner M, Stockner T, Chiba P. Molecular Mechanism of Taurocholate Transport by the Bile Salt Export Pump, an ABC Transporter Associated with Intrahepatic Cholestasis. Mol Pharmacol 2017; 92:401-413. [PMID: 28784620 PMCID: PMC7610612 DOI: 10.1124/mol.117.108688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
The bile salt export pump (BSEP/ABCB11) transports bile salts from hepatocytes into bile canaliculi. Its malfunction is associated with severe liver disease. One reason for functional impairment of BSEP is systemic administration of drugs, which as a side effect inhibit the transporter. Therefore, drug candidates are routinely screened for potential interaction with this transporter. Hence, understanding the functional biology of BSEP is of key importance. In this study, we engineered the transporter to dissect interdomain communication paths. We introduced mutations in noncanonical and in conserved residues of either of the two nucleotide binding domains and determined the effect on BSEP basal and substrate-stimulated ATPase activity as well as on taurocholate transport. Replacement of the noncanonical methionine residue M584 (Walker B sequence of nucleotide binding site 1) by glutamate imparted hydrolysis competency to this site. Importantly, this mutation was able to sustain 15% of wild-type transport activity, when the catalytic glutamate of the canonical nucleotide binding site 2 was mutated to glutamine. Kinetic modeling of experimental results for the ensuing M584E/E1244Q mutant suggests that a transfer of hydrolytic capacity from the canonical to the noncanonical nucleotide binding site results in loss of active and adoption of facilitative characteristics. This facilitative transport is ATP-gated. To the best of our knowledge, this result is unprecedented in ATP-binding cassette proteins with one noncanonical nucleotide binding site. Our study promotes an understanding of the domain interplay in BSEP as a basis for exploration of drug interactions with this transporter.
Collapse
Affiliation(s)
- Muhammad Imran Sohail
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics (M.I.S., M.S., P.C.), Institute of Physiology, Center for Physiology and Pharmacology (D.S.), Institute of Cancer Research (G.S.), Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III (M.T.), and Institute of Pharmacology, Center for Physiology and Pharmacology (T.S.), Medical University of Vienna, Vienna, Austria; Department of Zoology, Government College University Lahore, Lahore, Pakistan (M.I.S.); and Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria (K.W.)
| | - Diethart Schmid
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics (M.I.S., M.S., P.C.), Institute of Physiology, Center for Physiology and Pharmacology (D.S.), Institute of Cancer Research (G.S.), Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III (M.T.), and Institute of Pharmacology, Center for Physiology and Pharmacology (T.S.), Medical University of Vienna, Vienna, Austria; Department of Zoology, Government College University Lahore, Lahore, Pakistan (M.I.S.); and Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria (K.W.)
| | - Katrin Wlcek
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics (M.I.S., M.S., P.C.), Institute of Physiology, Center for Physiology and Pharmacology (D.S.), Institute of Cancer Research (G.S.), Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III (M.T.), and Institute of Pharmacology, Center for Physiology and Pharmacology (T.S.), Medical University of Vienna, Vienna, Austria; Department of Zoology, Government College University Lahore, Lahore, Pakistan (M.I.S.); and Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria (K.W.)
| | - Matthias Spork
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics (M.I.S., M.S., P.C.), Institute of Physiology, Center for Physiology and Pharmacology (D.S.), Institute of Cancer Research (G.S.), Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III (M.T.), and Institute of Pharmacology, Center for Physiology and Pharmacology (T.S.), Medical University of Vienna, Vienna, Austria; Department of Zoology, Government College University Lahore, Lahore, Pakistan (M.I.S.); and Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria (K.W.)
| | - Gergely Szakács
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics (M.I.S., M.S., P.C.), Institute of Physiology, Center for Physiology and Pharmacology (D.S.), Institute of Cancer Research (G.S.), Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III (M.T.), and Institute of Pharmacology, Center for Physiology and Pharmacology (T.S.), Medical University of Vienna, Vienna, Austria; Department of Zoology, Government College University Lahore, Lahore, Pakistan (M.I.S.); and Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria (K.W.)
| | - Michael Trauner
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics (M.I.S., M.S., P.C.), Institute of Physiology, Center for Physiology and Pharmacology (D.S.), Institute of Cancer Research (G.S.), Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III (M.T.), and Institute of Pharmacology, Center for Physiology and Pharmacology (T.S.), Medical University of Vienna, Vienna, Austria; Department of Zoology, Government College University Lahore, Lahore, Pakistan (M.I.S.); and Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria (K.W.)
| | - Thomas Stockner
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics (M.I.S., M.S., P.C.), Institute of Physiology, Center for Physiology and Pharmacology (D.S.), Institute of Cancer Research (G.S.), Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III (M.T.), and Institute of Pharmacology, Center for Physiology and Pharmacology (T.S.), Medical University of Vienna, Vienna, Austria; Department of Zoology, Government College University Lahore, Lahore, Pakistan (M.I.S.); and Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria (K.W.)
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics (M.I.S., M.S., P.C.), Institute of Physiology, Center for Physiology and Pharmacology (D.S.), Institute of Cancer Research (G.S.), Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III (M.T.), and Institute of Pharmacology, Center for Physiology and Pharmacology (T.S.), Medical University of Vienna, Vienna, Austria; Department of Zoology, Government College University Lahore, Lahore, Pakistan (M.I.S.); and Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria (K.W.)
| |
Collapse
|
25
|
Asjad HMM, Kasture A, El-Kasaby A, Sackel M, Hummel T, Freissmuth M, Sucic S. Pharmacochaperoning in a Drosophila model system rescues human dopamine transporter variants associated with infantile/juvenile parkinsonism. J Biol Chem 2017; 292:19250-19265. [PMID: 28972153 PMCID: PMC5702666 DOI: 10.1074/jbc.m117.797092] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Point mutations in the gene encoding the human dopamine transporter (hDAT, SLC6A3) cause a syndrome of infantile/juvenile dystonia and parkinsonism. To unravel the molecular mechanism underlying these disorders and investigate possible pharmacological therapies, here we examined 13 disease-causing DAT mutants that were retained in the endoplasmic reticulum when heterologously expressed in HEK293 cells. In three of these mutants, i.e. hDAT-V158F, hDAT-G327R, and hDAT-L368Q, the folding deficit was remedied with the pharmacochaperone noribogaine or the heat shock protein 70 (HSP70) inhibitor pifithrin-μ such that endoplasmic reticulum export of and radioligand binding and substrate uptake by these DAT mutants were restored. In Drosophila melanogaster, DAT deficiency results in reduced sleep. We therefore exploited the power of targeted transgene expression of mutant hDAT in Drosophila to explore whether these hDAT mutants could also be pharmacologically rescued in an intact organism. Noribogaine or pifithrin-μ treatment supported hDAT delivery to the presynaptic terminals of dopaminergic neurons and restored sleep to normal length in DAT-deficient (fumin) Drosophila lines expressing hDAT-V158F or hDAT-G327R. In contrast, expression of hDAT-L368Q in the Drosophila DAT mutant background caused developmental lethality, indicating a toxic action not remedied by pharmacochaperoning. Our observations identified those mutations most likely amenable to pharmacological rescue in the affected children. In addition, our findings also highlight the challenges of translating insights from pharmacochaperoning in cell culture to the clinical situation. Because of the evolutionary conservation in dopaminergic neurotransmission between Drosophila and people, pharmacochaperoning of DAT in D. melanogaster may allow us to bridge that gap.
Collapse
Affiliation(s)
- H M Mazhar Asjad
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Ameya Kasture
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Ali El-Kasaby
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Michael Sackel
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Thomas Hummel
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Sonja Sucic
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| |
Collapse
|
26
|
Bhat S, Hasenhuetl PS, Kasture A, El-Kasaby A, Baumann MH, Blough BE, Sucic S, Sandtner W, Freissmuth M. Conformational state interactions provide clues to the pharmacochaperone potential of serotonin transporter partial substrates. J Biol Chem 2017; 292:16773-16786. [PMID: 28842491 PMCID: PMC5633137 DOI: 10.1074/jbc.m117.794081] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
Point mutations in SLC6 transporters cause misfolding, which can be remedied by pharmacochaperones. The serotonin transporter (SERT/SLC6A4) has a rich pharmacology including inhibitors, releasers (amphetamines, which promote the exchange mode), and more recently, discovered partial substrates. We hypothesized that partial substrates trapped the transporter in one or several states of the transport cycle. This conformational trapping may also be conducive to folding. We selected naphthylpropane-2-amines of the phenethylamine library (PAL) including the partial substrate PAL1045 and its congeners PAL287 and PAL1046. We analyzed their impact on the transport cycle of SERT by biochemical approaches and by electrophysiological recordings; substrate-induced peak currents and steady-state currents monitored the translocation of substrate and co-substrate Na+ across the lipid bilayer and the transport cycle, respectively. These experiments showed that PAL1045 and its congeners bound with different affinities (ranging from nm to μm) to various conformational intermediates of SERT during the transport cycle. Consistent with the working hypothesis, PAL1045 was the most efficacious compound in restoring surface expression and transport activity to the folding-deficient mutant SERT-601PG602-AA. These experiments provide a proof-of-principle for a rational search for pharmacochaperones, which may be useful to restore function to clinically relevant folding-deficient transporter mutants.
Collapse
Affiliation(s)
- Shreyas Bhat
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Peter S Hasenhuetl
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ameya Kasture
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael H Baumann
- the Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, and
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709-1294
| | - Sonja Sucic
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Walter Sandtner
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria,
| |
Collapse
|
27
|
Rives ML, Javitch JA, Wickenden AD. Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochem Pharmacol 2017; 135:1-11. [DOI: 10.1016/j.bcp.2017.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022]
|
28
|
Spork M, Sohail MI, Schmid D, Ecker GF, Freissmuth M, Chiba P, Stockner T. Folding correction of ABC-transporter ABCB1 by pharmacological chaperones: a mechanistic concept. Pharmacol Res Perspect 2017; 5:e00325. [PMID: 28603639 PMCID: PMC5464349 DOI: 10.1002/prp2.325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Point mutations of ATP‐binding cassette (ABC) proteins are a common cause of human diseases. Available crystal structures indicate a similarity in the architecture of several members of this protein family. Their molecular architecture makes these proteins vulnerable to mutation, when critical structural elements are affected. The latter preferentially involve the two transmembrane domain (TMD)/nucleotide‐binding domain (NBD) interfaces (transmission interfaces), formation of which requires engagement of coupling helices of intracellular loops with NBDs. Both, formation of the active sites and engagement of the coupling helices, are contingent on correct positioning of ICLs 2 and 4 and thus an important prerequisite for proper folding. Here, we show that active site compounds are capable of rescuing P‐glycoprotein (P‐gp) mutants ∆Y490 and ∆Y1133 in a concentration‐dependent manner. These trafficking deficient mutations are located at the transmission interface in pseudosymmetric position to each other. In addition, the ability of propafenone analogs to correct folding correlates with their ability to inhibit transport of model substrates. This finding indicates that folding correction and transport inhibition by propafenone analogs are brought about by binding to the active sites. Furthermore, this study demonstrates an asymmetry in folding correction with cis‐flupentixol, which reflects the asymmetric binding properties of this modulator to P‐gp. Our results suggest a mechanistic model for corrector action in a model ABC transporter based on insights into the molecular architecture of these transporters.
Collapse
Affiliation(s)
- Matthias Spork
- Institute of Medical Chemistry Center of Pathobiochemistry and Genetics Medical University of Vienna Waehringerstrasse 10 Vienna A-1090 Austria
| | - Muhammad Imran Sohail
- Institute of Medical Chemistry Center of Pathobiochemistry and Genetics Medical University of Vienna Waehringerstrasse 10 Vienna A-1090 Austria.,Department of Zoology Government College University Lahore Katchery Road Lahore 54000 Pakistan
| | - Diethart Schmid
- Institute of Physiology Center of Physiology und Pharmacology Medical University of Vienna Schwarzspanierstrasse 17 Vienna A -1090 Austria
| | - Gerhard F Ecker
- Department of Medicinal Chemistry University of Vienna Emerging Field Pharmacoinformatics Althanstrasse 14 Vienna A-1090 Austria (GFE)
| | - Michael Freissmuth
- Institute of Pharmacology Center of Physiology und Pharmacology Medical University of Vienna Waehringerstrasse 13a Vienna A-1090 Austria
| | - Peter Chiba
- Institute of Medical Chemistry Center of Pathobiochemistry and Genetics Medical University of Vienna Waehringerstrasse 10 Vienna A-1090 Austria
| | - Thomas Stockner
- Institute of Pharmacology Center of Physiology und Pharmacology Medical University of Vienna Waehringerstrasse 13a Vienna A-1090 Austria
| |
Collapse
|
29
|
Beerepoot P, Nazari R, Salahpour A. Pharmacological chaperone approaches for rescuing GPCR mutants: Current state, challenges, and screening strategies. Pharmacol Res 2017; 117:242-251. [DOI: 10.1016/j.phrs.2016.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
|
30
|
Abstract
Glycine, besides exerting essential metabolic functions, is an important inhibitory neurotransmitter in caudal areas of the central nervous system and also a positive neuromodulator at excitatory glutamate-mediated synapses. Glial cells provide metabolic support to neurons and modulate synaptic activity. Six transporters belonging to three solute carrier families (SLC6, SLC38, and SLC7) are capable of transporting glycine across the glial plasma membrane. The unique glial glycine-selective transporter GlyT1 (SLC6) is the main regulator of synaptic glycine concentrations, assisted by the neuronal GlyT2. The five additional glycine transporters ATB0,+, SNAT1, SNAT2, SNAT5, and LAT2 display broad amino acid specificity and have differential contributions to glial glycine transport. Glial glycine transporters are divergent in sequence but share a similar architecture displaying the 5 + 5 inverted fold originally characterized in the leucine transporter LeuT. The availability of protein crystals solved at high resolution for prokaryotic and, more recently, eukaryotic homologues of this superfamily has advanced significantly our understanding of the mechanism of glycine transport.
Collapse
|
31
|
Freissmuth M, Stockner T, Sucic S. SLC6 Transporter Folding Diseases and Pharmacochaperoning. Handb Exp Pharmacol 2017; 245:249-270. [PMID: 29086036 DOI: 10.1007/164_2017_71] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human genome encodes 19 genes of the solute carrier 6 (SLC6) family; non-synonymous changes in the coding sequence give rise to mutated transporters, which are misfolded and thus cause diseases in the affected individuals. Prominent examples include mutations in the transporters for dopamine (DAT, SLC6A3), for creatine (CT1, SLC6A8), and for glycine (GlyT2, SLC6A5), which result in infantile dystonia, mental retardation, and hyperekplexia, respectively. Thus, there is an obvious unmet medical need to identify compounds, which can remedy the folding deficit. The pharmacological correction of folding defects was originally explored in mutants of the serotonin transporter (SERT, SLC6A4), which were created to study the COPII-dependent export from the endoplasmic reticulum. This led to the serendipitous discovery of the pharmacochaperoning action of ibogaine. Ibogaine and its metabolite noribogaine also rescue several disease-relevant mutants of DAT. Because the pharmacology of DAT and SERT is exceptionally rich, it is not surprising that additional compounds have been identified, which rescue folding-deficient mutants. These compounds are not only of interest for restoring DAT function in the affected children. They are also likely to serve as useful tools to interrogate the folding trajectory of the transporter. This is likely to initiate a virtuous cycle: if the principles underlying folding of SLC6 transporters are understood, the design of pharmacochaperones ought to be facilitated.
Collapse
Affiliation(s)
- Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Sucic S, Kasture A, Mazhar Asjad HM, Kern C, El-Kasaby A, Freissmuth M. When transporters fail to be transported: how to rescue folding-deficient SLC6 transporters. ACTA ACUST UNITED AC 2016; 1:34-40. [PMID: 28405636 PMCID: PMC5386142 DOI: 10.29245/2572.942x/2016/9.1098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The human dopamine transporter (hDAT) belongs to the solute carrier 6 (SLC6) gene family. Point mutations in hDAT (SLC6A3) have been linked to a syndrome of dopamine transporter deficiency or infantile dystonia/parkinsonism. The mutations impair DAT folding, causing retention of variant DATs in the endoplasmic reticulum and subsequently impair transport activity. The folding trajectory of DAT itself is not understood, though many insights have been gained from studies of folding-deficient mutants of the closely related serotonin transporter (SERT); i.e. their functional rescue by pharmacochaperoning with (nor)ibogaine or heat-shock protein inhibitors. We recently provided a proof-of-principle that folding-deficits in DAT are amenable to rescue in vitro and in vivo. As a model we used the Drosophila melanogaster DAT mutant dDAT-G108Q, which phenocopies the fumin/sleepless DAT-knockout. Treatment with noribogaine and/or HSP70 inhibitor pifithrin-μ restored folding of, and dopamine transport by, dDAT-G108Q, its axonal delivery and normal sleep time in mutant flies. The possibility of functional rescue of misfolded DATs in living flies by pharmacochaperoning grants new therapeutic prospects in the remedy of folding diseases, not only in hDAT, but also in other SLC6 transporters, in particular mutants of the creatine transporter-1, which give rise to X-linked mental retardation.
Collapse
Affiliation(s)
- Sonja Sucic
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ameya Kasture
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - H M Mazhar Asjad
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Carina Kern
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
33
|
Beerepoot P, Lam VM, Salahpour A. Pharmacological Chaperones of the Dopamine Transporter Rescue Dopamine Transporter Deficiency Syndrome Mutations in Heterologous Cells. J Biol Chem 2016; 291:22053-22062. [PMID: 27555326 DOI: 10.1074/jbc.m116.749119] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 11/06/2022] Open
Abstract
A number of pathological conditions have been linked to mutations in the dopamine transporter gene, including hereditary dopamine transporter deficiency syndrome (DTDS). DTDS is a rare condition that is caused by autosomal recessive loss-of-function mutations in the dopamine transporter (DAT), which often affects transporter trafficking and folding. We examined the possibility of using pharmacological chaperones of DAT to rescue DTDS mutations. After screening a set of known DAT ligands for their ability to increase DAT surface expression, we found that bupropion and ibogaine increased DAT surface expression, whereas others, including cocaine and methylphenidate, had no effect. Bupropion and ibogaine increased wild type DAT protein levels and also promoted maturation of the endoplasmic reticulum (ER)-retained DAT mutant K590A. Rescue of K590A could be blocked by inhibiting ER to Golgi transport using brefeldin A. Furthermore, knockdown of coat protein complex II (COPII) component SEC24D, which is important in the ER export of wild type DAT, also blocked the rescue effects of bupropion and ibogaine. These data suggest that bupropion and ibogaine promote maturation of DAT by acting as pharmacological chaperones in the ER. Importantly, both drugs rescue DAT maturation and functional activity of the DTDS-associated mutations A314V and R445C. Together, these results are the first demonstration of pharmacological chaperoning of DAT and suggest this may be a viable approach to increase DAT levels in DTDS and other conditions associated with reduced DAT function.
Collapse
Affiliation(s)
- Pieter Beerepoot
- From the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Vincent M Lam
- From the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ali Salahpour
- From the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
34
|
Kasture A, El-Kasaby A, Szöllősi D, Asjad HMM, Grimm A, Stockner T, Hummel T, Freissmuth M, Sucic S. Functional Rescue of a Misfolded Drosophila melanogaster Dopamine Transporter Mutant Associated with a Sleepless Phenotype by Pharmacological Chaperones. J Biol Chem 2016; 291:20876-20890. [PMID: 27481941 PMCID: PMC5076501 DOI: 10.1074/jbc.m116.737551] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
Folding-defective mutants of the human dopamine transporter (DAT) cause a syndrome of infantile dystonia/parkinsonism. Here, we provide a proof-of-principle that the folding deficit is amenable to correction in vivo by two means, the cognate DAT ligand noribogaine and the HSP70 inhibitor, pifithrin-μ. We examined the Drosophila melanogaster (d) mutant dDAT-G108Q, which leads to a sleepless phenotype in flies harboring this mutation. Molecular dynamics simulations suggested an unstable structure of dDAT-G108Q consistent with a folding defect. This conjecture was verified; heterologously expressed dDAT-G108Q and the human (h) equivalent hDAT-G140Q were retained in the endoplasmic reticulum in a complex with endogenous folding sensors (calnexin and HSP70-1A). Incubation of the cells with noribogaine (a DAT ligand selective for the inward-facing state) and/or pifithrin-μ (an HSP70 inhibitor) restored folding of, and hence dopamine transport by, dDAT-G108Q and hDAT-G140Q. The mutated versions of DAT were confined to the cell bodies of the dopaminergic neurons in the fly brain and failed to reach the axonal compartments. Axonal delivery was restored, and sleep time was increased to normal length (from 300 to 1000 min/day) if the dDAT-G108Q-expressing flies were treated with noribogaine and/or pifithrin-μ. Rescuing misfolded versions of DAT by pharmacochaperoning is of therapeutic interest; it may provide opportunities to remedy disorders arising from folding-defective mutants of human DAT and of other related SLC6 transporters.
Collapse
Affiliation(s)
- Ameya Kasture
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.,the Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt, and
| | - Daniel Szöllősi
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - H M Mazhar Asjad
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Alexandra Grimm
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Thomas Stockner
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Thomas Hummel
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria,
| | - Sonja Sucic
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
35
|
Koban F, El-Kasaby A, Häusler C, Stockner T, Simbrunner BM, Sitte HH, Freissmuth M, Sucic S. A salt bridge linking the first intracellular loop with the C terminus facilitates the folding of the serotonin transporter. J Biol Chem 2015; 290:13263-78. [PMID: 25869136 PMCID: PMC4505579 DOI: 10.1074/jbc.m115.641357] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
The folding trajectory of solute carrier 6 (SLC6) family members is of interest because point mutations result in misfolding and thus cause clinically relevant phenotypes in people. Here we examined the contribution of the C terminus in supporting folding of the serotonin transporter (SERT; SLC6A4). Our working hypothesis posited that the amphipathic nature of the C-terminal α-helix (Thr603–Thr613) was important for folding of SERT. Accordingly, we disrupted the hydrophobic moment of the α-helix by replacing Phe604, Ile608, or Ile612 by Gln. The bulk of the resulting mutants SERT-F604Q, SERT-I608Q, and SERT-I612Q were retained in the endoplasmic reticulum, but their residual delivery to the cell surface still depended on SEC24C. This indicates that the amphipathic nature of the C-terminal α-helix was dispensable to endoplasmic reticulum export. The folding trajectory of SERT is thought to proceed through the inward facing conformation. Consistent with this conjecture, cell surface expression of the misfolded mutants was restored by (i) introducing second site suppressor mutations, which trap SERT in the inward facing state, or (ii) by the pharmacochaperone noribogaine, which binds to the inward facing conformation. Finally, mutation of Glu615 at the end of the C-terminal α-helix to Lys reduced surface expression of SERT-E615K. A charge reversal mutation in intracellular loop 1 restored surface expression of SERT-R152E/E615K to wild type levels. These observations support a mechanistic model where the C-terminal amphipathic helix is stabilized by an intramolecular salt bridge between residues Glu615 and Arg152. This interaction acts as a pivot in the conformational search associated with folding of SERT.
Collapse
Affiliation(s)
- Florian Koban
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Ali El-Kasaby
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and the Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Cornelia Häusler
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Thomas Stockner
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Benedikt M Simbrunner
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Harald H Sitte
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Michael Freissmuth
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Sonja Sucic
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| |
Collapse
|
36
|
Sitte HH, Schütz GJ, Freissmuth M. Cooperativity between individual transporter protomers: new data fuelling old complexes. J Neurochem 2015; 133:163-6. [PMID: 25772534 DOI: 10.1111/jnc.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 01/01/2023]
Abstract
Neurotransmitter transporters are arranged in an oligomeric quaternary structure as evidenced by crosslinking or fluorescence resonance energy transfer (FRET)-microscopy. In a study by Zhen and colleagues highlighted by this Editorial in the current issue of Journal of Neurochemistry, the combination of mutant and wild-type dopamine transporter (DAT) has been used to establish the cooperation between transporter protomers; the DAT mutant version has an altered affinity for the radiolabelled inhibitor [³H]CFT. Zhen and colleagues predict how saturation-binding curves ought to look, if the two binding sites (i.e. of the wild type and the mutant DAT) operated independently. The results are clear-cut: the experimental observations are inconsistent with curves obtained by mixing independent binding sites. Thus, by definition, the binding sites cooperate. Read the full article 'Dopamine transporter oligomerization: impact of combining protomers with differential cocaine analog binding affinities' on page 167.
Collapse
Affiliation(s)
- Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | | | | |
Collapse
|
37
|
Arribas-González E, de Juan-Sanz J, Aragón C, López-Corcuera B. Molecular basis of the dominant negative effect of a glycine transporter 2 mutation associated with hyperekplexia. J Biol Chem 2014; 290:2150-65. [PMID: 25480793 DOI: 10.1074/jbc.m114.587055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperekplexia or startle disease is a rare clinical syndrome characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. This neurological disorder can have serious consequences in neonates, provoking brain damage and/or sudden death due to apnea episodes and cardiorespiratory failure. Hyperekplexia is caused by defective inhibitory glycinergic neurotransmission. Mutations in the human SLC6A5 gene encoding the neuronal GlyT2 glycine transporter are responsible for the presynaptic form of the disease. GlyT2 mediates synaptic glycine recycling, which constitutes the main source of releasable transmitter at glycinergic synapses. Although the majority of GlyT2 mutations detected so far are recessive, a dominant negative mutant that affects GlyT2 trafficking does exist. In this study, we explore the properties and structural alterations of the S512R mutation in GlyT2. We analyze its dominant negative effect that retains wild-type GlyT2 in the endoplasmic reticulum (ER), preventing surface expression. We show that the presence of an arginine rather than serine 512 provoked transporter misfolding, enhanced association to the ER-chaperone calnexin, altered association with the coat-protein complex II component Sec24D, and thereby impeded ER exit. The S512R mutant formed oligomers with wild-type GlyT2 causing its retention in the ER. Overexpression of calnexin rescued wild-type GlyT2 from the dominant negative effect of the mutant, increasing the amount of transporter that reached the plasma membrane and dampening the interaction between the wild-type and mutant GlyT2. The ability of chemical chaperones to overcome the dominant negative effect of the disease mutation on the wild-type transporter was demonstrated in heterologous cells and primary neurons.
Collapse
Affiliation(s)
- Esther Arribas-González
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, the IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain
| | - Jaime de Juan-Sanz
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, the IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain the Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid 28029, Spain, and
| | - Carmen Aragón
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, the IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain the Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid 28029, Spain, and
| | - Beatriz López-Corcuera
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, the IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain the Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid 28029, Spain, and
| |
Collapse
|
38
|
El-Kasaby A, Koban F, Sitte HH, Freissmuth M, Sucic S. A cytosolic relay of heat shock proteins HSP70-1A and HSP90β monitors the folding trajectory of the serotonin transporter. J Biol Chem 2014; 289:28987-9000. [PMID: 25202009 PMCID: PMC4200255 DOI: 10.1074/jbc.m114.595090] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90β. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90β by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90β. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay.
Collapse
Affiliation(s)
- Ali El-Kasaby
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and the Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Florian Koban
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Harald H Sitte
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Michael Freissmuth
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Sonja Sucic
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| |
Collapse
|
39
|
Functional polymorphisms of the ABCG2 gene are associated with gout disease in the Chinese Han male population. Int J Mol Sci 2014; 15:9149-59. [PMID: 24857923 PMCID: PMC4057780 DOI: 10.3390/ijms15059149] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 12/18/2022] Open
Abstract
Background Gout is a common type of arthritis that is characterized by hyperuricemia, tophi and joint inflammation. Genetic variations in the ABCG2 gene have been reported to influence serum uric acid levels and to participate in the pathogenesis of gout, but no further data have been reported in the Han Chinese population. Methods Peripheral blood DNA was isolated from 352 male patients with gout and 350 gout-free normal male controls. High-resolution melting analysis and Sanger sequencing were performed to identify the genetic polymorphisms V12M, Q141K and Q126X in the ABCG2 gene. Genotype and haplotype analyses were utilized to determine the disease odds ratios (ORs). A prediction model for gout risk using ABCG2 protein function was established based on the genotype combination of Q126X and Q141K. Results For Q141K, the A allele frequency was 49.6% in the gout patients and 30.9% in the controls (OR 2.20, 95% confidence interval (CI): 1.77–2.74, p = 8.99 × 10−13). Regarding Q126X, the T allele frequency was 4.7% in the gout patients and 1.7% in the controls (OR 2.91, 95% CI: 1.49–5.68, p = 1.57 × 10−3). The A allele frequency for V12M was lower (18.3%) in the gout patients than in the controls (29%) (OR 0.55, 95% CI 0.43–0.71, p = 2.55 × 10−6). In the order of V12M, Q126X and Q141K, the GCA and GTC haplotypes indicated increased disease risk (OR = 2.30 and 2.71, respectively). Patients with mild to severe ABCG2 dysfunction accounted for 78.4% of gout cases. Conclusion The ABCG2 126X and 141K alleles are associated with an increased risk of gout, whereas 12M has a protective effect on gout susceptibility in the Han Chinese population. ABCG2 dysfunction can be used to evaluate gout risk.
Collapse
|